

54mm 1U Front End DC-DC Power Supply Converter

PRODUCT OVERVIEW

D1U54-D-2000-12-HBxC is a series of highly efficient Low Voltage DC (LVDC) input front end power supplies featuring a 12Vdc main output, capable of active current sharing and a standby output. A multifunctional status LED, hardware logic signals and PMBus™ digital communications cold redundant capability are standard features. The low profile 1U, 46.9W/cubic inch package make this series ideal for delivering reliable, efficient power to servers, workstations, storage systems and other 12V distributed power architectures.

ORDERING GUIDE				
Model Number	Output power -48 to -60Vdc Nominal	Main Output	Standby Output	Airflow
D1U54-D-2000-12-HA3C	2015W		5.0Vdc	F⇔B
D1U54-D-2000-12-HA4C	2015W		5.0700	B⇔F
D1U54-D-2000-12-HB3C	2036W	12.0Vdc	12.0Vdc	F⇔B
D1U54-D-2000-12-HB4C	2036W	12.0000	12.0000	B⇔F
D1U54-D-2000-12-HC3C	2015W		3.3Vdc	F⇔B
D1U54-D-2000-12-HC4C	Z013W		3.3VUC	B⇒F

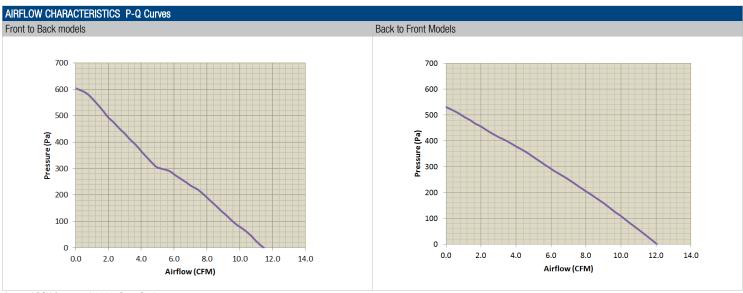
INPUT CHARACTERISTICS							
Parameter	Conditions	Min.	Nom.	Max.	Units		
Input Source Voltage DC Operating Range	High Line		-40.8	-48/-60	-72	Vdc	
Turn-on Input Voltage	Ramp up		-39	-40	-40.5	Vdc	
Turn-off Input Voltage	Ramp down		-35.5	-36	-36.5	Vuc	
Maximum current	-48Vdc input; 2036W				48	Adc	
DC Input Inrush Dook Current	Cold start; between 0 to 200ms	-40Vdc			50	Apk	
DC Input Inrush Peak Current		-72Vdc			100		
	40)/- - !+	20% load		93.3		%	
Efficiency	-48Vdc input; fan power excluded	50% load		95			
	100% load			93			
Reverse Polarity Protection	Reversed input cables; no internal or external fuse/breaker interruption		+40		+72	Vdc	

OUTPUT VOLTAGE CHARACTERISTICS						
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Output Setpoint Accuracy	50% load; Tamb =25°C; Measured at PSU	11.94	12.00	12.06	\/da
	Line and Load Regulation ²	side of connector	11.88	12.00	12.18	Vdc
12V	Ripple Voltage & Noise ^{1,2}	20MHz Bandwidth; Min Load Capacitance			120	mV p-p
	Output Current	2000W (-40 to-72Vdc) Continuous			167	Adc
	Load Capacitance				30,000	μF
	Output Setpoint	50% load; Tamb =25°C	11.94	12.00	12.06	Vala
	Line and Load Regulation ³	Measured at PSU side of connector	11.70	12.00	12.30	Vdc
12VSB	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth; Min Load Capacitance			120	mV p-p
	Output Current		0		3.0	Adc
	Load Capacitance				1000	μF
	Output Setpoint	50% load; Tamb =25°C		3.30		Vdo
	Line and Load Regulation ³	Measured at PSU side of connector	3.14		3.46	Vdc
3.3VSB	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth; Min Load Capacitance			75	mV p-p
	Output Current		0		3.0	Adc
	Load Capacitance				3000	μF
	Output Setpoint	50% load; Tamb =25°C		5.00		Vdc
	Line and Load Regulation ³	Measured at PSU side of connector	4.76		5.24	Vuc
5.0VSB	Ripple Voltage & Noise ^{1,3}	20MHz Bandwidth; Min Load Capacitance			75	mV p-p
	Output Current		0		3.0	Adc
	Load Capacitance	JE of coramic capacitance and 10 JE of tantalum			3000	μF

