
2ST15300

Datasheet

Rad-Hard 300 V, 5 A NPN bipolar transistor

SMD.5

DS10450

Product status link	
2ST15300	

Features

V _{CBO}	H _{FE} at 0.6 V, I _C (max.) 250 mA		T _j (max.)	
300 V	5 A	> 55	200 °C	
. 100 kmgd				

100 krad

Linear gain characteristics

Description

The 2ST15300 is a silicon planar NPN power transistor in hermetic SMD.5 package and specifically designed for satellite application. Suitable for motor control, inductive load switch and power supply, it offers linear gain characteristic up to 100 krad. Qualified as per 5201/020 ESCC specification, in case of discrepancies between this data-sheet and the relevant agency specification, the latter takes precedence.

1 Electrical ratings

57

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base cut-off current ($I_E = 0$)	300	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	100	V
V _{EBO}	Emitter-base current ($I_C = 0$)	6	V
Ι _C	Drain current (pulsed)	5	А
P _{TOT}	Total power dissipation at $T_{case} \le 25 \text{ °C}$	40	W
101	Total power dissipation at $T_{ambient} \le 25 \text{ °C}$	2.2	vv
T _{op}	Operating temperature range	-65 to 200	°C
Tj	Max. operating junction temperature range	200	°C

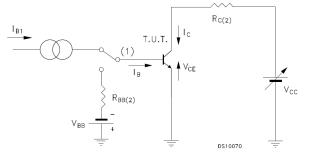
Table 1. Absolute maximum ratings (pre-irradiation)

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case max.	4.38	°C/W
R _{thJ-a}	Thermal resistance junction-ambient max.	80	°C/W

2 Electrical characteristics

57


 T_C = 25 $^\circ C$ unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Max.	Unit	
	Collector-base cut-off current	V _{CB} = 300 V		10		
I _{CBO}	(I _E = 0)	V _{CB} = 300 V, T _C = 150 °C		100	μA	
I _{EBO}	Emitter-base cut-off current $(I_C = 0)$	V _{EB} = 6 V		50	μA	
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 10 mA	300		V	
V _{(BR)CEO}	Collector-emitter breakdown voltage ($I_B = 0$)	I _C = 10 mA	100		V	
V _{(BR)EBO}	Emitter-base breakdown voltage ($I_C = 0$)	I _E = 10 μA	6		V	
V _{CE(sat)}	Collector-emitter saturation voltage	I _C = 5 A, I _B = 1 A		0.7	V	
V _{BE(sat)}	Base-emitter saturation voltage	I _C = 5 A, I _B = 1 A		1.4	V	
		I_{C} = 50 mA, V_{CE} = 0.6 V	50			
h		I _C = 250 mA, V _{CE} =0.6 V	55			
h _{FE}	DC current gain	I _C = 1 A, V _{CE} = 5 V	55			
		I _C = 5 A, V _{CE} = 5 V	35		-	
t _{ON}	Turn-on time	V _{CC} = 30 V, I _C = 3 A, I _{B1} = 0.3 A,		0.4	μs	
t _{OFF}	Turn-off time	I _{B2} = 0.3 A, resistive load		3.5	μs	
C _{OB}	Output-base	V _{CB} = 10 V, f = 1 MHz		120	pF	

Table 3. Electrical characteristics

2.1 Test circuits

Figure 1. ESCC resistive load switching test circuit

Note: (1) Fast electronic switch

Note:

(2) Non-inductive resistor

3 Radiation hardness assurance

57

This products is guaranteed in radiation as per ESCC 22900 and in compliance with ESCC 5201/020 specification

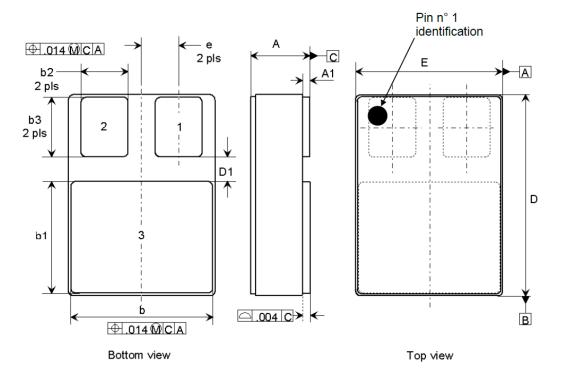
Each lot is tested in radiation according to the following procedure:

- Radiation condition of 0.1 rad (Si)/s
- Test of 11 samples by wafer, 5 biased at 80% of V(BR)CEO, 5 unbiased and for reference
- Acceptance criteria of each wafer at 100 krad if all 10 samples comply with the post radiation electrical characteristics as per Table 4.

