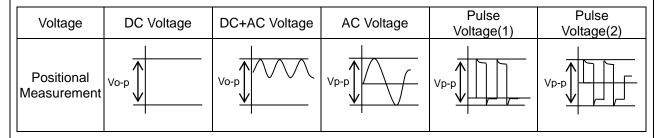


Reference Specification

Type KY
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Mar. 2021, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of $\phi 0.1$ mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

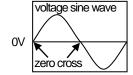
3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD


When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 °C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- 10. Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

Λ note

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type KY used for General Electric equipment.

Type KY is Safety Standard Certified capacitors of Class X1,Y2.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number	*Certified number	AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
CSA	CSA E60384-14	1283280	
VDE	IEC60384-14, EN60384-14	40006273	
BSI	EN62368-1, IEC60384-14, EN60384-14	KM37901	
SEMKO		1905546	X1:250 Y2:250
DEMKO	1500000444	D-07244	12.230
FIMKO	IEC60384-14, — EN60384-14 —	FI 40130	
NEMKO	LIN00304-14	P19223459	
ESTI		21.0061	
NSW	IEC60384-14, AS3250	6824	
CQC	GB/T6346.14	CQC06001017447	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range

-40 ~ +125°C

2-2. Part number configuration

ex.) <u>DE2</u>	E3	KY	472	M	<u>A2</u>	B	M01F
Product	Temperature	Type	Capacitance	Capacitance	Lead	Packing	Individual
code	characteristic	name		tolerance	code	style code	specification

• Product code

DE2 denotes class X1,Y2.

•Temperature characteristic

Code	Temperature characteristic
1X	SL
B3	В
E3	E
F3	F

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type KY.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 472.

$$47 \times 10^2 = 4700 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

٦.											
	Code	Lead	Lead style								
ĺ	A*	Vertical crimp long type									
ĺ	B*	Vartical arims abort tune	Lead Length: 5mm								
ĺ	J*	Vertical crimp short type	Lead Length: 3.5mm								
	N*	Vertical crimp taping type									

^{*} Please refer to [Part number list].

• Packing style code

Code	Packing type
В	Bulk type
Α	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specifi	cation
M01F	Dielectric strength between lead wires: AC2000V(r.m.s.)	Simplicity markingHalogen Free
M02F	Dielectric strength between lead wires: AC2600V(r.m.s.)	Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm CP wire

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(KY) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Nominal capacitance : Actual value(under 100pF)

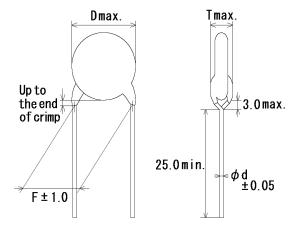
3 digit system(100pF and over)

Capacitance tolerance : Code
Type name : KY
Rated voltage mark : 250~

Class code : X1Y2 Halogen Free mark : HF

Manufacturing year : Letter code(The last digit of A.D. year.)

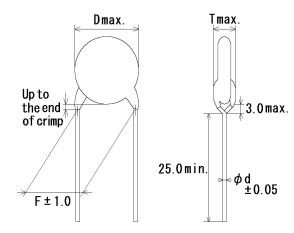
Manufacturing month : Code


Company name code : (Made in Thailand)

(Example)

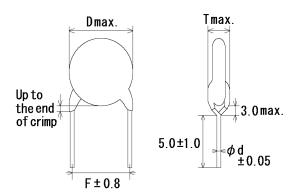
472M KY250~ X1Y2 IF 5D (M15

4. Part number list


·Vertical crimp long type (Lead code:A*)

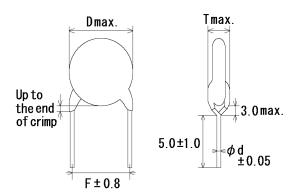
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

							OTIIC.			
T.C.	Сар.	Cap.	Customer Part Number	Murata Part Number	Dir	nensi	on (mi	m)	Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Widiata Fait Number	D	Т	F	d	code	qty. (pcs)
SL	10	±5%		DE21XKY100JA2BM01F	8.0	5.0	5.0	0.6	A2	250
SL	15	±5%		DE21XKY150JA2BM01F	8.0	5.0	5.0	0.6	A2	250
SL	22	±5%		DE21XKY220JA2BM01F	8.0	5.0	5.0	0.6	A2	250
SL	33	±5%		DE21XKY330JA2BM01F	8.0	5.0	5.0	0.6	A2	250
SL	47	±5%		DE21XKY470JA2BM01F	8.0	5.0	5.0	0.6	A2	250
SL	68	±5%		DE21XKY680JA2BM01F	8.0	5.0	5.0	0.6	A2	250
В	100	±10%		DE2B3KY101KA2BM01F	7.0	5.0	5.0	0.6	A2	500
В	150	±10%		DE2B3KY151KA2BM01F	7.0	5.0	5.0	0.6	A2	500
В	220	±10%		DE2B3KY221KA2BM01F	7.0	5.0	5.0	0.6	A2	500
В	330	±10%		DE2B3KY331KA2BM01F	7.0	5.0	5.0	0.6	A2	500
В	470	±10%		DE2B3KY471KA2BM01F	7.0	5.0	5.0	0.6	A2	500
В	680	±10%		DE2B3KY681KA2BM01F	8.0	5.0	5.0	0.6	A2	250
Е	1000	±20%		DE2E3KY102MA2BM01F	7.0	5.0	5.0	0.6	A2	500
Е	1500	±20%		DE2E3KY152MA2BM01F	7.0	5.0	5.0	0.6	A2	500
E	2200	±20%		DE2E3KY222MA2BM01F	8.0	5.0	5.0	0.6	A2	250
Е	3300	±20%		DE2E3KY332MA2BM01F	9.0	5.0	5.0	0.6	A2	250
Е	4700	±20%		DE2E3KY472MA2BM01F	10.0	5.0	5.0	0.6	A2	250