¹ Ripple and noise are measured with 0.1 µF of ceramic capacitance and 10 µF of tantalum capacitance on each of the power supply outputs. A short coaxial cable to the scope termination is used and minimum output bus capacitance specified in above table. ² Minimum load of 5A

FEATURES

- 2000W continuous 12Vdc main output power
- Cold Redundant power management features
- Highly Efficient, >95% at 50% load
- PMBus[™] 1.2 Compliant I²C interface; LED status indicator
- -5°C to 55°C operating temperature range without derating
- 12V main output, 120% surge current capability
- 3.3V, 5.0V & 12V Standby Output Options
- 1U height: 2.15" x 12.65" x 1.57"
- > 46 Watts per cubic inch density
- N+1 redundant, Hot Swap Capable
- Active (digital) current sharing on 12V main output; Integral ORing /isolation provided for both outputs; compatible with DC input series
- Internal cooling fan (variable speed)
- Overvoltage, overcurrent, overtemperature Protection


³ Minimum load of 0.1A

54mm 1U Front End DC-DC Power Supply Converter

OUTPUT CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Startup Time	DC ramp up; delay until Main output start			3	S
	12V Main: 10% to 60% load step (50% max load change); 1A/µs slew rate; 2,000µF load capacitance	-5		+5	%
Transient Load Response	Recovery Time to Within 1% (voltage prior to transient load step)		2		ms
Transient Load Response	12VSB: 10% to 60% load step (50% max load change); 1A/μs slew rate; 500μF load capacitance			+5	%
	Recovery Time to Within 1% (voltage prior to transient load step)		2		ms
Current sharing accuracy	At 167A, two power modules sharing		±5		%
Hot Swap Transients	All outputs remain in regulation	-5		+5	70
Holdup Time	-48Vdc Input;12V Main, 100% load	1			ms
Holiup Tillie	-48Vdc Input;12VSB, 100% load	3			ms

ENVIRONMENTAL CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Storage Temperature Range		-40		70		
Operating Temperature Range (Sea Level)	100% max. load	-5		+55	°C	
NEBS; GR-63-CORE	Abnormal ¹ operating +55°C; adjusted for NEBS operating altitude (1800m)	-5		61		
Humidity	Operating; non-condensing	5		95		
numunty	Non-operating; non-condensing			95	%	
Altitude Operating				3000	m	
Shock	Non-operating; IEC600 68-2-27, test Ea. 30G, 11msec half-sine, 3 shocks per face, 6 faces.			30	G	
0	Sine sweep; 5-150Hz			2		
Operational Vibration	Random vibration, 5-500Hz			1.11		
MTBF	Per Telcordia SR-332 Issue 3, M1C3 @ 40°C			729K	Hrs.	
Safety Approval Standards	 UL60950-1, 2nd Edition, 2014-10-14 (Information Technology Equipment – sat CAN/CSA-C22.2 No. 60950-1-07, Amendment 1:2011, Amendment 2:2014 (1: General Requirements CB: IEC 60950-1:2005, IEC 60950-1:2005/AMD1:2009, IEC60950-1:2005/A IEC/EN 62368-1 (Planned) GB4943.1-2011(CQC) 	(MOD) - Informa			afety – Part	
Input Fuse	Single 80A/75VDC fast acting fuse; located the input "-48VIN" connection.					
Weight	1.11kg.					