Symbol	Parameter	Test conditions	Min.	Max.	Unit
I _{CBO}	Collector-base cut-off current $(I_E = 0)$	V _{CB} = 240 V		10	μA
I _{EBO}	Emitter-base cut-off current $(I_C = 0)$	V _{EB} = 6 V		50	μA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 10 mA	240		V
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage ($I_B = 0$)	I _C = 10 mA	100		V
V _{(BR)EBO}	Emitter-base breakdown voltage ($I_C = 0$)	I _E = 10 μA	6		V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	I _C = 5 A, I _B = 1 A		0.7	V
V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	I _C = 5 A, I _B = 1 A		1.4	V
		I_{C} = 50 mA, V_{CE} = 0.6 V	[25]		
INEEL	Post irradiation gain	I _C = 250 mA, V _{CE} =0.6 V	[27.5]		
	calculation ⁽²⁾	I _C = 5 A, V _{CE} = 5 V	[27.5]		
		I _C = 5 A, V _{CE} = 5 V	[17.5]		1

Table 4. ESCC 5201/020 post radiation electrical characteristics (T_{amb} = 25 °C unless otherwise specified)

1. Pulse test: pulse duration \leq 300 µs, duty cycle \leq 2%.


2. The post-irradiation gain calculation [h_{FE}] is made according to MILSTD-750 test method 1019.

4 Package information

57

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 SMD.5 package information

Figure 2. Surface mount SMD.5 package outline (3-terminal)

Table 5. SMD.5 package mechanical data

Symbols	C	Dimensions (mm)			Dimensions (inches)		
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.	
А	2.84		3.30	0.112		0.130	
A1	0.25	0.38	0.51	0.010	0.015	0.020	
b	7.13	7.26	7.39	0.281	0.286	0.291	
b1	5.58	5.72	5.84	0.220	0.225	0.230	
b2	2.28	2.41	2.54	0.090	0.095	0.100	
b3	2.92	3.05	3.18	0.115	0.120	0.125	
D	10.03	10.16	10.28	0.395	0.400	0.405	
D1	0.76			0.030			
E	7.39	7.52	7.64	0.291	0.296	0.301	
е		1.91			0.075		

5 Order codes

Part number	Agency specification	Quality level	Radiation level	Package	Mass	Lead finish	Marking	Packing
2ST15300SR1	-	Engineer model	-				2ST15300SR1	Strip pack
2ST15300RSRHRG		Flight		SMD.5	2 g	Gold		
2ST15300RSRHRGW	5201/020	model	100 krad				520102001R	Tape and reel

Table 6. Ordering information

Contact ST sales office for information about the specific conditions for products in die form and for other packages.

6 Other information

6.1 Traceability information

Date code information is described in the table below.

Table 7. Date codes

Quality level	Date codes ⁽¹⁾
Engineer model	3yywwN
ESCC flight model	yywwN

1. yy = year, ww = week, N = lot index in the week.

6.2 Documentation

The table below list the documentation provided for each type of products.

Table 8. Documentation provided for each type of product

Quality level	Radiation level	Documentation		
Engineering model	-	Certificate of conformance		
		Certificate of conformance		
ESCC	100 krad	ESCC qualification maintenance lot reference		
		Radiation verification test (RVT) report at 25 / 50 / 70 / 100 krad at 0.1 rad / s		

Revision history

Date	Version	Changes
07-Aug-2019	1	First release.
12-Oct-2020	2	Updated Section Description, Table 3. Electrical characteristics. Added Section 2.1 Test circuits. Minor text changed.
19-Jan-2021	3	Updated Table 1, Figure 2 and Table 5.
11-Mar-2021	4	Updated Table 6 and Table 8.

Table 9. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved