Ultra Broadband Silicon Capacitor UBSC722.410 (1nF / 0201M / BV=30V)

Rev. 1.8

#### General description

<u>Market</u>: UBSC Capacitor targets Optical communication system such as ROSA/TOSA, SONET and all optoelectronics as well as High speed data system or products.

The UBSC is suitable for DC blocking, feedback, coupling and bypassing applications in all broadband optoelectronics and High-speed data system.

The unique technology of integrated passive device in silicon, developed by Murata Integrated Passive Solutions, offers unique performances with low insertion loss, low reflection and phase stability from 1600 KHz to 60 GHz+.

These capacitors in ultra-deep trenches in silicon have been developed in a semiconductor process, in order to integrate trench MOS capacitor providing high capacitance value of 1nF (for kHz–MHz range) and MIM capacitors for low capacitance value (for GHz range), both in a SMT 0201M (0.6 x 0.3mm).

The UBSC capacitor provides very high stability of the capacitance over temperature, voltage variation as well as a very high reliability.

UBSC capacitors have an extended operating temperature ranging from -55 to 150°C, with very low capacitance change over temperature (+60ppm/K).

Assembly: flip chip applications through existing laminated packages or rigid PCB, ceramic substrate, FR4 or flex platforms suitable.

Bump finishing: SAC305 type 6.

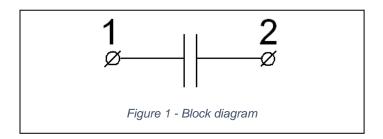
#### Key features

- Ultra-Broadband performance to 67 GHz
- Resonance free
- Phase stability
- Insertion low < 0.3dB Typ. up to 60 GHz</li>
- Ultra-high stability of capacitance value:
  - o Temperature 60ppm/K (-55 °C to +150 °C)
  - Voltage <0.1%/Volts</li>
  - o Negligible capacitance loss through ageing
- Low profile: 140µm including bump height

- Break down voltage > 30V
- Low leakage current < 100pA</li>
- High reliability
- High operating temperature (up to 150 °C)
- Compatible with high temperature cycling during manufacturing operations (exceeding 300 °C)
- Compatible with EIA 0201 footprint
- SAC305 40µm bumps after reflow

# Key applications

- ROSA/TOSA
- SONET
- High speed digital logic


- Microwave/millimetre system
- Volume limited applications
- · Broadband test equipment





# Functional diagram

The next figure provides implementation set-up diagram.



## **Electrical performances**

| Symbol            | Parameter                                   | Conditions                            | Min. | Тур. | Max.                                     | Unit              |
|-------------------|---------------------------------------------|---------------------------------------|------|------|------------------------------------------|-------------------|
| С                 | Capacitance value                           | @+25°C                                | -    | 1    | -                                        | nF                |
| ΔСР               | Capacitance tolerance (1)                   | @+25°C                                | -15  | -    | +15                                      | %                 |
| Тор               | Operating temperature                       |                                       | -55  | 20   | 150                                      | °C                |
| T <sub>STG</sub>  | Storage temperature (2)                     |                                       | -70  | -    | 165                                      | °C                |
| $\Delta C_T$      | Capacitance temperature variation           | -55 °C to 150 °C                      | -    | 60   | -                                        | ppm/K             |
| RV <sub>DC</sub>  | Rated voltage (3)                           |                                       | -    | 10   | 16 <sup>(4)</sup><br>13.6 <sup>(5)</sup> | V <sub>DC</sub>   |
| BV                | Break down voltage                          | @+25°C                                | 30   | -    | -                                        | V                 |
| $\Delta C_{RVDC}$ | Capacitance voltage variation               | From 0 V to RV <sub>DC</sub> , @+25°C | -    | -    | 0.1                                      | %/V <sub>DC</sub> |
| IR                | Insulation resistor                         | @RV <sub>DC</sub> , +25°C, 120s       | -    | 10   | -                                        | GΩ                |
| ESR               | Equivalent Serial Resistance <sup>(6)</sup> | @ +25°C, shunt mode                   | -    | -    | 1.4                                      | Ohm               |
| ESL               | Equivalent Serial Inductance <sup>(6)</sup> | @ +25°C, SRF shunt mode               | -    | -    | 100                                      | рН                |
| Fc-3dB            | Cut-off frequency at 3dB <sup>(6)</sup>     | @ +25°C                               | -    | 1600 | 1872                                     | kHz               |
|                   |                                             | @ 20 GHz, +25°C                       | -    | 0.2  | -                                        | dB                |
| IL                | Insertion loss <sup>(6)</sup>               | @ 40 GHz, +25°C                       | -    | 0.3  | -                                        | dB                |
|                   |                                             | @ 60 GHz, +25°C                       | -    | 0.3  | -                                        | dB                |
| RL                | Return loss <sup>(6)</sup>                  | Up to 60 GHz, +25°C                   | 13   | -    | -                                        | dB                |
| ESD               | HBM stress (7)                              | JS-001-2017                           | 8    | -    | -                                        | kV                |