¹Abnormal operation limited to 96hrs continuous and for not more than 15 days in any one year

Internal PSU fan speed 100% Duty Cycle

54mm 1U Front End DC-DC Power Supply Converter

PROTECTION	ON CHARACTERISTICS					
Output Voltage	Parameter	Conditions	Min.	Тур.	Max.	Units
	Over temperature (intake)	Shutdown and auto-recovery, main output both B⇒F & F⇒B Airflows		65		°C
Main 12V	Overvoltage	Main 12V Output; latching ¹ (12VSB maintains operation)	13.0		15.0	Vdc
IVIAIII 12V	Overcurrent	Five (5) "hiccup" auto recovery cycles, followed by a latched shutdown ¹	184		217	Adc
12VSB	Overvoltage	Latching ¹ (both outputs shutdown).	13.0		15.0	Vdc
12100	Overcurrent	Sustained "hiccup" auto recovery cycles until overcurrent is removed	3.1		4.50	А
5VSB	Overvoltage	Latching ¹ (both outputs shutdown).	5.4		6.0	Vdc
JVJD	Overcurrent	Sustained "hiccup" auto recovery cycles until overcurrent is removed	3.1		5.0	Α
3.3VSB	Overvoltage	Latching ¹ (both outputs shutdown).	3.6		4.0	Vdc
3.3V3D	Overcurrent	Sustained "hiccup" auto recovery cycles until overcurrent is removed	3.1		5.0	Α

¹ Latch-off condition requires elimination of fault condition then recycling of either the DC input source or PS_ON signal to restore operation.

ISOLATION CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
	Input to Output - Basic	1500			Vdc
Insulation Safety Rating / Test Voltage	Input to Chassis - Basic	1500			Vdc
Isolation	Output to Chassis	500			Vdc

EMISSIONS AND IMMUNITY		
Characteristic	Standard	Compliance
Conducted Emissions	FCC 47 CFR Part15/CISPR22/EN55032	Class A with 6dB margin ³
ESD Immunity	IEC/EN 61000-4-2	±8KV Contact; ±15KV air discharge; Criteria A
Radiated Field Immunity	IEC/EN 61000-4-3	10V/m, 1KHz, 80% AM, 80MHz to 1GHz Criteria A
Electrical Fast Transients/Burst	IEC/EN 61000-4-4	Level 2 (1kV) criteria A ¹
Surge Immunity	IEC/EN 61000-4-5	Level 2 500V DM 1kV CM, criteria A ¹
RF Conducted Immunity	IEC/EN 61000-4-6	Level 2, 3Vrms, 1KHz, 80% AM, 150kHz to 80MHz criteria A
Voltage Dips, Interruptions	NEBS GR-1089-CORE.i07 ATIS-600315.208	Meets the applicable transients of GR-1089-CORE.I07 for DC Input source. Meets applicable transients of ATIS-600315.2018

¹ Measured at power module DC input connector

Installed in End User system and contingent upon final system design

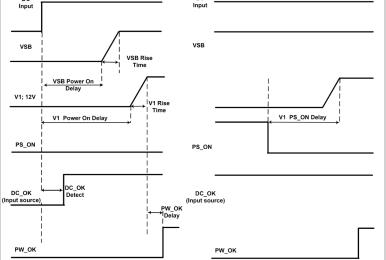
Radiated performance designed to meet Class A limits; however contingent on deployment; final qualification and certification testing to be performed by End User in system installation

STATUS INDICATORS AND CONTROL SIGNALS (BICOLOUR LED)	
Condition	LED Status (Power)
Standby - ON; Main output - OFF; DC PRESENT	Blinking green, 1Hz
Standby - ON; Main output - ON, No faults present	Solid green
Fault Detected: Main output, VSB output, Fan, overtemperature, input overvoltage (Note: coincides with setting of PMBus Status_Register bit flag(s))	Solid Amber
DC Input absent and/or no I2C slave address detected (See ADDR signal for configuration details); VSB OVP	OFF
Power Supply Warning Event	Blinking Amber
Cold Redundant mode — "COLD_STANDBY" /"FORCED STANDBY" MODE	Blinking green 2Hz