Vertical crimp long type (Lead code: A*)

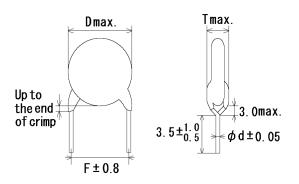
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Unit:								mm	
T.C.	Сар.	Cap.	Customer Part Number	Murata Part Number	Dir	nensi	on (mı	m)	Lead code	Pack qty.
1.0.	(pF)	tol.	Customer Fait Number	Mulata Falt Nullibel	D	Т	F	d		(pcs)
SL	10	±5%		DE21XKY100JA3BM02F	8.0	5.0	7.5	0.6	А3	250
SL	15	±5%		DE21XKY150JA3BM02F	8.0	5.0	7.5	0.6	А3	250
SL	22	±5%		DE21XKY220JA3BM02F	8.0	5.0	7.5	0.6	А3	250
SL	33	±5%		DE21XKY330JA3BM02F	8.0	5.0	7.5	0.6	А3	250
SL	47	±5%		DE21XKY470JA3BM02F	8.0	5.0	7.5	0.6	А3	250
SL	68	±5%		DE21XKY680JA3BM02F	8.0	5.0	7.5	0.6	А3	250
В	100	±10%		DE2B3KY101KA3BM02F	7.0	5.0	7.5	0.6	А3	250
В	150	±10%		DE2B3KY151KA3BM02F	7.0	5.0	7.5	0.6	А3	250
В	220	±10%		DE2B3KY221KA3BM02F	7.0	5.0	7.5	0.6	А3	250
В	330	±10%		DE2B3KY331KA3BM02F	7.0	5.0	7.5	0.6	А3	250
В	470	±10%		DE2B3KY471KA3BM02F	7.0	5.0	7.5	0.6	А3	250
В	680	±10%		DE2B3KY681KA3BM02F	8.0	5.0	7.5	0.6	А3	250
Е	1000	$\pm 20\%$		DE2E3KY102MA3BM02F	7.0	5.0	7.5	0.6	А3	250
Е	1500	$\pm 20\%$		DE2E3KY152MA3BM02F	7.0	5.0	7.5	0.6	А3	250
Е	2200	±20%		DE2E3KY222MA3BM02F	8.0	5.0	7.5	0.6	А3	250
Е	3300	±20%		DE2E3KY332MA3BM02F	9.0	5.0	7.5	0.6	А3	250
Е	4700	±20%		DE2E3KY472MA3BM02F	10.0	5.0	7.5	0.6	А3	250
F	10000	±20%		DE2F3KY103MA3BM02F	14.0	5.0	7.5	0.6	А3	200


Vertical crimp short type (Lead code:B*)

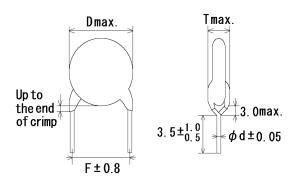
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

							OTIIC.			
T.C.	Cap.	Cap.	Customer Part Number	Murata Part Number	Dir	nensi	on (mi	m)	Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	code	qty. (pcs)
SL	10	±5%		DE21XKY100JB2BM01F	8.0	5.0	5.0	0.6	B2	500
SL	15	±5%		DE21XKY150JB2BM01F	8.0	5.0	5.0	0.6	B2	500
SL	22	±5%		DE21XKY220JB2BM01F	8.0	5.0	5.0	0.6	B2	500
SL	33	±5%		DE21XKY330JB2BM01F	8.0	5.0	5.0	0.6	B2	500
SL	47	±5%		DE21XKY470JB2BM01F	8.0	5.0	5.0	0.6	B2	500
SL	68	±5%		DE21XKY680JB2BM01F	8.0	5.0	5.0	0.6	B2	500
В	100	±10%		DE2B3KY101KB2BM01F	7.0	5.0	5.0	0.6	B2	500
В	150	±10%		DE2B3KY151KB2BM01F	7.0	5.0	5.0	0.6	B2	500
В	220	±10%		DE2B3KY221KB2BM01F	7.0	5.0	5.0	0.6	B2	500
В	330	±10%		DE2B3KY331KB2BM01F	7.0	5.0	5.0	0.6	B2	500
В	470	±10%		DE2B3KY471KB2BM01F	7.0	5.0	5.0	0.6	B2	500
В	680	±10%		DE2B3KY681KB2BM01F	8.0	5.0	5.0	0.6	B2	500
Е	1000	±20%		DE2E3KY102MB2BM01F	7.0	5.0	5.0	0.6	B2	500
Е	1500	±20%		DE2E3KY152MB2BM01F	7.0	5.0	5.0	0.6	B2	500
Е	2200	±20%		DE2E3KY222MB2BM01F	8.0	5.0	5.0	0.6	B2	500
Е	3300	±20%		DE2E3KY332MB2BM01F	9.0	5.0	5.0	0.6	B2	500
E	4700	±20%		DE2E3KY472MB2BM01F	10.0	5.0	5.0	0.6	B2	500