Table 1 - Electrical performances



<sup>(1):</sup> other tolerance available upon request

<sup>(2):</sup> without packaging

<sup>(3):</sup> Lifetime is voltage and temperature dependent, please refer to application note 'Lifetime of 3D capacitors'

<sup>(4): 10</sup> years of intrinsic life time prediction at 100°C continuous operation

<sup>(5): 10</sup> years of intrinsic life time prediction at 150°C continuous operation

<sup>(6):</sup> Measured

<sup>(7):</sup> please refer to application note 'ESD Challenge in 3D Murata Integrated Passive technology'



Pay 1 8

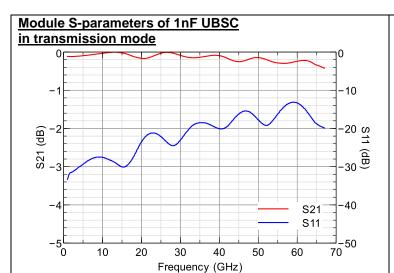



Figure 2 - 1nF UBSC measurement results (module of S-parameters)

# Schematic of 1nF UBSC in transmission mode

UBSC722.410

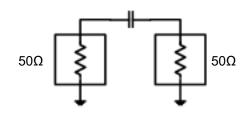



Figure 3 - 1nF UBSC measurement schematic

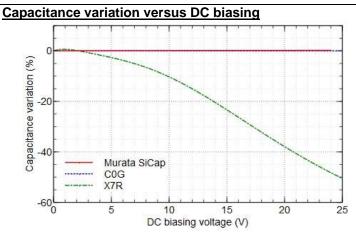



Figure 4 - Capacitance variation versus DC biasing (in function of UBSC and MLCC technology)

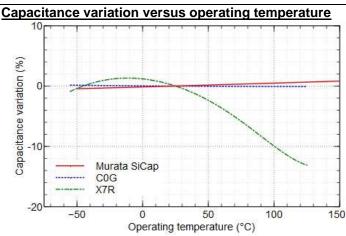
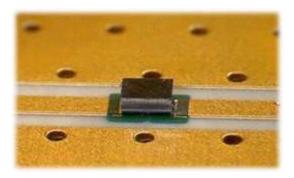




Figure 5 - Capacitance variation versus operating temperature (in function of UBSC and MLCC technology)

# Failure Predictions 500 491 187

Figure 6 - Projected capacitor Failure Rate in 10 Years at 85°C and 50% of the Rating voltage (in function of UBSC, tantalum and MLCC technology)

#### Test bench



# 4-mils Rogers 4350B.

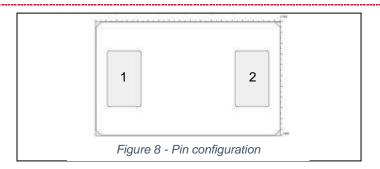

Nominal Pad dimensions – pad length = 0.100 mm, pad width and line width = 0.150mm, pad gap = 0.300 mm. (nominal 50 ohm characteristic impedance).

Figure 7 - test bench picture used for 1nF UBSC characterization





## Pinning definition



| pin# | Symbol<br>(optional) | Coordinates X / Y |
|------|----------------------|-------------------|
| 1    | Signal               | -150.0 / 0.0      |
| 2    | Signal               | 150.0 / 0.0       |

Table 2 - Pining description. Reference (0,0) located at the centre of the die.