54mm 1U Front End DC-DC Power Supply Converter

STATUS AND CON			Interfece Dataile
Signal Name	1/0	Description	Interface Details
		Multi-function signal and is configured as one of the following: DC_OK (Default setting at initial power up): Output is driven high when input source is available and within acceptable limits. The output is driven low to indicate loss of input power.	DC_OK Pulled up via 511R to internal 5V bias supply and pulled down to DC Return via 10K OHM resistor.
DC_OK (Default)/ RAPID_ON	Output	input power. RAPID_ON_ is a two state analog signal forms the cold redundant bus with up to four (4) load connected PSUs. This signal is used exclusively by the PSU for cold redundant mode operation, and is configured via PMBus™; see ACAN-80 and 89 for details + wiring diagram. Rapid_ON signal/bus provides these three functions: Pull-up bus voltage: Bus pull-up is provided by the single PSU or the first PSU assigned the roll of "ACTIVE & MASTER" aka "COLD_REDUNDANT ACTIVE". More than one PSU can be assigned as "ACTIVE" only the first PSU assigned this roll provides the pull-up path and is why this PSU is referred to as the "Master".	RAPID_ON: Pulled 511R to 5V internal bias supply of the ACTIVE & MASTER PSU; Pull-Down = 10K. Bus voltage reduces with the QTY of bus connected power supplies
		Each bus connected PSU drives the Rapid_ON bus low when any fault is detected. Each bus connected PSU powers on its main output rapidly within 100µS after detection of LOW state. Note: "Rapid_ON" pin configuration is retained once setup via PMBus™, even if Input power is recycled and remains the new default setting until commanded to INPUT_OK via PMBus™.	
PW_OK (Output OK)	·	The signal is asserted, driven high, by the power supply to indicate that the main output is valid. If the main output fails, the PW_OK signal will de-assert and is driven low. The PW_OK output is driven low to indicate that the Main output is outside of lower limit of regulation	Pulled up internally via 10K to VDD A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
SMB_ALERT (FAULT/WARNING)	·	The signal output is driven low to indicate that the power supply has detected a warning/fault, and any status register bits flagged (except Status_CML). It is intended to alert the system accordingly. This output shall be driven high when the power is operating correctly (within specified limits). The signal will revert to a high level when the warning/fault stimulus (that originally caused the alert) is removed. The LED indicator(s) mirrors this alert pin.	Pulled up internally via 10K to VDD A logic high >2.0Vdc A logic low <0.8Vdc Driven low by internal CMOS buffer (open drain output).
PRESENT_L (Power Supply Absent)	Output	The signal is used to detect the presence (installed) of a PSU by the host system. The signal is connected to PSU logic SGND within the power module.	Passive connection to +VSB_Return. A logic low <0.8Vdc
PS_ON	Input	This signal is pulled up internally to the internal housekeeping supply (within the power supply). The power supply main 12VDC output will be enabled when this signal is pulled low to +VSB_Return. In the low state the signal input shall not source more than 1mA of current. The 12VDC output will be disabled when the input is driven higher than 2.4V, or open circuited. Cycling this signal shall clear latched fault conditions. (Power Supply Enable/Disable "Mate Last, Break First" (MLBF) Signal	Pulled up internally via 10K to VDD A logic high >2.0Vdc A logic low <0.8Vdc Input is via CMOS Schmitt trigger buffer.
ADDR/ PS_INHIBIT	Input	A multifunction signal used to detect presence in the system and to set the slave device address. When this pin is left open all power module operation will be inhibited and a default slave address will be assigned (0x80h) to allow communication with slave devices. When the power module is inserted into a system this pin will be pulled (via a suitable external select resistor to +VSB_Return, and in conjunction with an internal resistor divider chain, shall configure the required slave (EEPROM and microprocessor) address used for digital communications. Back to LED Status Table; See ADDR selection table below	Analogue (DC) voltage level between the limits of OVdc and +3.3Vdc.
SCL (Serial Clock) SDA (Serial Data)	Both	A serial communications line compatible with PMBus [™] Power Systems Management Protocol Part 1 – General Requirements Rev 1.2. No additional internal capacitance is added that would affect the speed of the bus.	Pulled up via 5.11K to internal 3.3VDC VIL is 0.8V maximum
	lan 1	The signal is provided with a series isolator device to disconnect the internal power supply bus in the event that the power module is unpowered.	VOL is 0.4V maximum VIH is 2.1V minimum
V1_SENSE & V1SENSE_RTN	Input	Remote sense connections intended to be connected at and sense the voltage at the point of load. The voltage sense will interact with the internal module regulation loop to compensate for voltage drops due to connection resistance between the output connector and the load. If remote sense compensation is not required then the voltage can be configured for local sense by: 1. V1_SENSE directly connected to power blades 4 to 6 (inclusive) 2. V1_SENSE_RTN directly connected to power blades 1 to 3 (inclusive)	Compensation for up to 0.12Vdc total connection drop (output and return connections).
ISHARE	Both	The current sharing signal is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bidirectional analog bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read 8VDC at 100% load (module capability). For two identical units sharing the same 100% load this would read 4VDC for perfect current sharing (i.e. 50% module load capability per unit).	Analogue voltage: +8V maximum; 13.1K to Main 12V_RTN

