

Diode

Emitter Controlled 4 High Power Technology IDC51D120T8H

Data Sheet

Industrial Power Control

Table of Contents

Features and Applications	3
Mechanical Parameters	3
Maximum Ratings	4
Static and Electrical Characteristics	4
Further Electrical Characteristics	4
Chip Drawing	5
Revision History	6
Legal Disclaimer	7

Diode Chip in Emitter Controlled 4 High Power Technology

Features:

1200V Emitter Controlled 4 technology 120µm chip

- Soft, fast switching
- Low reverse recovery charge
- Small temperature coefficient

Recommended for:

• Medium / high power modules

Applications:

• Medium / high power drives

Chip Type	V R	I Fn	Die Size	Package
IDC51D120T8H	1200V	100A	7.00mm x 7.30mm	Sawn on foil

Mechanical Parameters

Die size		7.00 x 7.30		
Area total		51.10 m		
Anode pad size		See chip drawing		
Silicon thickness		120 µ		
Wafer size		200	mm	
Maximum possible chi	ps per wafer	518		
Passivation frontside		Photoimide		
Pad metal		3.2µm AlSiCu		
Backside metal		Ni Ag – system To achieve a reliable solder connection it is strongly recommended not to consume the Ni layer completely during production process		
Die bond		Electrically conductive epoxy glue and soft solder		
Wire bond		Al, ≤500µm		
Reject ink dot size (va	lid for inked delivery form only)	Ø 0.65mm; max 1.2mm		
Storage environment (<12 months)	for original and sealed MBB bags	Ambient atmosphere air, temperature 17°C – 25°		
	for open MBB bags	Acc. IEC 62258-3; Section 9.4 Storage E	nvironment.	

Maximum Ratings

In general, from reliability and lifetime point of view, the lower the operation junction temperature and/or the applied voltage, the greater the expected lifetime of any semiconductor device.

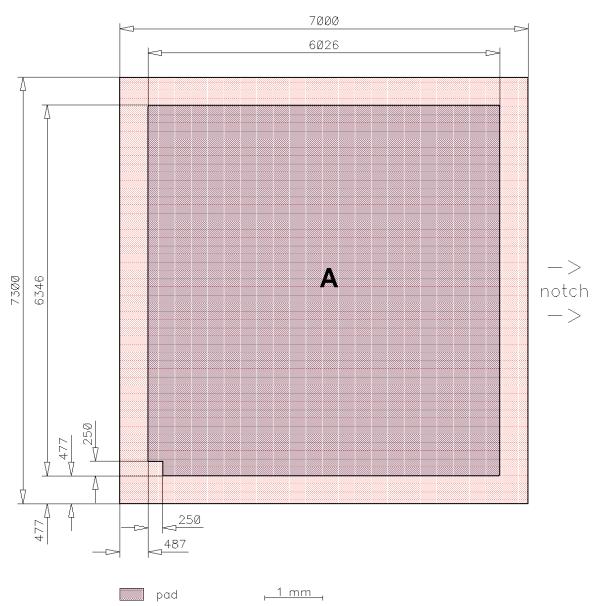
Not subject to production test, specified by design.

Parameter	Symbol	Value	Unit	
Repetitive peak reverse voltage, <i>T</i> _{vj} =25°C	Vrrm	1200	V	
Continuous forward current, limited by $T_{\rm vj \ max}$ ¹	l _F	-	^	
Maximum repetitive forward current, t_p limited by $T_{vj max}$	I _{FRM}	200	— A	
Junction temperature	T _{vj}	-40+175	°C	
Operating junction temperature	T _{vj op}	-40+150	°C	

Static Characteristics (tested on wafer), Tvj=25°C

Parameter	Symbol Conditions		Value			Unit
Farameter			min.	typ.	max.	Onit
Reverse leakage current	<i>I</i> R	<i>V</i> _R =1200V	-	-	18.0	μA
Cathode-anode breakdown voltage	V _{BR}	<i>I</i> _R =0.25mA	1200	-	-	V
Forward voltage drop	VF	<i>I</i> ⊧=100A	1.55	1.90	2.25	

Further Electrical Characteristics


Switching characteristics and thermal properties are depending strongly on module design and mounting technology and can therefore not be specified for a bare die.

Application example	FF900R12IE4	Rev. 2.4
---------------------	-------------	----------

¹ Depending on thermal properties of assembly.

Chip Drawing

Die-Size 7000 um x 7300 um

A = Anode pad

Bare Die Product Specifics

Test coverage at wafer level cannot cover all application conditions. Therefore it is recommended to test all characteristics which are relevant for the application at package level, including RBSOA and SCSOA.

Description

AQL 0.65 for visual inspection according to failure catalogue
Electrostatic Discharge Sensitive Device according to MIL-STD 883

Revision History

Revision	Subjects (major changes since last revision)	Date
2.0	Final data sheet	22.08.2016
2.1	Editorial changes	09.04.2021

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2021. All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is <u>not</u> qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

www.infineon.com

Published by Infineon Technologies AG