Vertical crimp short type (Lead code:B*)

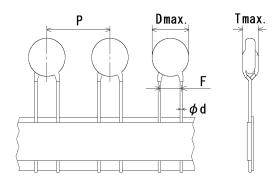
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Office								OTIIL.	111111
T.C.	Сар.	Сар.	Customer Part Number	Murata Part Number	Dir	nensi	Lead	Pack qty.		
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	code	(pcs)
SL	10	±5%		DE21XKY100JB3BM02F	8.0	5.0	7.5	0.6	В3	500
SL	15	±5%		DE21XKY150JB3BM02F	8.0	5.0	7.5	0.6	В3	500
SL	22	±5%		DE21XKY220JB3BM02F	8.0	5.0	7.5	0.6	В3	500
SL	33	±5%		DE21XKY330JB3BM02F	8.0	5.0	7.5	0.6	В3	500
SL	47	±5%		DE21XKY470JB3BM02F	8.0	5.0	7.5	0.6	В3	500
SL	68	±5%		DE21XKY680JB3BM02F	8.0	5.0	7.5	0.6	В3	500
В	100	$\pm 10\%$		DE2B3KY101KB3BM02F	7.0	5.0	7.5	0.6	В3	500
В	150	$\pm 10\%$		DE2B3KY151KB3BM02F	7.0	5.0	7.5	0.6	В3	500
В	220	$\pm 10\%$		DE2B3KY221KB3BM02F	7.0	5.0	7.5	0.6	В3	500
В	330	$\pm 10\%$		DE2B3KY331KB3BM02F	7.0	5.0	7.5	0.6	В3	500
В	470	$\pm 10\%$		DE2B3KY471KB3BM02F	7.0	5.0	7.5	0.6	В3	500
В	680	$\pm 10\%$		DE2B3KY681KB3BM02F	8.0	5.0	7.5	0.6	В3	500
Е	1000	$\pm 20\%$		DE2E3KY102MB3BM02F	7.0	5.0	7.5	0.6	В3	500
Е	1500	$\pm 20\%$		DE2E3KY152MB3BM02F	7.0	5.0	7.5	0.6	В3	500
Е	2200	±20%		DE2E3KY222MB3BM02F	8.0	5.0	7.5	0.6	В3	500
Е	3300	±20%		DE2E3KY332MB3BM02F	9.0	5.0	7.5	0.6	В3	500
Е	4700	±20%		DE2E3KY472MB3BM02F	10.0	5.0	7.5	0.6	В3	500
F	10000	±20%		DE2F3KY103MB3BM02F	14.0	5.0	7.5	0.6	В3	250


·Vertical crimp short type
(Lead code:J*)

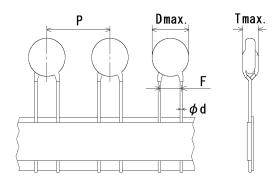
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

	Office									1111111
T.C.	Cap.	. Cap.	Customer Part Number	Murata Part Number	Dimension (mm)				Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Widiala Fait Number	D	Т	F	d	code	qty. (pcs)
SL	10	±5%		DE21XKY100JJ2BM01F	8.0	5.0	5.0	0.6	J2	500
SL	15	±5%		DE21XKY150JJ2BM01F	8.0	5.0	5.0	0.6	J2	500
SL	22	±5%		DE21XKY220JJ2BM01F	8.0	5.0	5.0	0.6	J2	500
SL	33	±5%		DE21XKY330JJ2BM01F	8.0	5.0	5.0	0.6	J2	500
SL	47	±5%		DE21XKY470JJ2BM01F	8.0	5.0	5.0	0.6	J2	500
SL	68	±5%		DE21XKY680JJ2BM01F	8.0	5.0	5.0	0.6	J2	500
В	100	±10%		DE2B3KY101KJ2BM01F	7.0	5.0	5.0	0.6	J2	500
В	150	±10%		DE2B3KY151KJ2BM01F	7.0	5.0	5.0	0.6	J2	500
В	220	±10%		DE2B3KY221KJ2BM01F	7.0	5.0	5.0	0.6	J2	500
В	330	±10%		DE2B3KY331KJ2BM01F	7.0	5.0	5.0	0.6	J2	500
В	470	±10%		DE2B3KY471KJ2BM01F	7.0	5.0	5.0	0.6	J2	500
В	680	±10%		DE2B3KY681KJ2BM01F	8.0	5.0	5.0	0.6	J2	500
Е	1000	±20%		DE2E3KY102MJ2BM01F	7.0	5.0	5.0	0.6	J2	500
Е	1500	±20%		DE2E3KY152MJ2BM01F	7.0	5.0	5.0	0.6	J2	500
Е	2200	±20%		DE2E3KY222MJ2BM01F	8.0	5.0	5.0	0.6	J2	500
Е	3300	±20%		DE2E3KY332MJ2BM01F	9.0	5.0	5.0	0.6	J2	500
Е	4700	±20%		DE2E3KY472MJ2BM01F	10.0	5.0	5.0	0.6	J2	500


·Vertical crimp short type (Lead code: J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d). Please see the following list about details.

Unit: mm Pack Dimension (mm) Lead Cap. Cap. T.C. **Customer Part Number** Murata Part Number qty. (pF) tol. code D Т F d (pcs) SL DE21XKY100JJ3BM02F 5.0 7.5 J3 10 $\pm 5\%$ 8.0 0.6 500 SL 15 $\pm 5\%$ DE21XKY150JJ3BM02F 8.0 5.0 7.5 0.6 J3 500 SL 22 $\pm 5\%$ DE21XKY220JJ3BM02F 8.0 7.5 J3 500 5.0 0.6 33 $\pm 5\%$ DE21XKY330JJ3BM02F 7.5 J3 SI 8.0 5.0 0.6 500 SL 47 $\pm 5\%$ DE21XKY470JJ3BM02F 8.0 5.0 7.5 0.6 J3 500 SL 68 $\pm 5\%$ DE21XKY680JJ3BM02F 8.0 5.0 7.5 0.6 J3 500 100 7.5 В ±10% DE2B3KY101KJ3BM02F 7.0 5.0 0.6 J3 500 В 150 ±10% DE2B3KY151KJ3BM02F 7.0 7.5 0.6 J3 500 5.0 В 220 $\pm 10\%$ DE2B3KY221KJ3BM02F 7.0 5.0 7.5 J3 500 0.6 В 330 $\pm 10\%$ DE2B3KY331KJ3BM02F 7.0 5.0 7.5 0.6 J3 500 В 470 $\pm 10\%$ DE2B3KY471KJ3BM02F 7.0 5.0 7.5 0.6 J3 500 7.5 В 680 $\pm 10\%$ DE2B3KY681KJ3BM02F 8.0 5.0 0.6 J3 500 ±20% 7.5 500 Ε 1000 DE2E3KY102MJ3BM02F 5.0 J3 7.0 0.6 7.5 Ε 1500 $\pm 20\%$ DE2E3KY152MJ3BM02F 7.0 5.0 0.6 J3 500 Ε 2200 $\pm 20\%$ DE2E3KY222MJ3BM02F 8.0 5.0 7.5 0.6 J3 500 Ε 3300 $\pm 20\%$ DE2E3KY332MJ3BM02F 9.0 5.0 7.5 0.6 J3 500 4700 $\pm 20\%$ DE2E3KY472MJ3BM02F 10.0 7.5 0.6 J3 500 Ε 5.0 F 10000 DE2F3KY103MJ3BM02F 14.0 5.0 7.5 0.6 J3 250 $\pm 20\%$


·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

Office:								111111			
T.C. Cap.		Cap.	Customer Part Number	Murata Part Number		Dimer	nsion	(mm)	Lead	Pack
1.0.	(pF)	tol.	Customer Fart Number	ividiata Fait Number	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±5%		DE21XKY100JN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
SL	15	±5%		DE21XKY150JN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
SL	22	±5%		DE21XKY220JN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
SL	33	±5%		DE21XKY330JN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
SL	47	±5%		DE21XKY470JN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
SL	68	±5%		DE21XKY680JN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
В	100	±10%		DE2B3KY101KN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
В	150	±10%		DE2B3KY151KN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
В	220	±10%		DE2B3KY221KN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
В	330	±10%		DE2B3KY331KN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
В	470	±10%		DE2B3KY471KN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
В	680	±10%		DE2B3KY681KN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
Е	1000	±20%		DE2E3KY102MN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
Е	1500	±20%		DE2E3KY152MN2AM01F	7.0	5.0	5.0	0.6	12.7	N2	1000
Е	2200	±20%		DE2E3KY222MN2AM01F	8.0	5.0	5.0	0.6	12.7	N2	1000
Е	3300	±20%		DE2E3KY332MN2AM01F	9.0	5.0	5.0	0.6	12.7	N2	1000
Е	4700	±20%		DE2E3KY472MN2AM01F	10.0	5.0	5.0	0.6	12.7	N2	1000

·Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

	Unit : m								ШШ		
T.C.	Сар.	Сар.	Customer Part Number	Murata Part Number	Dimension (mm)				Lead	Pack	
1.0.	(pF)	tol.	Customer Part Number	iviurata Fart Number		Т	F	d	Р	code	qty. (pcs)
SL	10	±5%		DE21XKY100JN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
SL	15	±5%		DE21XKY150JN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
SL	22	±5%		DE21XKY220JN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
SL	33	±5%		DE21XKY330JN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
SL	47	±5%		DE21XKY470JN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
SL	68	±5%		DE21XKY680JN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
В	100	±10%		DE2B3KY101KN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
В	150	±10%		DE2B3KY151KN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
В	220	±10%		DE2B3KY221KN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
В	330	±10%		DE2B3KY331KN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
В	470	±10%		DE2B3KY471KN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
В	680	±10%		DE2B3KY681KN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
Е	1000	$\pm 20\%$		DE2E3KY102MN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
Е	1500	$\pm 20\%$		DE2E3KY152MN3AM02F	7.0	5.0	7.5	0.6	15.0	N3	900
Е	2200	±20%		DE2E3KY222MN3AM02F	8.0	5.0	7.5	0.6	15.0	N3	900
Е	3300	±20%		DE2E3KY332MN3AM02F	9.0	5.0	7.5	0.6	15.0	N3	900
Е	4700	±20%		DE2E3KY472MN3AM02F	10.0	5.0	7.5	0.6	15.0	N3	900
F	10000	±20%		DE2F3KY103MN3AM02F	14.0	5.0	7.5	0.6	15.0	N3	900

