

AP384XC

General Description

The AP3842C/3C/4C/5C are high performance fixed frequency current-mode PWM controller series.

These integrated circuits are optimized for off-line and DC-DC converter applications with minimum external components. They feature under-voltage lockout (UVLO) circuit with low start-up current, trimmed oscillator for precise duty cycle control, current sense comparator providing maximum current limiting and a totem pole output stage for increasing output current. In addition, these ICs also feature accurate protection against over-temperature, over-current and maximal output power.

The AP3842C and AP3844C have UVLO thresholds of 16V(on) and 10V(off); The corresponding thresholds for AP3843C and AP3845C are 8.4 V(on) and 7.6V(off).

The AP3842C and AP3843C can operate approaching 100% duty cycle; AP3844C and AP3845C can operate from zero to 50% duty cycle.

These ICs are available in SOIC-8 and DIP-8 packages.

Features

- Low Start-up Current: 50μA
- $\bullet \quad \text{Robust V}_{\text{REF}} \text{ Line/Load Regulation} \\$

Low Line Regulation : 4mV Low Load Regulation : 4mV

- High Stability of Reference Voltage over a Full Temperature Range: 0.2mV/ °C
- Operating Frequency up to 500kHz
- High PWM Frequency Stability over a Full Temperature Range: 2.5%
- High PWM Frequency Stability under a Full Supply Voltage Range: 0.2%
- Accurate Over-temperature Protection with Hysteresis
- UVLO with Hysteresis

Applications

- Off-line Converter
- DC-DC Converter
- Voltage Adapter
- CRT Monitor Power Supply
- Desktop Power Supply
- DVD/STB Power Supply

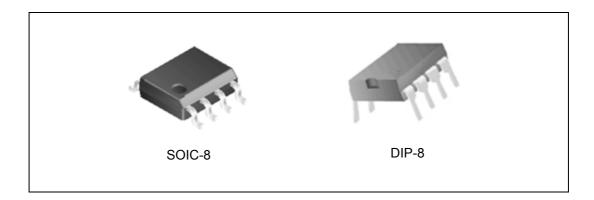


Figure 1. Package Types of AP3842C/3C/4C/5C

AP384XC

Pin Configuration

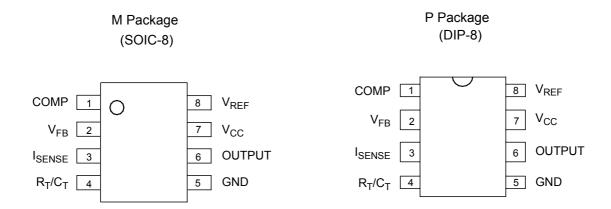


Figure 2. Pin Configuration of AP3842C/3C/4C/5C (Top View)

Pin Description

Pin Number	Pin Name	Function
1	COMP	This pin is the Error Amplifier output and is made available for loop compensation.
2	$ m V_{FB}$	The inverting input of the Error Amplifier. It is normally connected to the switching power supply output through a resistor divider.
3	I _{SENSE}	A voltage proportional to inductor current is connected to this input. The PWM uses this information to terminate the output switch conduction.
4	R _T /C _T	The Oscillator frequency and maximum output duty cycle are programmed by connecting resistor R_T to V_{REF} and capacitor C_T to ground. Operation to 500 kHz is possible.
5	GND	The combined control circuitry and power ground.
6	OUTPUT	This output directly drives the gate of a power MOSFET. Peak currents up to 1.0 A are sourced and sunk by this pin.
7	V _{CC}	The positive supply of the control IC.
8	V_{REF}	This is the reference output. It provides charging current for capacitor C_T through resistor R_T .

AP384XC

Functional Block Diagram

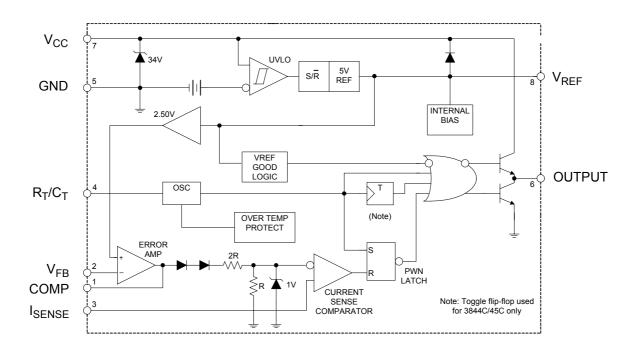
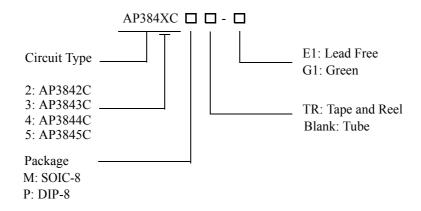