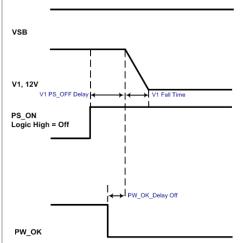
54mm 1U Front End DC-DC Power Supply Converter


ADDR SELECTION TABLE		
ADDR pin (D4) resistor to GND (K-ohm)*	Power Supply Main Controller (Serial Communications Slave Address)	Power Supply External EEPROM (Serial Communications Slave Address)
0.82	0xB0	0xA0
2.7	0xB2	0xA2
5.6	0xB4	0xA4
8.2	0xB6	0xA6
15	0xB8	0xA8
27	0xBA	0xAA
56	0xBC	OxAC
180	0xBE	0xAE
OPEN/PS_INHIBIT	0x80	0xA0

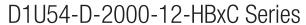
^{*} The resistor shall be no more than +/-5% tolerance

TIMING SPECIFICATIONS

Turn-On Delay & Output Rise Time:

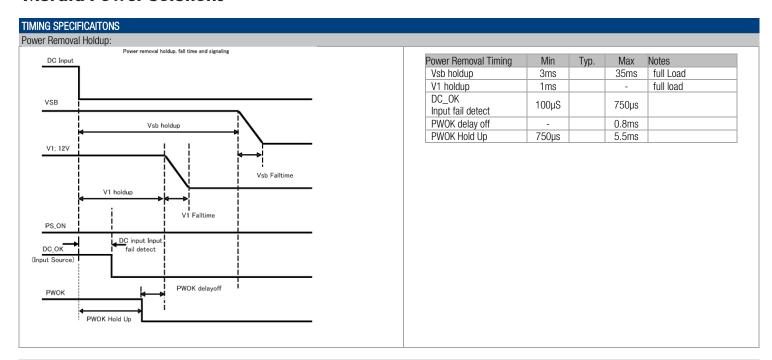


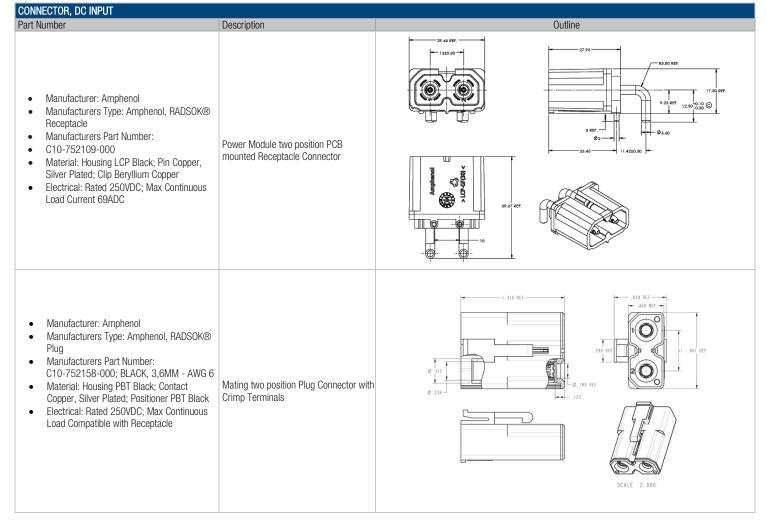
Time	Min	Max	Comments
Vsb Rise time	1ms	20ms	from 10% to 90% Nominal output VDC
V1 Rise time	2ms	15ms	from 10% to 90% Nominal output VDC; Minimum rise time is only observed with no system load and no additional output capacitance
Vsb Power-on-delay		2700ms	
V1 Power-on-delay		3000ms	
V1 PS_ON delay	100ms	150ms	
V1 PWOK delay	50ms	150ms	
DC_OK (Input source)	400ms	1300ms	

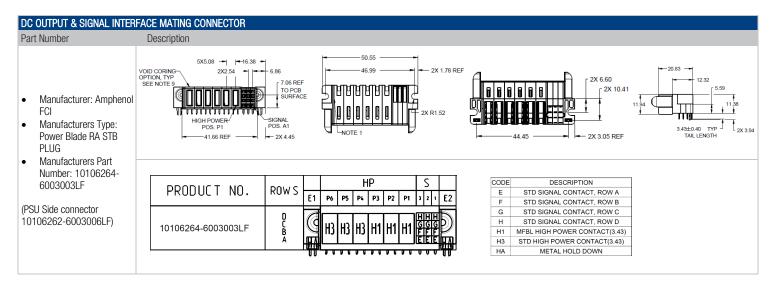

Turn-Off (Shutdown by PS_ON)

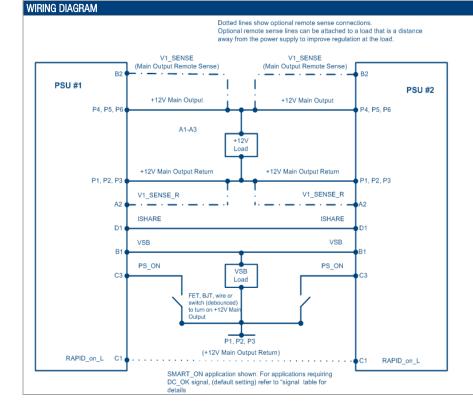
Turn off fall time and signaling

-48VDC Input DC Input




Turn-Off Timing	Min	Max	Notes
V1 Fall time	-	-	Must be monotonic
V1 PS_OFF delay	0ms	5ms	
PW_OK delay off	0.2ms		

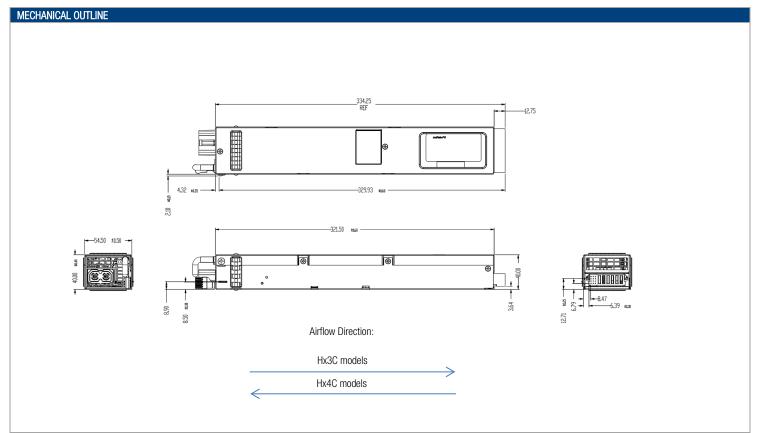

54mm 1U Front End DC-DC Power Supply Converter


54mm 1U Front End DC-DC Power Supply Converter

DC OUTPUT & SIGNAL INTERFACE PIN MAPPING

Pin	Signal Name	Comments
P4, P5, P6	V1_OUT	+ 12V Output;
P1, P2, P3	V1_RTN	+ 12V main and VStby Output return
A3	SDA	Short Pin; I2C data signal line
B3	SCL	Short Pin; I2C clock signal line
C3	PS_ON	Short Pin; Remote on/off (short pin)
D3	SMB_ALERT	Short Pin; I2C alert signal
A2	V1_SENSE_R	- Remote Sense return

Pin	Signal Name	Comments	
B2	V1_SENSE	+ Remote Sense	
C2	PW_0K	Power OK	
D2	ADDR/PS_INHIBIT	Dual function I2C address selection and PS_INHIBIT	
A1	PRESENT_L	PS_Present	
B1	VSTANDBY	+ Standby output	
C1	DCOK / RAPID_ON	Selectable via PMBus	
D1	ISHARE	Current share bus	



CURRENT SHARING NOTES

- Main Output current sharing is achieved using the active current share method.
- 2. Current sharing can be achieved with or without the remote (V SENSE) connected to the common load.
- +VSB Outputs can be tied together for redundancy but total combined output power must not exceed the rated standby power of a single unit. The +VSB output has an internal ORING MOSFET for additional redundancy/internal short protection.
- 4. Main output power of units sharing must not exceed the rated power of a single unit during power up.
- The current sharing pin D1 is connected between sharing units (forming an ISHARE bus). It is an input and/or an output (bidirectional analog bus) as the voltage on the line controls the current share between sharing units. A power supply will respond to a change in this voltage but a power supply can also change the voltage depending on the load drawn from it. On a single unit the voltage on the pin (and the common ISHARE bus would read approximately 8VDC at 100% load (power module capability). For two units sharing the same load this would read approximately 4VDC for perfect current sharing (i.e. 50% power capability per unit).
- 6. The load for both the main 12V and the VSB outputs at initial startup shall not be allowed to exceed the capability of a single unit. The load can be increased after a delay of 3 sec (minimum), to allow all sharing units to achieve steady state regulation

54mm 1U Front End DC-DC Power Supply Converter

- 1. This drawing is a graphical representation of the product and may not show all fine details such as plastic molded part finish details, screw head patterns (may vary). Please contact Murata for 3D model for details
- 2. Dimensions in mm
- 3. Subject to change. Contact factory for latest version.
- File Reference: D1U54-D-2000-12-HC (M1984) Drawing for Product Datasheet_20180301

OPTIONAL ACCESSORIES	
Description	Part Number
Connector Card	D1U54P-12-CONC2K

APPLICATION NOTES		
Document Number	Description	Link (to be activated)
ACAN-82	D1U54P-12-CONC2K, Output Connector Card	https://power.murata.com/datasheet?/data/apnotes/acan-82.pdf
ACAN-89	D1U54-D-2000-12-HBxC PMBus™ Protocol	https://power.murata.com/datasheet?/data/apnotes/acan-89.pdf
ACAN-80	Cold Redundancy; RAPID_ON	https://power.murata.com/datasheet?/data/apnotes/acan-80.pdf

Murata Power Solutions, Inc. 129 Flanders Rd. Westborough, Ma 01581, USA. ISO 9001 and 14001 REGISTERED

This product is subject to the following operating requirements and the Life and Safety Critical Application

Sales Policy. Refer to: https://www.murata-ps.com/requirements/
Murata Power Solutions, Inc. (Murata) makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not linfringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance hereinth. Buyer represents and agrees that this all the necessary expertse to create and implement salguards that articipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm, and take appropriate remedial actions. Buyer will fully indemnify Murata, its affiliated companies, and its representatives against any damages arising out of the use of any Murata products in safety-critical applications. Specifications are subject to change without notice.

© 2019 Murata Power Solutions, Inc.