OCVPB21-13F6

Datasheet

ESD, overvoltage and overcurrent protection with charging orientation direction detection for wearables and IoT

WLCSP package (13 bumps)

Features

- USB interface protection between cable and charging circuit during battery charging with:
 - Exceeds ESD IEC 61000-4-2 level 4 protection on cable side: ±15 kV contact on bridge inputs, ±12 kV contact on USB data-lines inputs
 - Detection of the polarity of the charging cable with rerouting in case of cable inversion thanks to 13 V input rectification bridge
 - Overvoltage protection (OVP) up to ± 13 V
 - Over current protection (OCP) externally adjustable from 100 mA to 500 mA
 - Controlled inrush current
 - Over temperature protection
 - Under-voltage lockout
 - 5 V USB 2.0 data lines protection and multiplexer for data line polarity correction (R_{ON} = 6 Ω typical)
 - FLAG output signal (open-drain) available to inform thermal shutdown or overvoltage or overcurrent or uncompleted start-up phase
 - Proposed in 400µm pitch WLCSP package 13 bumps
 - Operating temperature from -30°C to 65°C

Benefits

- Minimal PCB footprint in wearable, IoT, mobile phone, tablet and all USB devices applications thanks to very strong integration
- High voltage protection management to give flexibility to customers to use low voltage charging circuit for power consumption and cost optimization
- USB cable inversion management

Complies with the following standards

- IEC 61000-4-2 level 4: ±15kV contact on bridge inputs, ±12kV contact on USB data-lines inputs
- JESD22-A114D level 2

Applications

All wearable and IoT

Description

The OCVPB21-13F6 is an integrated ESD, overvoltage and overcurrent protection with an integrated input rectification bridge to give flexibility for wearable and IoT customers to manage properly any kind of USB charging conditions with or without USB cable inversion.

Thanks to state of the art high voltage technology, ST can integrate in WLCSP package all required USB stressful high voltage and high current protection conditions (ESD, OVP and OCP) with control signals for wearable and IoT design optimization.

Product status link	
OCVPB21-13F6	

1 Functional description

OCVPB21-13F6 is a very integrated solution to be connected between USB cable and battery charge management chipset with very efficient protection to protect the system and the power management chipsets during battery charging.

As described herebelow , all protection functions are available to meet all stringent conditions of power supplies but also USB cable inversion:

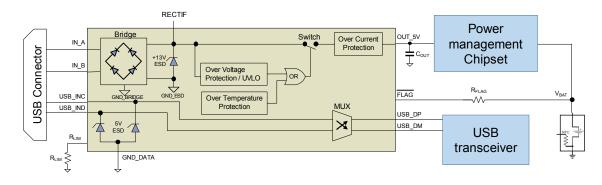

With 13 V input rectification bridge for polarity charging detection. Both signals (USB Vcc and USB datalines) are rerouted according to following rule (see Figure 2 and Table 3)

Table 1.	Rectification	bridge	for	polarity
	1.000 moution	Silago		polarity

IN_A	IN_B	USB_INC	USB_IND
V _{CC}	GND	D+	D-
GND	V _{CC}	D-	D+

- Adjustable overcurrent protection to prevent peak current to meet a wide range of IoT and wearable applications
- Overvoltage protection to properly meet battery charging voltage conditions and protecting from -0.3 V to 13 V DC and to 20 V ringing at plug-in

Figure 1. Application block diagram

Table 2. Block diagram reference

Reference	Typical values	Comment
C _{OUT}	≥ 10 µF 6V3	Low ESR capacitor
R _{LIM}	From 51 Ω to 270 Ω	1% tolerance or better recommended
R _{FLAG}	100 kΩ	

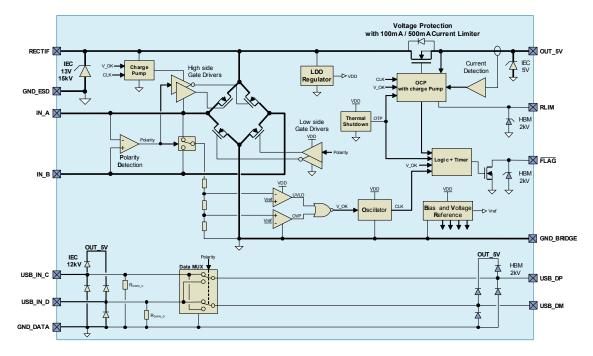
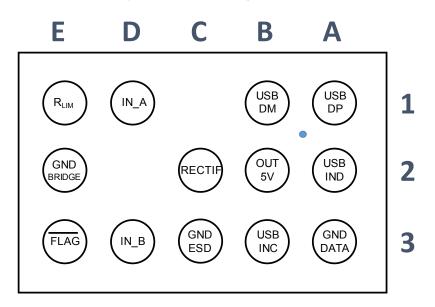



Figure 3. Pin numbering (bump side)

57

Table 3.	Pin	description
----------	-----	-------------

Pin	Name	Description	Pin	Name	Description
A1	USB_DP (OUT_USB_D+ DATA)	Output USB D+ dataline	C2	RECTIF	Output bridge rectification
A2	USB_IND	Input USB dataline - USB pin 3 connector (D+ or D-)	D1	IN_A (USB connector V _{CC} or GND)	Input bridge rectification - USB connector (V _{CC} or GND)
A3, C3, E2	GND DATA GND ESD GND BRIDGE	Ground dataline Ground ESD Bridge Ground bridge	D3	IN_B (USB connector GND or V_{CC})	Input bridge rectification - USB connector (GND or V _{CC})
B1	USB_DM (OUT_USB_D- DATA)	Output USB D- dataline	E1	R _{LIM}	External resistor used to set current-limit threshold
B2	OUT_5V	Output USB 5 V voltage charging	E3	FLAG	Active-low open-drain output, asserted during overcurrent, over/under voltage and over temperature conditions
В3	USB_INC	Input USB dataline - USB pin 2 connector (D- or D+)			

1.1 Rectification bridge description

Thanks to an input rectification bridge, polarity of the charging cable can be detected and be rerouted in case of USB cable inversion.

During power-up stage, current will first flow in intrinsic body diodes of power MOS of the bridge.

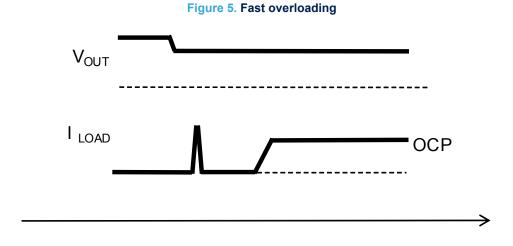
During steady state, current will flow through power MOS of the bridge providing a low drop-out voltage.

1.2 OCP function description

57/

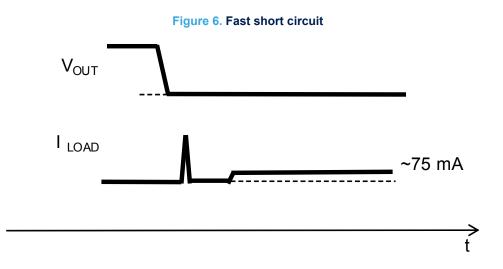
Over current protection is required to prevent any inrush current or unexpected overcurrent that could damage the system.

Current limitation of the OCP will be set using an external resistor R_{LIM} (from 100 to 500 mA min) to meet a wide range of IoT and wearable applications.


Typical limitation current will be set at 10-15% above targeted value as described in Figure 7.

I_{LIM} versus R_{LIM} definition is: I_{LIM} = (318 - R_{LIM}) / 0.447

In case of slow overloading, the current is regulated at OCP level as described in Figure 4.


V_{OUT}

In case of fast overloading, the power-switch is switched-off in the microsecond range as described in Figure 5. Then the power-switch is slowly turned on and the load-current regulated at the OCP level.

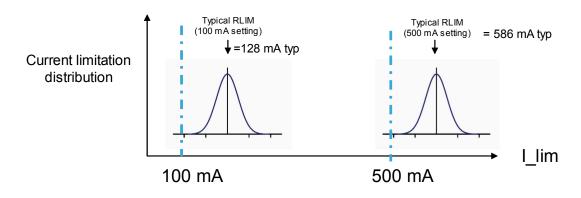

In case of fast short-circuit, the power-switch is switched-off in the microsecond range as described in Figure 6. Then the OCP level is folded back at around 75 mA.

Figure 4. Load current regulation during slow overloadin

During OCP operation, a big power can be dissipated in the chip. If junction temperature reaches OTP level (150 $^{\circ}$ C), the power-switch is temporarily opened to cool the device. OCP is then re-enabled once T_j decreases by 30 $^{\circ}$ C.

1.3 OVP function description

Both undervoltage lockout and overvoltage lockout are integrated to secure correct operating voltage conditions of connected Power management chipset.

In normal charging condition, V_{IN} and V_{OUT} can vary from 4.25 V to 5.5 V.

Under 4.25 V and over 5.5 V, UVLO or OVLO are activated to disable the output (OVP switch open and FLAG set to low - to inform protection Power management chipset).

1.4 FLAG output signal

FLAG output signal (open-drain) is available to inform thermal shutdown or overvoltage or overcurrent or uncompleted start-up phase.

This signal is kept to low when product exceeds temperature conditions or voltage protection is activated or overcurrent occurs or start-up phase is still incomplete.

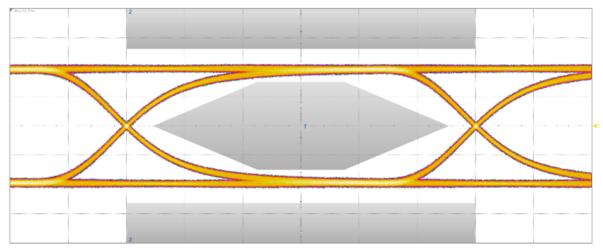
During normal conditions, this signal is at high level thanks to an external pull-up resistor.

2 Electrical characteristics

Symbol	Parameter	Test conditions	Value	Unit
N/	ESD discharge on USB cable side, exceeds IEC 61000-4-2 level 4:	Contact or air discharge pin to GND		
V _{PP_BUS}	pins D1 and D3	with $C_{OUT} \ge 10 \ \mu F^{(1)}$	±15	kV
	pins A2 and B3		±12	
V _{PP_OUTPUT}	ESD discharge (all pins), HBM -JESD22-A114D, level 2	Contact or air discharge	±2	kV
V _{IN_MAX}	Max transient input voltage	IN_A to GND or IN_B to GND (test pulse < 5 min)	-0.3 to +13.2	V
V _{DATA_MAX}	Max data voltage USB_INC, USB_INC, USB_DP and USB_DM		-0.3 to +5.5	V
V _{RLIM_MAX} , V _{FLAG} and OUT_5V	Max voltage range	-0.3 to +7	V	
IIN_MAX_DC	Max DC input current : IN_A and IN_	В	600	mA
I _{FLAG_sink}	Max sunk current through FLAG PIN	4	mA	
T _{STG}	Storage temperature range	-55 to +150	°C	
T _{OP}	Operating temperature range	-30 to +65	°C	

Table 4. Absolute maximum ratings (limiting values)

1. With minimum 10 μF low ESR capacitor connected to OUT_5V


Table 5. USB power electrical characteristic (-30 °C < T_{amb} < 65 °C, typ at T_{amb} = 25 °C and V_{IN} = 5 V unless
otherwise noted)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{IN}	Input voltage range	IN_A to GND or IN_B to GND	4.25		5.55	V
I _{Q_IN}	Supply quiescent current			400		μA
UVLO _{OFF}	Under-voltage lockout deactivation	on	3.8		4.25	V
UVLO _{ON}	Under-voltage Lockout		3.45		4.05	V
OVPON	Over-voltage protection deactiva	tion	5.5		6.35	V
OVP _{OFF}	Over-voltage protection deactiva	tion	5.45		6.2	V
RINX /OUT_5V	High side ON resistance	I _{OUT} = 100 mA		199		mΩ
R _{INx/GND}	Low side ON resistance	I _{IN_x} = 100 mA		119		mΩ
R _{LIM}	OCP setting resistor range	T = 25 °C	51		270	Ω
		R _{LIM} = 56 Ω, V _{OUT} = 4.5 V	524	586	637	
I _{LIM}	Overcurrent threshold	R _{LIM} = 261 Ω, V _{OUT} = 4.5 V	108	127.6	143.8	mA
T _{sd}	Thermal Shutdown		134	148	161	°C
T _{sd_hyst}	Thermal Shutdown hysteresis		12	28	44	°C
$V_{OL}FLAG$	FLAG low state output voltage	V _{IN} = 3.6 V, I _{Sink} = 4 mA on FLAG			0.4	V
I _{FLAG_leak}	FLAG leakage current	V _{FLAG} = 5 V			200	nA
T _{ON}	Activation time	From $V_{IN} > UVLO_{OFF}$ to $\overline{FLAG} = HIGH Z$		1.2	2	ms

Table 6. USB data characteristic (-30 °C < T_{amb}< 65 °C, typ at T_{amb} = 25 °C and V_{IN} = 5 V unless otherwise noted)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{DATA}	Dataline input Voltage range	USB_INC, USB_IND, USB_DP, USB_DM	-0.3		3.65	V
C _{ON}	ON capacitance	V _{DATA} = 0 V, F = 1 MHz		9		pF
E.	Cut-off frequency	-3dB bandwidth R _L = 50 Ω , C _L = 5 pF		420		N 41 1-
F _C		-3dB bandwidth R _L = 50 Ω , C _L = 0 pF		590		MHz
R _{ON_DATA}	On-Resistance	V_{DATA} = 0 V to 0.4 V, I _{DATA} = 8 mA			9.2	Ω
R _{ON_FLAT}	On-Resistance flatness	V _{DATA} = 0 V to 1 V, I _{DATA} = 8 mA		1.6		Ω
R _{PULL_DOWN}	Pull-down resistor between IN_C,IN_D and GND			100		kΩ

Figure 8. USB2.0 high speed 480 Mbps eye diagram (pin A1 and B1 - with OCVPB21-13F6 and no load capacitor)

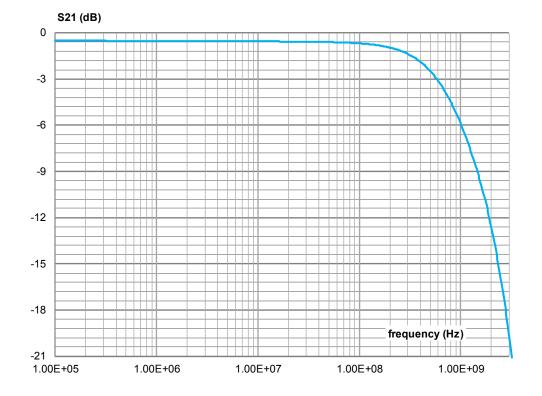
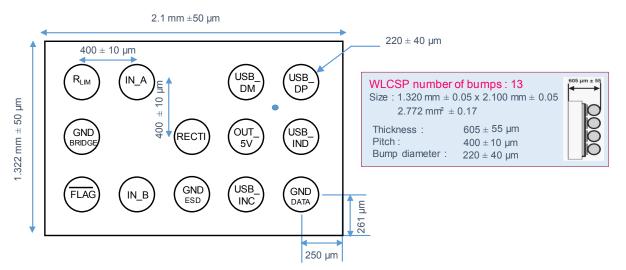



Figure 9. S₂₁ measurement (pin A1 and B1 - with no load capacitor)

3 Package information

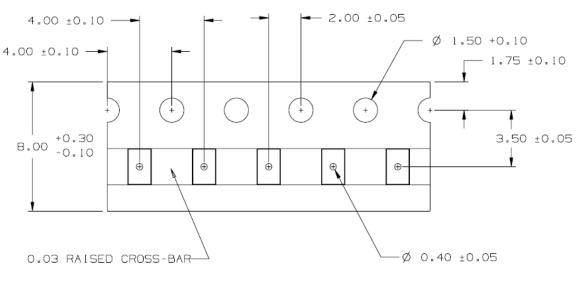
In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

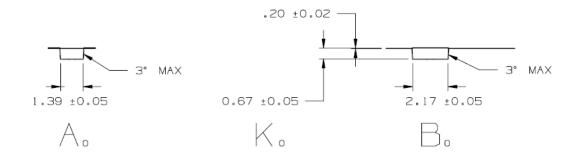
3.1 WLCSP 13 bumps package information

Figure 10. WLCSP 13 bumps package outline

3.2 WLCSP 13 bumps packing information

Figure 11. Marking


Dot, ST logo ECOPACK grade xx = marking z = manufacturing location yww = datecode


•
∠ ₹ ₹
XXZ
y w w

Note: More packing information is available in the application note:

AN2348 Flip-Chip: "Package description and recommendations for use"

Figure 12. WLCSP 13 bumps tape and reel specification (all dimensions in mm)

DS13107 - Rev 2

4 Soldering assembly recommendations

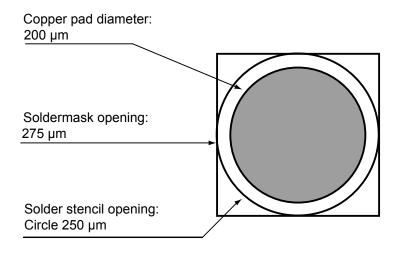
4.1 PCB design recommendations for multi-bump Flip Chip

For optimum electrical performance and highly reliable solder joints, STMicroelectronics recommends the PCB design guidelines listed in Table 7.