Figure 3. Functional Block Diagram of AP3842C/3C/4C/5C

AP384XC

Ordering Information

Package Tempera-	Tempera-	Part N	umber	Mark	Packing	
ture Range		Lead Free	Green	Lead Free	Green	Type
SOIC-8	AP3842/3/4/5CM-E1	AP3842/3/4/5CM-G1	3842/3/4/5CM-E1	3842/3/4/5CM-G1	Tube	
5010-6	-40 to 85°C	AP3842/3/4/5CMTR-E1	AP3842/3/4/5CMTR-G1	3842/3/4/5CM-E1	3842/3/4/5CM-G1	Tape & Reel
DIP-8		AP3842/3/4/5CP-E1	AP3842/3/4/5CP-G1	AP3842/3/4/5CP-E1	AP3842/3/4/5CP-G1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

AP384XC

Absolute Maximum Ratings (Note 1, 2)

Parameter	Symbol	Value		Unit	
Supply Voltage	V_{CC}	30		V	
Output Current	I _O	-	± 1	A	
Analog Inputs	V(ANA)	-0.3	to 6.3	V	
Error Amp Output Sink Current	I _{SINK} (E.A)		10	mA	
Power Dissipation at T _A < 25 °C (DIP-8)	P _D (Note 3)	10	1000		
Power Dissipation at T _A <25 °C (SOIC-8)	P _D (Note 3)	460		mW	
Junction Operating Temperature	T_{J}	-40 to 150		°C	
Thormal Projectores (Innetion to Ambient)	Α	DIP-8	140	°C/W	
Thermal Resistance (Junction to Ambient)	$\theta_{\sf JA}$	SOIC-8	160	°C/W	
Storage Temperature Range	T_{STG}	-65 to 150		°C	
Lead Temperature (Soldering, 10sec)	T_{LEAD}	+300		°C	
ESD (Machine Model)		250		V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: All voltages are with respect to pin 5 and all currents are positive into specified terminal.

Note 3: Board thickness 1.6mm, board dimension 90mm **X** 90mm.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Oscillation Frequency	f		500	KHz
Ambient Temperature	T_{A}	-40	85	°C

AP384XC

Electrical Characteristics

(V_{CC}=15V, R_T=10k Ω C_T=3.3nF, T_A=25°C, unless otherwise specified.)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
REFERENCE SECTION			1			1
Reference Output Voltage	V _{REF}	T _A =25°C, I _{REF} =1mA	4.90	5.00	5.10	V
Total Output Variation		Line, Load, Temp.	4.82		5.18	V
Line Regulation	ΔV_{REF}	$12V \le V_{CC} \le 25V$		4	15	mV
Load Regulation	ΔV_{REF}	$1\text{mA} \le I_{\text{REF}} \le 20\text{mA}$		4	15	mV
Short Circuit Output Current	I_{SC}	T _A =25°C		-100	-180	mA
Temperature Stability		(Note 6)		0.3		mV/°C
OSCILLATOR SECTION						
Oscillation Frequency	f	T _A =25°C	47	52	57	KHz
Oscillator Amplitude	V _{OSC}	Pin 4, peak to peak (Note 6)		1.7		V
Temperature Stability		(Note 6)		2.5		%
Voltage Stability		$12V \leqslant V_{CC} \leqslant 25V$		0.2	1	%
Discharge Current		Vpin 4 = 2V(Note 7)	8.5	9.5	10.5	mA
ERROR AMPLIFIER SECTION	ON	-	•	•		1
Input Voltage	V _I	Vpin 1=2.5V	2.45	2.50	2.55	V
Output Sink Current	I _{SINK}	Vpin1=1.1V	5	8		mA
Output Source Current	I _{SOURCE}	Vpin1=5V	-0.5	-0.8		mA
High Output Voltage	V_{OH}	RL=15kΩ to GND	5	7		V
Low Output Voltage	V_{OL}	RL=15kΩ to pin 8		0.7	1.1	V
Voltage Gain		$2V \le V_O \le 4V$	65	90		dB
Power Supply Rejection Ratio	PSRR	$12V \le V_{CC} \le 25V$	60	70		dB
CURRENT SENSE SECTION						•
Maximum Input Signal	V _I (MAX)	Vpin1=5V(Note 4)	0.9	1	1.1	V
Gain	GV	(Note 4, 5)	2.85	3	3.15	V/V
Power Supply Rejection Ratio	PSRR	12V≤ V _{CC} ≤ 25V (Note 4, 6)		70		dB
Delay to Output		Vpin3 = 0 to 2V (Note 6)		150	300	ns
Input Bias Current	I _{BIAS}			-3	-10	μΑ
OUTPUT SECTION						
Low Output Voltage	V _{OL}	I _{SINK} = 20mA		0.1	0.4	V
	· OL	I _{SINK} = 200mA		1.4	2.2	V
High Output Voltage	V _{OH}	I _{SOURCE} = 20mA	13	14		V
	Оп	I _{SOURCE} = 200mA	12	13		V
Rise Time	t _R	T _A =25°C, C _L =1nF (Note 6)		50	150	ns
Fall Time	t_{F}	T _A =25°C, C _L =1nF (Note 6)		50	150	ns

Sep. 2010 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

AP384XC

Electrical Characteristics (Continued)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
UNDER -VOLTAGE LOCKO	UT SECTION					
Start Threshold	V _{TH} (ST)	AP3842C/AP3844C	15	16	17	V
	111(~-)	AP3843C/AP3845C	7.8	8.4	9.0	V
Min. Operation Voltage	V _{OPR}	AP3842C/AP3844C	8.5	10.0	11.5	V
(After Turn On)	(Min.)	AP3843C/AP3845C	7.0	7.6	8.2	V
PWM SECTION	-		•	•	·	l
Max. Duty Cycle	D(Max.)	AP3842C/AP3843C	95	97	100	%
Max. Duty Cycle	D(Max.)	AP3844C/AP3845C	46	48	50	%
Min. Duty Cycle	D(Min.)				0	%
TOTAL STANDBY CURREN	T SECTION		•	•	•	•
Start-up Current	I _{ST}	AP3842C/AP3844C, V _{CC} =14V		50	80	μΑ
		AP3843C/AP3845C, V _{CC} =6.5V		50	80	
Operating Supply Current	I _{CC} (OPR)	Vpin3=Vpin2=0V		8	12	mA
Zener Voltage	V_{Z}	I _{CC} =25mA	30	34		V
OVER-TEMPERATURE PRO	OTECT SECTI	ON			•	•
Shutdown Temperature	T_{SHUT}	(Note 6)		155		°C
Temperature Hysteresis	T _{HYS}	(Note 6)		25		°С

Note 4: Parameters are tested at trip point of latch with Vpin2 = 0.

Note 5: Here gain is defined as:

$$A = \frac{\Delta V Pin~1}{\Delta V Pin~3},~0 \leq V pin 3 \leq 0.8 V$$

Note 6: These parameters, although guaranteed, are not 100% tested in production.

Note 7: This parameter is measured with $RT=10k\Omega$ to V_{REF} , it contributes 0.3mA of current to the measured value. So the total current flowing into the CT pin will be 0.3mA higher than the measured value approximately.



Figure 4. Basic Test Circuit

Sep. 2010 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

AP384XC

ELectrical Characteristics (Continued)

Figure 4 is the basic test circuit for AP384XC. In testing, the high peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Typical Performance Characteristics

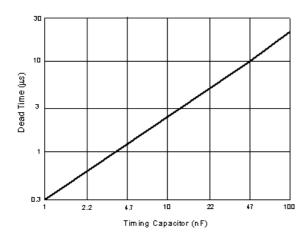
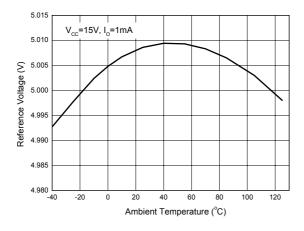
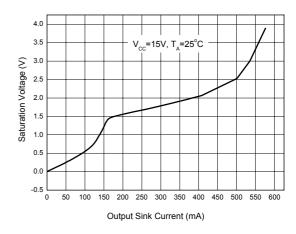



Figure 5. Oscillator Dead Time vs. Timing Capacitor

Figure 6. Timing Resistor vs. Frequency



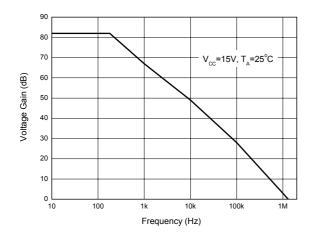

Figure 7. Reference Voltage vs. Ambient Temperature

Figure 8. Output Saturation Characteristics

Sep. 2010 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

Typical Performance Characteristics (Continued)

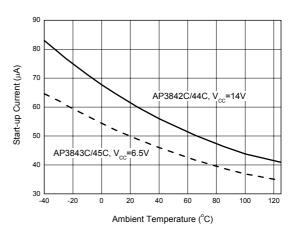


Figure 9. Error Amplifier Open-Loop Frequency Response

Figure 10. Start-up Current vs. Ambient Temperature

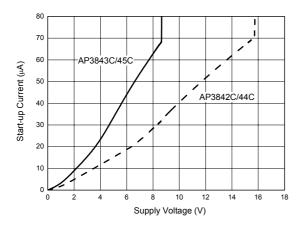


Figure 11. Start-up Current vs. Supply Voltage

AP384XC

Typical Application

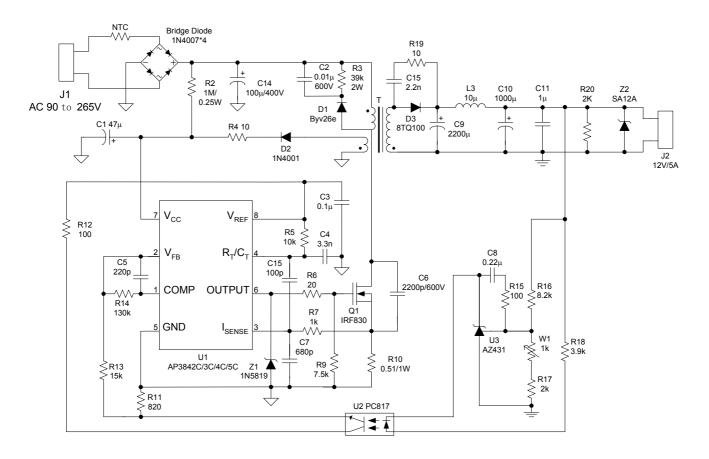
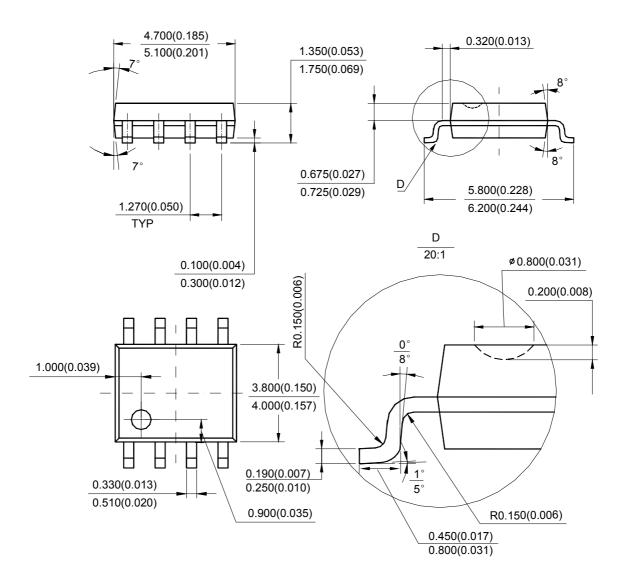
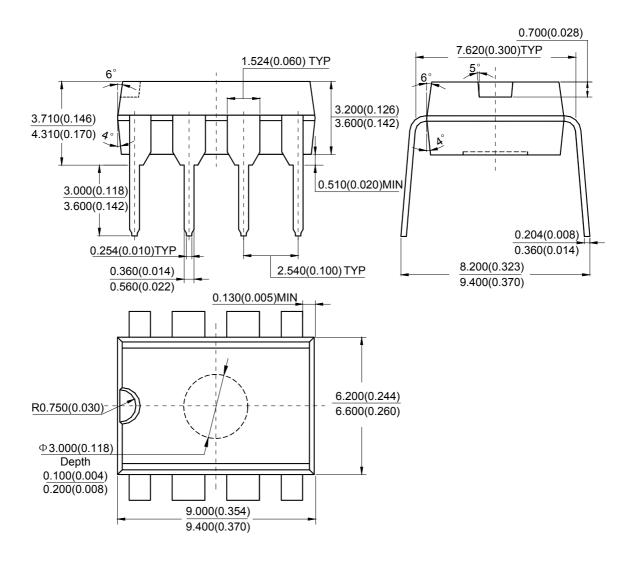



Figure 12. Typical Application of AP3842C/3C/4C/5C

AP384XC

Mechanical Dimensions

SOIC-8 Unit: mm(inch)


Note: Eject hole, oriented hole and mold mark is optional.

AP384XC

Mechanical Dimensions (Continued)

DIP-8 Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited

No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Taiwan Tel: +886-2-2656 2808 Fax: +886-2-2656 2806

USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel: +1-510-324-2988 Fax: +1-510-324-2788