## Ordering Information for UBSC722.410

Regardless of packaging, Murata Integrated Passive Devices delivers products with AQL level II (0.65).

| Type number         | Package                               |                    |                                                     |  |  |
|---------------------|---------------------------------------|--------------------|-----------------------------------------------------|--|--|
| (15NC)              | Packaging                             | Finishing          | Description                                         |  |  |
| 935 152 722 410-F1S | 6" film frame carrier <sup>(1)</sup>  | SAC <sup>(2)</sup> | UBSC0201M - 1nF - 2 pads - 0.60mm x 0.30mm x 0.14mm |  |  |
| 935 152 722 410-T3S | 7" T&R<br>with 1Kpieces / reel<br>(3) | SAC <sup>(2)</sup> | UBSC0201M - 1nF - 2 pads - 0.60mm x 0.30mm x 0.14mm |  |  |

- (1) Other film frame carrier are possible on request
- (2) ENIG (Min 0.1µm Au / 5µm Ni) + SAC305 type 6
- (3) missing capacitors can reach 0.5%

Table 3 - Packaging and ordering information

| Product Name | Die Name   | Description                                              |  |  |
|--------------|------------|----------------------------------------------------------|--|--|
| UBSC722.410  | XJM0201410 | UBSC 1nF/0201M/BV>30V - 2 pads - 0.6 x 0.3 x 0.14 mm (4) |  |  |

(4): Capacitor die dimension: 0.56 x 0.26 mm (without scribe line) Capacitor die size after sawing: 0.6 x 0.3 mm

Scribe line = 80µm (saw lane currently used = 40µm)

Table 4 - Die information





#### Pad Metallization

The UBSC Capacitor is delivered as standard with SAC305 bumping.

Other Metallization, such as ENIG, Copper, Thick Gold or Aluminum pads are possible on request.

UBSC series is compatible with standard reflow technology.

It is recommended to design mirror pads on the PCB.

Silicon dies are not sensitive to humidity, please refer to applications notes 'Assembly Notes' section 'Handling precautions and storage'.

For further information, please see our mounting application note.

## Material regulation

This product is RoHS compliant.

## Package outline

The product is delivered as a naked silicon die, with passivation opening for contacts.

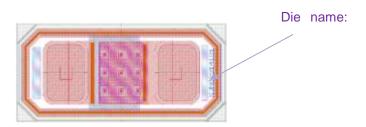



Figure 9 - Micro photography of a 1nF Capacitor

| L (mm)     | W (mm)     | T (mm)     | c (mm) | P (mm) | e (mm) | t (mm)              |
|------------|------------|------------|--------|--------|--------|---------------------|
| 0.60 ±0.02 | 0.30 ±0.02 | 0.10 ±0.01 | 0.10   | 0.20   | 0.15   | 0.04 <sup>(1)</sup> |

(1) Solder joint height after reflow on board.

Table 5 - Dimensions and tolerances





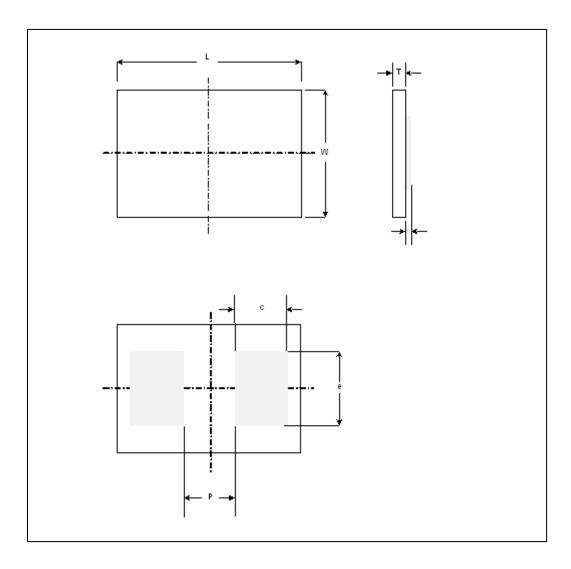



Figure 10 - Package outline 1nF Capacitor



## Assembly

The attachment techniques recommended by Murata on the customer's substrates are fully detailed in specific documents available on our website. To assure the correct use and proper functioning of Murata capacitors please download the assembly instructions on <a href="https://www.murata.com/en-us/products/capacitor/siliconcapacitors">https://www.murata.com/en-us/products/capacitor/siliconcapacitors</a> and read them carefully.



#### Packaging format

Please refer to application note 'Products Storage Conditions and Shelf Life'.

Tape and Reel: (Die orientation (flip) within the case related to T&R orientation)

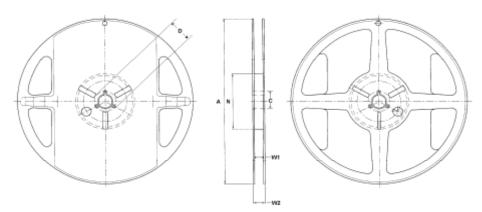



Figure 11 - Reel drawing

| Tape<br>Width | Diameter<br>A     | С    | D    | Hub<br>N | W1 | W2   |
|---------------|-------------------|------|------|----------|----|------|
| 8             | 178<br>(7 inches) | 13.5 | 20.2 | 60       | 93 | 11.5 |

Table 6 - Reel dimensions (mm)





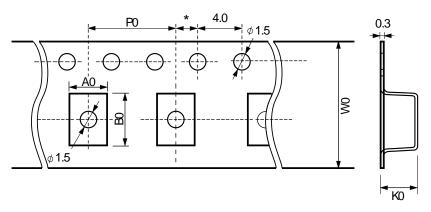



Figure 12 - Tape drawing

| Cavity dimensions |      | Carrier tape | Carrier tape | Quantity |          |
|-------------------|------|--------------|--------------|----------|----------|
| A0                | В0   | K0           | width W0     | pitch P0 | per reel |
| 0.36              | 0.66 | 0.20         | 8            | 2        | 1 000    |

Table 7 - Tape dimensions (mm)

# Film frame carrier: Ref: FF070 (Perfection products)

With tape Adwill D175 (UV performed) usually used for 400  $\mu$ m & 250  $\mu$ m products With tape Adwill D510 (UV performed) usually used for 100  $\mu$ m products

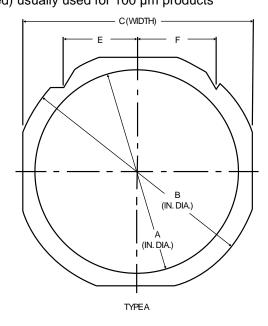



Figure 13 - Film frame drawing

| Wafer<br>diameter | Inside<br>diameter<br>A | Outside<br>diameter<br>B | Width<br>C | Thickness | Pin<br>location<br>E | Pin<br>location<br>F | Frame<br>style |
|-------------------|-------------------------|--------------------------|------------|-----------|----------------------|----------------------|----------------|
| 6"                | 7.639"                  | 8.976"                   | 8.346"     | 0.048"    | 2.370"               | 2.5"                 | DTF-2-6-1      |

Table 8 - Frame dimensions (inches)



# Murata Silicon Capacitors - UBSC722.410



Rev. 1.8

#### **Definitions**

#### Data sheet status

Objective specification: This data sheet contains target or goal specifications for product development.

Preliminary specification: This data sheet contains preliminary data; supplementary data may be published later.

Product specification: This data sheet contains final product specifications.

#### Limiting values

Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those given in the Electrical performances sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

#### **Application information**

Where application information is given, it is advisory and does not form part of the specification.

#### **Revision history**

| Revision    | Date            | Description               | Author.   |
|-------------|-----------------|---------------------------|-----------|
| Release 1.0 | 2016 June 28th  | Objective specification   | OGA       |
| Release 1.1 | 2016 Sept 22nd  | Preliminary specification | LLR/NNO   |
| Release 1.2 | 2016 Sept 29th  | Packing update            | OGA       |
| Release 1.3 | 2017 March 27th | Packing update            | OGA       |
| Release 1.4 | 2017 April 4th  | Murata version            | OGA       |
| Release 1.5 | 2017 June 9th   | Rated voltage update      | OGA       |
| Release 1.6 | 2018 Jan 15th   | Update                    | OGA       |
| Release 1.7 | 2018 March 29th | Update                    | OGA       |
| Release 1.8 | 2018 April 23th | Transfer FBC 0001         | MSI / OGA |

#### Disclaimer / Life support applications

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Murata customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Murata for any damages resulting from such improper use or sale.

Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

Murata Integrated Passive Solutions S.A. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice.



