
LITEON SEMICONDUCTOR

T1M10T800A

ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified.)

Absolute Ratings

PARAMETER	SYMBOL	VALUE	UNIT
Peak repetitive off-state voltage (Tj = -40 to 125°C, Full sine wave, 50 to 60 Hz; Gate open) (Note 1)	V _{drm} V _{rrm}	800	V
On-stage RMS current (Full sine wave, $T_c = 110^{\circ}C$)	I _{T(RMS)}	1	А
Peak non-repetitive surge current (one full cycle 60 H_Z , Tj = 25°C)	I _{TSM}	13.7	А
Circuit fusing consideration (t = 8.3ms)	l ² T	0.4	A ² S
Peak gate current	I _{GM}	2	А
Peak gate power	P _{GM}	5	W
Average gate power	P _{G(AV)}	0.1	W
Operating junction temperature range	Тј	-40 to +125	°C
Storage temperature range	T _{STG}	-40 to +150	°C
Note :	· · ·	REV. 0, JUL-2016,	KTXD27

(1) V_{DRM} and V_{RRM} for all types can be applied on a continuous basis.

Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Thermal Characteristics

PARAMETER	SYMBOL	VALUE	UNIT	
Thermal resistance from junction		60	°C/W	
		150		
Maximum lead temperature for soldering purposes (1/8" form case for 10 seconds)	TL	260	°C	

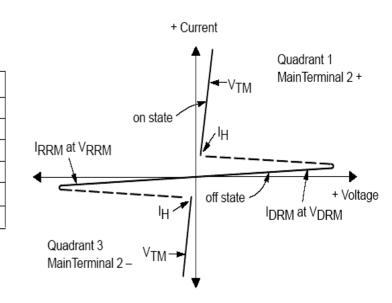
Static Characteristics

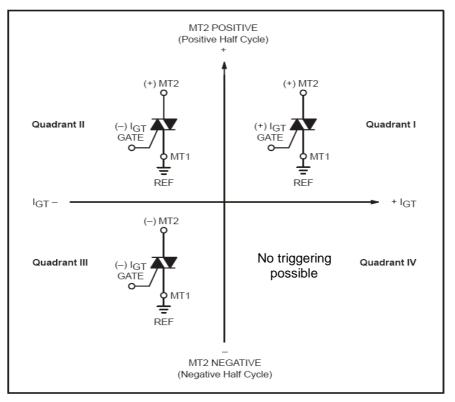
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNIT
Threshold Voltage ⁽¹⁾ @ Tj = 125°C		V _{to}			0.9	V
Dynamic resistors ⁽¹⁾ @ Tj = 125°C		R_{d}			390	mΩ
Peak repetitive forward or reverse blocking current (V_{AK} = rated V_{DRM} and V_{RRM} , gate open)	Tj = 25°C	I _{DRM}			5	uA
	Tj= 125°C	I _{RRM}			0.5	mA

1. For both polarities of A2 referenced to A1.

ON Characteristics

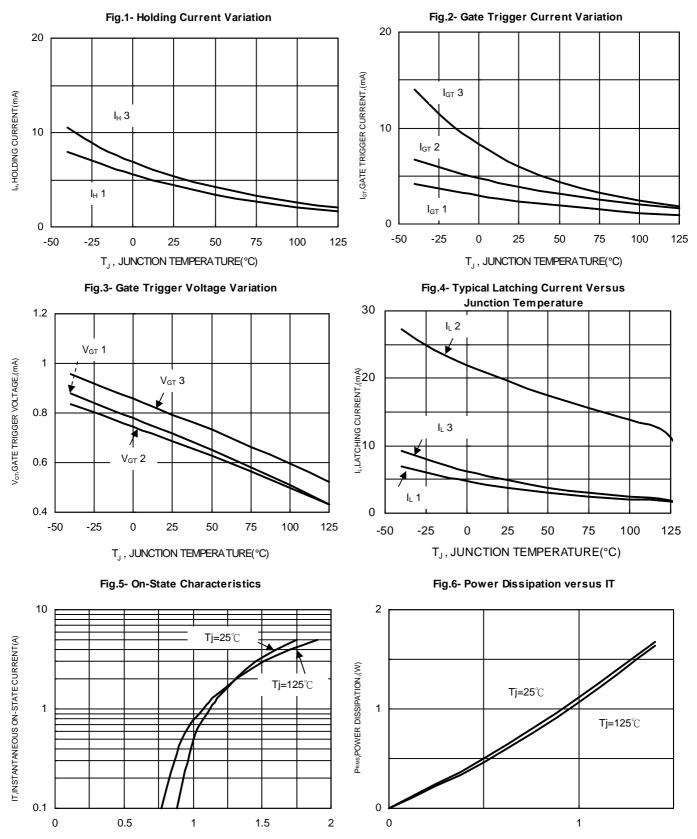
PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Peak forward on-state voltage ($I_{TM} = 1 A @ Tj = 25^{\circ}C$)	V _{TM}		1.2	1.5	V
$V_D = V_{DRM}$, $R_L = 100\Omega$, $Tj = 125^{\circ}C$	V_{GD}	0.3			V
Gate trigger current (V_{AK} = 12V, R _L =100 Ω)	I _{GT1} I _{GT2} I _{GT3}			10	mA
Gate trigger voltage (V_{AK} = 12V, R_L =100 Ω)	V _{GT1} V _{GT2} V _{GT3}			1	V
Holding current (VAK = 12V, R_L =100 Ω)	I _{H1} I _{H3}			12	mA
	I _{L1}			12	
Latching current (V_{AK} = 12V, R _L =100 Ω)	I _{L2}			25	mA
				12	




Dynamic Characteristics

Р	ARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Critical rate of rise of off-st (V_{AK} = 67% rated V_{DRM} , (age voltage ⊉ Tj = 125°C, gate open)	dv/dt	600			V/us
Rate of rise of on-state current (V_{DRM} =maximum V_{DRM} ,Tj = 125°C)		di/dt			100	A/us
Rate of change of commutating current	VD=400V, dv/dt(c)=10V/us,Tj=125°C	di/dt(c)	4			A/ms
	Without snubber, VD=400V,Tj=125°C		3			AVITIS

LITEON


Symbol	Parameter
VDRM	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
VRRM	Peak Repetitive Reverse Off State Voltage
IRRM	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
ΙΗ	Holding Current

All polarities are referenced to MT1 With in -phase signal (using standard AC lines) quadrants I and III are used

VT, INSTANTANEOUS ON-STATE VOLTAGE(V)

IT, ON-STATE CURRENT(A)

LEGAL DISCLAIMER NOTICE

Important Notice and Disclaimer

LSC reserves the right to make changes to this document and its products and specifications at any time without notice. Customers should obtain and confirm the latest product information and specifications before final design, purchase or use.

LSC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does LSC assume any liability for application assistance or customer product design. LSC does not warrant or accept any liability with products which are purchased or used for any unintended or unauthorized application.

No license is granted by implication or otherwise under any intellectual property rights of LSC.

LSC products are not authorized for use as critical components in life support devices or systems without express written approval of LSC.