5. Sp	ecification and test	t methods									
No.	Ite	em	Sp	pecification		Test method					
1	Appearance and dimensions		No marked defect on appearance form and dimensions. Please refer to [Part number list].			The capacitor should be inspected by naked eyes for visible evidence of defect. Dimensions should be measured with slide calipers.					
2	Marking		To be easily legible.				tor should	be inspec	ted by nal	ked eves.	
3			No failure.		The capacitor should be inspected by naked eye The capacitor should not be damaged when AC2000V(r.m.s.) [in case of individual specificat :M01] or AC2600V(r.m.s.) [in case of individual specification:M02] <50/60Hz> is applied betwee the lead wires for 60 s.						
		Body insulation	No failure.			First, the terminals of the capacitor should be connected together. Then, a metal foil should be closely wrapped around the body of the capacitor to the distance of about 3 to 4mm from each terminal. Then, the capacitor should be inserted into a container filled with metal balls of about 1mm diameter. Finally, AC2600V (r.m.s.)<50/60Hz> is applied for 60 s between the capacitor lead wires and metal balls.					
4	4 Insulation Resistance (I.R.)		10000MΩ min.			The insulation resistance should be measured with DC500 \pm 50V within 60 \pm 5 s of charging. The voltage should be applied to the capacitor through a resistor of 1M Ω .				ng.	
5	Capacitance		Within specified tolerance.			The capacitance should be measured at 20°C with 1±0.1kHz(Char. SL: 1±0.1MHz) and AC5V(r.m.s.) max					
6	Q Dissipation Facto	r (D.F.)	Char. SL: 400+20C*²min.(30pF under) 1000min. (30pF min.) Char. B, E: 2.5% max.			The dissipation factor and Q should be measured at 20°C with 1±0.1kHz(Char. SL: 1±0.1MHz) and AC5V(r.m.s.) max					
7	Temperature char	racteristic	Char. SL: +38 (Temp. range Char. B: Wi Char. E: Wi Char. F: Wi	5.0% max. 50 to -1000 ppm : +20 to +85°C) thin ±10 % thin +20/-55% thin +30/-80% : -25 to +85°C)		The capacite each step s			should be	e made at	
				Step	1	2	3	4	5	1	
				Temp.(°C)	20±2	-25±2	20±2	85±2	20±2	1	
				тотпр.(о)	LULL	LUEL	LUZZ		LUEL	1	

*2 "C"	expresses	nominal	capacitance	value(pF)
--------	-----------	---------	-------------	-----------

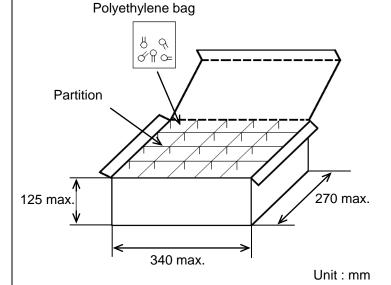
			Reference only	
No.	Item		Specification	Test method
8	Active flammability		The cheese-cloth should not be on fire.	The capacitors should be individually wrapped in at least one but more than two complete layers of cheese-cloth. The capacitor should be subjected to 20 discharges. The interval between successive discharges should be 5 s. The UAc should be maintained for 2min after the last discharge.
				C1,2 : $1\mu F\pm 10\%$, C3 : $0.033\mu F\pm 5\%$ $10kV$ L1 to L4 : $1.5mH\pm 20\%$ 16A Rod core choke R : $100\Omega\pm 2\%$, Ct : $3\mu F\pm 5\%$ $10kV$ UAc : UR $\pm 5\%$ UR : Rated working voltage Cx : Capacitor under test F : Fuse, Rated $10A$ Ut : Voltage applied to Ct
				SkV time
9	Robustness of terminations	Tensile Bending	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the
10	Minaria	J		capacitor is held by its body in such a manner that the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of about 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.
10	Vibration resistance	Appearance Capacitance Q D.F.	No marked defect. Within the specified tolerance. Char. SL: 400+20C*2min.(30pF under) 1000min. (30pF min.) Char. B, E: 2.5% max. Char. F: 5.0% max.	The capacitor should be firmly soldered to the supporting lead wire and vibration which is 10 to 55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.
11	Solderability of lead	s	Lead wire should be soldered with uniformly coated on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder: 245±5°C Lead Free Solder (Sn-3Ag-0.5Cu) 235±5°C H63 Eutectic Solder
*2 "С"	expresses nominal o	capacitance valu	e(pF)	
	/03F			

			Reference only	
No.	ltem		Specification	Test method
12	Soldering effect	Appearance	No marked defect.	Solder temperature: 350±10°C or 260±5°C
	(Non-preheat)	Capacitance	Within ±10%	Immersion time : 3.5±0.5 s
		change I.R.	1000MO min	(In case of 260±5°C : 10±1 s)
		Dielectric	1000MΩ min. Per item 3	The depth of immersion is up to about 1.5 to 2.0mm from the root of lead wires.
		strength	Feritein 5	1.5 to 2.0mm from the root of lead wifes.
		a a a a a a a a a a a a a a a a a a a		Thermal
				insulating () , , , , , ,
				1.5 to 2.0mm
				- Molten
				solder
				Pre-treatment: Capacitor should be stored at
				85±2°C for 1 h, then placed at
				*1room condition for 24±2 h
				before initial measurements.
				Post-treatment : Capacitor should be stored for 1
13	Soldering effect	Annogrange	No marked defect.	to 2 h at *1room condition. First the capacitor should be stored at 120+0/-5°C
13	(On-preheat)	Appearance Capacitance	Within ±10%	for 60+0/-5 s.
	(5 p. 0.1001)	change	VVIIIII ± 1070	Then, as in figure, the lead wires should be
		I.R.	1000MΩ min.	immersed solder of 260+0/-5°C up to 1.5 to 2.0mm
		Dielectric	Per item 3	from the root of terminal for 7.5+0/-1 s.
		strength		Capacitor
				Thermal Capacitor insulating
				1.5
				1 to 2.0mm
				Molten solder
				Pre-treatment : Capacitor should be stored at
				85±2°C for 1 h, then placed at *1room condition for 24±2 h
				before initial measurements.
				Post-treatment : Capacitor should be stored for 1 to
				2 h at *1room condition.
14	Flame test		The capacitor flame discontinue	The capacitor should be subjected to applied
			as follows.	flame for 15 s. and then removed for 15 s until 5
				cycle.
			Cycle Time	Capacitor
			1 to 4 30 s max.	Flame
			5 60 s max.	₹ ₩
				Gas Burner
				- Gas Burner
15	Passive flammabilit	tv	The burning time should not be	The capacitor under test should be held in the flame
		-9	exceeded the time 30 s.	in the position which best promotes burning.
			The tissue paper should not	Time of exposure to flame is for 30 s.
			ignite.	Length of flame : 12±1mm
				Gas burner : Length 35mm min.
				Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max.
				Gas : Butane gas Purity 95% min.
				↓ Capacitor
				About 8mm
				Gas burner Flame
				Gas burner → Flame 200±5mm
				<u> </u>
				———— ← Tissue
				About 10mm thick board
*1 "ro	nm condition" Tempe	rature: 15 to 35%	I C, Relative humidity: 45 to 75%, Atm	
100	om oonaliion Tempe		5, 1.5 aut 6 Harmany. 45 to 75/6, Atm	isopriono procedure. Oo to room a

			Reference only				
No.	Item	1 -	Specification		Test m		
16	Humidity	Appearance	No marked defect.	Set the capacitor		12 h at 40	±2°C in 90 to
	(Under steady	Capacitance	Char. SL : Within ±5%	95% relative hum			
	state)	change	Char. B: Within ±10%		-		
			Char. E, F : Within ±15%	Post-treatment :	Capacito	or should b	e stored for 1
		Q	Char. SL :			t *1 room o	
		Q	275+5/2C*2min.(30pF under)				
			` '				
		D.F.					
		D.F.	Char. B, E : 5.0% max.				
			Char. F: 7.5% max.				
		I.R.	3000M $Ω$ min.				
		Dielectric	Per item 3				
		strength					
17	Humidity loading	Appearance	No marked defect.	Apply the rated v	oltage for	r 500±12 h	at 40±2°C in
	, ,	Capacitance	Char. SL : Within ±5%	90 to 95% relativ			
		change	Char. B: Within ±10%			,-	
			Char. E, F: Within ±15%	Post-treatment :	Canacito	or should b	ne stored for 1
		Q		r oot troutmont.		it *1room o	
		Q	Char. SL :		10 2110		orialition.
			275+5/2C*2min.(30pF under)				
			350min. (30pF min.)				
		D.F.	Char. B, E : 5.0% max.				
			Char. F : 7.5% max.				
		I.R.	3000M $Ω$ min.				
		Dielectric	Per item 3				
		strength					
18	Life	Appearance	No marked defect.	Impulse voltage			
		Capacitance	Within ±20%	Each individual	canacitor	should be	subjected to
		change	VVILIIII ±∠U /0	a 5kV impulses f			
		I.R.	2000MO min	capacitors are ap			
			3000MΩ min.	oupaonois are ap	יףווטע נט וו	iio i c oi.	
		Dielectric	Per item 3	404.	-		4.7 4.07T
		strength		100 (%)		, ,	= 1.7 μ s=1.67T
				90 7	_ '	ime to nair-vai	ue (T2) = 50μ s
				50	1		
				030	`		
				Ŭ Ţ 		t	
				_{T2}			
					-		
				The capacitors a		in a circul	ating air oven
				for a period of 10	00 h.		
				The air in the ove	en is mair	ntained at	a temperature
				of 125+2/-0 °C, a	nd relativ	e humidity	of 50% max
				Throughout the te			
				to a AC425V(r.m.			
				of mains frequen			
				the voltage is inc	reased to	AC1000\	/(r m s)
				for 0.1 s.	i caoca to	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(1.111.0.)
				Post-treatment :	Canadita	or chould b	on stored for 1
						r snould t *1room col	
	T	A	No second of the second				
19	Temperature and	Appearance	No marked defect.	The capacitor she			
	immersion cycle	Capacitance	Char. SL: Within ±5%	5 temperature cy		ı consecu	lively to
		change	Char. B: Within ±10%	2 immersion cycl	es.		
			Char. E, F: Within ±20%	<temperature cy<="" td=""><td>cle></td><td></td><td></td></temperature>	cle>		
		Q	Char. SL :			(0 C)	Time
			275+5/2C*2min.(30pF under)		emperatu		Time
			350min. (30pF min.)	1	-40+0/		30 min
	1	D.F.	Char. B, E : 5.0% max.	2	Room te		3 min
			a, J.0 /0 IIIax.		+125+3	3/-0	30 min
			Char F 75% may	3		_	
			Char. F : 7.5% max.	4	Room te	emp.	3 min
		I.R.	3000M $Ω$ min.				
		I.R. Dielectric					3 min time : 5 cycle
		I.R.	3000M $Ω$ min.	4	Room te		
		I.R. Dielectric	3000M $Ω$ min.		Room te		time : 5 cycle
		I.R. Dielectric	3000M $Ω$ min.	4	Room te		time : 5 cycle
		I.R. Dielectric	3000M $Ω$ min.	4 Immersion cycle	Room te	Cycle	time : 5 cycle Immersion water
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre></pre> <pre>Step Temperal</pre>	Room te	Cycle	Immersion water Clean
		I.R. Dielectric	3000M $Ω$ min.	4 Immersion cycle	Room te	Cycle	Immersion water Clean water
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre><immersion +65+5<="" 1="" cycle="" pre="" step="" temperal=""></immersion></pre>	Room te	Cycle Time 15 min	Immersion water Clean
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre></pre> <pre>Step Temperal</pre>	Room te	Cycle	Immersion water Clean water
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre><immersion +65+5<="" 1="" cycle="" pre="" step="" temperal=""></immersion></pre>	Room te	Time 15 min 15 min	Immersion water Clean water Salt water
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre><immersion +65+5<="" 1="" cycle="" pre="" step="" temperal=""></immersion></pre>	Room te	Time 15 min 15 min	Immersion water Clean water Salt
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre><immersion +65+5<="" 1="" cycle="" pre="" step="" temperal=""></immersion></pre>	Room te	Time 15 min Cycle	Immersion water Clean water Salt water time: 2 cycle
		I.R. Dielectric	3000M $Ω$ min.	4	Room te	Time 15 min 15 min Cycle	Immersion water Clean water Salt water time: 2 cycle be stored at
		I.R. Dielectric	3000M $Ω$ min.	4	Room te	Time 15 min 15 min Cycle to should be for 1 h, the	Immersion water Clean water Salt water time: 2 cycle be stored at en placed at
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre> <immersion +65+5="" 0±3="" 1="" 2="" :<="" cycle="" pre="" pre-treatment="" step="" temperat=""></immersion></pre>	Room te P> ture(°C) 5/-0 Capacite 85±2°C *1room c	Time 15 min 15 min Cycle sor should befor 1 h, the condition for	Immersion water Clean water Salt water time: 2 cycle be stored at en placed at or 24±2 h.
		I.R. Dielectric	3000M $Ω$ min.	<pre>4 </pre> <pre><immersion +65+5="" 0±3="" 1="" 2="" <="" cycle="" pre="" step="" temperat=""> Pre-treatment :</immersion></pre>	Room te	Time 15 min Cycle or should be for 1 h, the condition for should be or	Immersion water Clean water Salt water time: 2 cycle be stored at en placed at or 24±2 h. be stored for
*1"		I.R. Dielectric strength	3000M $Ω$ min.	<pre>4 </pre> <pre><immersion +65+5="" 0±3="" 1="" 2="" :="" :<="" cycle="" post-treatment="" pre="" pre-treatment="" step="" temperat=""></immersion></pre>	Room te	Time 15 min 15 min Cycle or should be for 1 h, the condition for should be to should be the should be to s	Immersion water Clean water Salt water time: 2 cycle be stored at en placed at or 24±2 h. be stored for

 $^{^{*1}}$ "room condition" Temperature: 15 to 35°C, Relative humidity: *2 "C" expresses nominal capacitance value(pF)

6.Packing specification

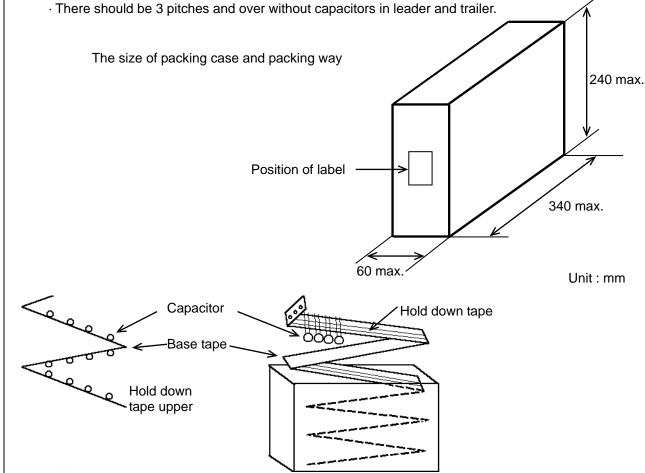

•Bulk type (Packing style code : B)

*1 *2
The number of packing = Packing quantity \times n

The size of packing case and packing way

*1 : Please refer to [Part number list].

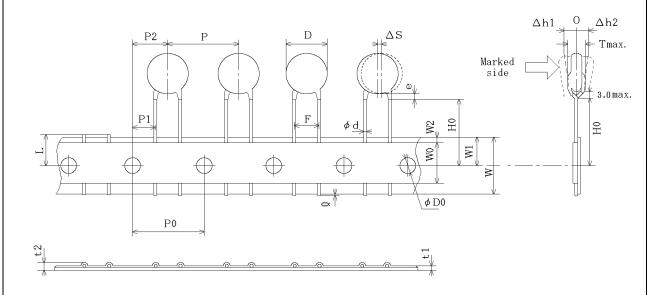
*2 : Standard n = 20 (bag)



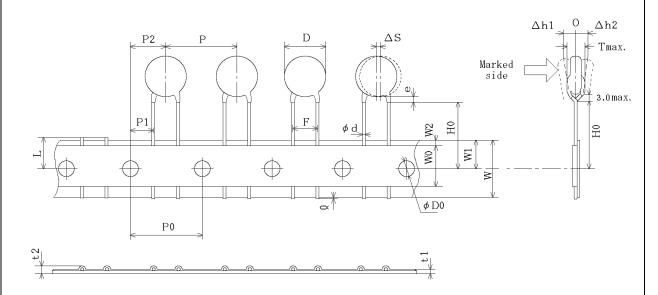
Note)

The outer package and the number of outer packing be changed by the order getting amount.

•Ammo pack taping type (Packing style code : A)

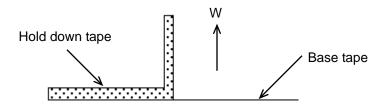

- · The tape with capacitors is packed zigzag into a case.
- \cdot When body of the capacitor is piled on other body under it.

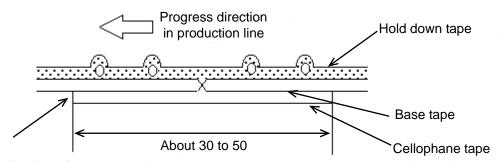
7. Taping specification


7-1. Dimension of capacitors on tape

Vertical crimp taping type < Lead code : N2 > Pitch of component 12.7mm / Lead spacing 5.0mm

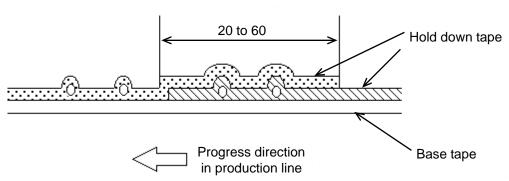
Item	Code	Dimensions	Remarks
Pitch of component	Р	12.7±1.0	
Pitch of sprocket hole	P0	12.7±0.3	
Lead spacing	F	$5.0\pm_{0.2}^{0.8}$	
Length from hole center to component center	P2	6.35±1.3	Deviation of any man discretion
Length from hole center to lead	P1	3.85±0.7	Deviation of progress direction
Body diameter	D	Please refer to [P	art number list].
Deviation along tape, left or right	ΔS	0±1.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	Н0	18.0± ₀ ^{2.0}	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φ D 0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1	1.0 may	
Deviation across tape, rear	∆h2	1.0 max.	
Portion to cut in case of defect	L	11.0± _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of o	crimp
Body thickness	Т	Please refer to [P	art number list].


Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm


Item	Code	Dimensions	Remarks
Pitch of component	Р	15.0±2.0	
Pitch of sprocket hole	P0	15.0±0.3	
Lead spacing	F	7.5±1.0	
Length from hole center to component center	P2	7.5±1.5	Devication of muchanism
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction
Body diameter	D	Please refer to [Part number list].
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .
Carrier tape width	W	18.0±0.5	
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction
Lead distance between reference and bottom planes	НО	18.0± ^{2.0}	
Protrusion length	Q	+0.5~-1.0	
Diameter of sprocket hole	φ D 0	4.0±0.1	
Lead diameter	φd	0.60±0.05	
Total tape thickness	t1	0.6±0.3	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.
Deviation across tape, front	∆h1	2.0 may	
Deviation across tape, rear	∆h2	2.0 max.	
Portion to cut in case of defect	L	11.0± _{1.0}	
Hold down tape width	W0	11.5 min.	
Hold down tape position	W2	1.5±1.5	
Coating extension on lead	е	Up to the end of	crimp
Body thickness	Т	Please refer to [Part number list].

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.