Table 7. PCB design recommendations for multi-bump Flip Chips

Name	Parameters		
PCB pad design	Non solder mask defined micro via under bump allowed		
PCB pad size	Ø = 200 μm (circular)		
Solder mask opening	Ø = 275 µm		
PCB pad finishing	Cu - Ni (2-6 µm) - Au (0.2 µm max) or Cu OSP (Organic Substrate Protection).		

Note:


A too thick gold layer finishing on the PCB pad is not recommended (low joint reliability)

To optimize the natural self-centering effect of Flip Chips on PCB, PCB pad positioning and size have to be properly designed (see Figure 13).

Micro vias

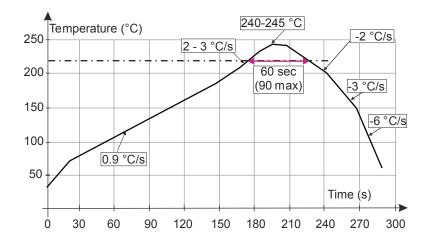

An alternative to routing on the top surface is to route out on buried layers. To achieve this, the pads are connected to the lower layers using micro vias.

Figure 13. Multi-bump Flip-Chip bump footprint

4.2 PCB assembly guidelines

For Flip Chip mounting on the PCB, STMicroelectronics recommends the use of a solder stencil aperture of 250 μ m and a typical stencil thickness of 80 μ m. Flip Chips are fully compatible with the use of near eutectic 95.8% Sn, 3.5% Ag, 0.7% Cu solder paste with no-clean flux. ST's recommendations for Flip-Chip board mounting are illustrated on the soldering reflow profile shown in Figure 14.

Figure 14. ST ECOPACK recommended soldering reflow profile for Flip Chip mounting on PCB (definitions)

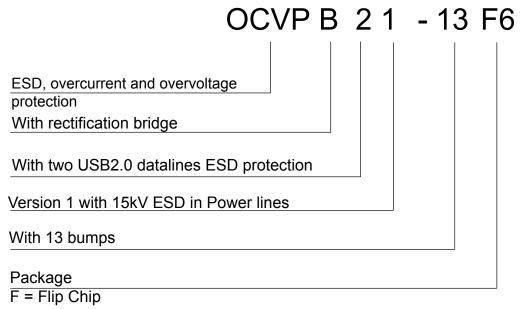
Table 8. ST ECOPACK recommended soldering reflow profile for Flip Chip mounting on PCB (value)

Profile	Value		
Frome	Тур.	Max.	
Temp. gradient in preheat (T = 70 – 180 °C)	0.9 °C/s	3 °C/s	
Temp. Gradient (T = 200 – 225 °C)	2 °C/s	3 °C/s	
Peak temp. in reflow	240 – 245 °C	260 °C	
Time above 220 °C	60 s	90 s	
Temp. gradient in cooling	-2 to - 3 °C/s	-6 °C/s	
Time from 50 to 220 °C	160 to	220 s	

4.3 Layout recommendations

Low impedance trace are recommended for IN_A, IN_B, OUT_5V and GND_ESD to ensure layout optimization for ESD.

We recommend also to place C_{OUT} (see Table 2. Block diagram reference) as close as possible of OCVPB21-13F6.


To maximize current limit accuracy, we recommend also to place R_{LIM} (see Table 2. Block diagram reference) as close as possible of OCVPB21-13F6 (with Z < 500 m Ω).

Traces for USB data lines should be designed with 90 Ω differential impedances (USB_INC, USB_IND, USB_DP and USB_DM tracks).

5 Ordering information

51

6 : lead-free, pitch = 400 μ m, bump = 220 μ m

Table 9. Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
OCVPB21-13F6	NL	WLCSP	6 mg	5000	Tape and reel

Note:

More information is available in AN2348 application note :

STMicroelectronics 400 micro-meter Flip Chip: package description and recommendation for use

Revision history

Table 10. Document revision history

Date	Revision	Changes
08-Nov-2019	1	Initial release.
21-Dec-2020	2	Inserted protection logo. Updated Table 5 and Figure 10.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved