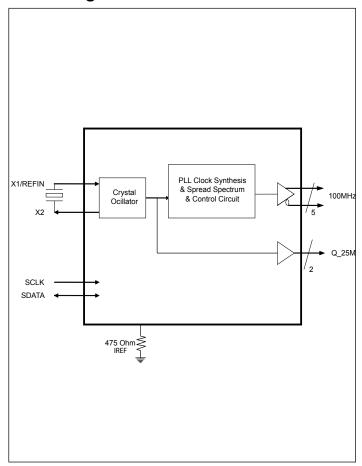


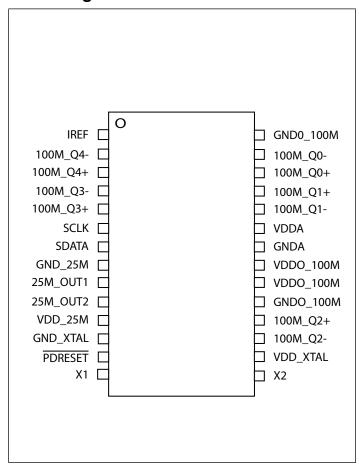
#### **Embedded Clock Generator**

#### **Features**

- $\rightarrow$  3.3V  $\pm$ 10% supply voltage
- → 25MHz XTAL or reference clock input
- → Five PCIe® 2.0 Compliant 100MHz selectable HCSL outputs with -0.5% spread
  - default is spread off
- → Two 25MHz LVCMOS output
- → Industrial temperature range: -40°C to 85°C
- → Packaging (Pb free and Green)
  - TSSOP 28 (L)


### **Description**

The PI6C49015 is a high performance networking clock generator which generates PCIe 2.0 Compliant 100MHz HCSL clock signals along with two LVCMOS 25MHz clock from either 25MHz crystal or reference input. This integrated solution is ideal for Networking, Embedded systems and other systems that require PCIe 1.0 and 2.0 HCSL signals and 25MHz clocks yet small foot print.


### **Applications**

- → Networking systems
- → Embedded systems
- → Other systems

### **Block Diagram**



### **Pin Configuration**



12-0168 1 www.pericom.com P-0.1 02/29/12



### **Pin Description**

| Pin# | Pin Name  | Pin Type | Pin Description                                                                                                     |
|------|-----------|----------|---------------------------------------------------------------------------------------------------------------------|
| 1    | IREF      | Output   | Connect to 475-Ohm resistor to set HCSL output drive current                                                        |
| 2    | 100M_Q4-  | Output   | 100MHz HCSL output                                                                                                  |
| 3    | 100M_Q4+  | Output   | 100MHz HCSL output                                                                                                  |
| 4    | 100M_Q3-  | Output   | 100MHz HCSL output                                                                                                  |
| 5    | 100M_Q3+  | Output   | 100MHz HCSL output                                                                                                  |
| 6    | SCLK      | Input    | SMBus compatible input clock. Supports fast mode 400 kHz input clock                                                |
| 7    | SDATA     | I/O      | SMBus compatible data line                                                                                          |
| 8    | GND_25M   | Power    | Ground for 25MHz output                                                                                             |
| 9    | 25M_OUT1  | Output   | 25MHz LVCMOS output. When disabled, output is trisated and has a normal 110kOhm pull-down                           |
| 10   | 25M_OUT2  | Output   | 25MHz LVCMOS output. When disabled, output is trisated and has a normal 110kOhm pull-down                           |
| 11   | VDD_25M   | Power    | 3.3V supply for 25MHz output                                                                                        |
| 12   | GND_XTAL  | Power    | Ground for XTAL                                                                                                     |
| 13   | PDRESET   | Input    | Power on reset, when low all PLLs are powered down and output trisated. SMBus registers are reset to default values |
| 14   | X1        | Input    | Crystal input. Integrated 6pf capacitance                                                                           |
| 15   | X2        | Output   | Crystal output. Integrated 6pf capacitance                                                                          |
| 16   | VDD_XTAL  | Power    | 3.3V supply for XTAL                                                                                                |
| 17   | 100M_Q2-  | Output   | 100MHz HCSL output                                                                                                  |
| 18   | 100M_Q2+  | Output   | 100MHz HCSL output                                                                                                  |
| 19   | GNDO_100M | Output   | Ground for 100MHz output buffer                                                                                     |
| 20   | VDDO_100M | Power    | 3.3V supply for 100MHz output buffer                                                                                |
| 21   | VDDO_100M | Power    | 3.3V supply for 100MHz output buffer                                                                                |
| 22   | GNDA      | Power    | Ground for 100MHz related PLL                                                                                       |
| 23   | VDDA      | Power    | 3.3V supply for 100MHz related PLL                                                                                  |
| 24   | 100M_Q1-  | Output   | 100MHz HCSL output                                                                                                  |
| 25   | 100M_Q1+  | Output   | 100MHz HCSL output                                                                                                  |
| 26   | 100M_Q0+  | Output   | 100MHz HCSL output                                                                                                  |
| 27   | 100M_Q0-  | Output   | 100MHz HCSL output                                                                                                  |
| 28   | GNDO_100M | Power    | Ground for 100MHz output buffer                                                                                     |



# Serial Data Interface (SMBus)

PI6C49015 is a slave only SMBus device that supports indexed block read and indexed block write protocol using a single 7-bit address and read/write bit as shown below.

#### **Address Assignment**

| A6 | A5 | A4 | A3 | A2 | A1 | A0 | R/W |
|----|----|----|----|----|----|----|-----|
| 1  | 1  | 0  | 1  | 0  | 0  | 1  | 0/1 |

#### **How to Write**

| 1 bit        | 8 bits | 1   | 8 bits             | 1   | 8 bits            | 1   | 8 bits         | 1   |     | 8 bits             | 1   | 1 bit       |
|--------------|--------|-----|--------------------|-----|-------------------|-----|----------------|-----|-----|--------------------|-----|-------------|
| Start<br>bit | d2H    | Ack | Register<br>offset | Ack | Byte<br>Count = N | Ack | Data Byte<br>0 | Ack | ••• | Data Byte<br>N - 1 | Ack | Stop<br>bit |

#### Note:

#### How to Read (M: abbreviation for Master or Controller; S: abbreviation for slave/clock)

| 1 bit              | 8<br>bits           | 1 bit              | 8<br>bits                                                           | 1 bit              | 1 bit              | 8<br>bits           | 1 bit              | 8<br>bits                                                                | 1 bit              | 8<br>bits                                         | 1 bit              | ••• | 8<br>bits                                | 1 bit                           | 1 bit             |
|--------------------|---------------------|--------------------|---------------------------------------------------------------------|--------------------|--------------------|---------------------|--------------------|--------------------------------------------------------------------------|--------------------|---------------------------------------------------|--------------------|-----|------------------------------------------|---------------------------------|-------------------|
| M:<br>Start<br>bit | M:<br>Send<br>"D2h" | S:<br>sends<br>Ack | M:<br>send<br>start-<br>ing<br>data-<br>byte<br>loca-<br>tion:<br>N | S:<br>sends<br>Ack | M:<br>Start<br>bit | M:<br>Send<br>"D3h" | S:<br>sends<br>Ack | S:<br>sends<br># of<br>data<br>bytes<br>that<br>will<br>be<br>sent:<br>X | M:<br>sends<br>Ack | S:<br>sends<br>start-<br>ing<br>data<br>byte<br>N | M:<br>sends<br>Ack |     | S:<br>sends<br>data<br>byte<br>N+X-<br>1 | M: Not<br>Ac-<br>knowl-<br>edge | M:<br>Stop<br>bit |

### **Byte 0: Spread Spectrum Control Register**

| Bit    | Description                                                                                             | Туре | Power Up<br>Condition | Output(s)<br>Affected                 | Notes                                    |
|--------|---------------------------------------------------------------------------------------------------------|------|-----------------------|---------------------------------------|------------------------------------------|
| 7      | Spread Spectrum Selection for 100 MHz HCSL PCI-Express clocks                                           | RW   | 0                     | All 100MHz HCSL<br>PCI Express output | 0=spread off<br>1 = -0.5% down<br>spread |
| 6      | Enables hardware or software control of OE bits (see Byte 0–Bit 6 and Bit 5 Functionality table)        | RW   | 0                     | PD_RESET pin, bit 5                   | 0 = hardware cntl<br>1 = software ctrl   |
| 5      | Software PD_RESET bit. Enables or disables all outputs (see Byte 0–Bit 6 and Bit 5 Functionality table) | RW   | 1                     | All outputs                           | 0 = disabled<br>1 = enabled              |
| 4 to 1 | Reserved                                                                                                | RW   | Undefined             | Not Applicable                        |                                          |
| 0      | OE for 25M_Out2                                                                                         | RW   | 1                     | 25M_Out2                              | 0 = disabled<br>1 = enabled              |

<sup>1.</sup> Register offset for indicating the starting register for indexed block write and indexed block read. Byte Count in write mode cannot be 0.



# Byte 0 - Bit 6 and Bit 5 Functionality

| Bit 6 | Bit 5 | Description                                                                           |
|-------|-------|---------------------------------------------------------------------------------------|
| 0     | X     | PD_RESET HW pin/signal = enabled                                                      |
| 1     | 0     | Disables all outputs and tri-states the outputs, PD_RESET HW pin/signal = DO NOT CARE |
| 1     | 1     | Enable all outputs, PD_RESET HW pin/signal = DON'T CARE                               |

# **Byte 1: Control Register**

| Bit    | Description                | Туре | Power Up Condition | Output(s) Affected | Notes                       |
|--------|----------------------------|------|--------------------|--------------------|-----------------------------|
| 7      | Reserved                   | RW   | Undefined          | Not Applicable     |                             |
| 6      | OE for 25M_Out1            | RW   | 1                  | 25M_Out1           | 0 = disabled<br>1 = enabled |
| 5      | Reserved                   | RW   | Undefined          | Not Applicable     |                             |
| 4      | OE for 100M_Q4 HCSL output | RW   | 1                  | 100M_Q4            | 0=disable<br>1 = enabled    |
| 3      | Reserved                   | RW   | Undefined          | Not Applicable     |                             |
| 2      | OE for 100M_Q3 HCSL output | RW   | 1                  | 100M_Q3            | 0=disable<br>1 = enabled    |
| 1 to 0 | Reserved                   | RW   | Undefined          | Not Applicable     |                             |

# **Byte 2: Control Register**

| Bit    | Description | Туре | Power Up Condition | Output(s) Affected | Notes |
|--------|-------------|------|--------------------|--------------------|-------|
| 7 to 5 | Reserved    | RW   | Undefined          | Not Applicable     |       |
| 4 to 0 | Reserved    | R    | Undefined          | Not Applicable     |       |



# **Byte 3: Control Register**

| Bit    | Description                   | Туре             | Power Up<br>Condition | Output(s) Affected | Notes        |
|--------|-------------------------------|------------------|-----------------------|--------------------|--------------|
| 7      | OE for 100M_Q2 HCSL Output    | RW               | 1                     | 100M_Q2            | 0 = disabled |
| /      | OE for footin_Q2 ffeSt Output | KVV              | 1                     | 1001VI_Q2          | 1 = enabled  |
| 6 to 3 | Reserved                      | RW               | Undefined             | Not Applicable     |              |
| 2      | OE for 100M_Q1 HCSL Output    | RW               | 1                     | 100M_Q1            | 0 = disabled |
| 2      | OE for foom_Qf HCSL Output    | KVV              | 1                     | 1001VI_Q1          | 1 = enabled  |
| 1      | OF for 100M OO HCSI Outmit    | OT C 1001 CONTON |                       | 100M O0            | 0 = disabled |
| 1      | OE for 100M_Q0 HCSL Output    | RW               | 1                     | 100M_Q0            | 1 = enabled  |
| 0      | Reserved                      | R                | Undefined             | Not Applicable     |              |

# Byte 4 & 5: Control Register

| Bit    | Description | Туре | Power Up Condition | Output(s) Affected | Notes |
|--------|-------------|------|--------------------|--------------------|-------|
| 7 to 0 | Reserved    | R    | Undefined          | Not Applicable     |       |

# **Byte 6: Control Register**

| Bit | Description       | Туре | Power Up Condition | Output(s) Affected | Notes |
|-----|-------------------|------|--------------------|--------------------|-------|
| 7   | Revision ID bit 3 | R    | 1                  | Not Applicable     |       |
| 6   | Revision ID bit 2 | R    | 0                  | Not Applicable     |       |
| 5   | Revision ID bit 1 | R    | 0                  | Not Applicable     |       |
| 4   | Revision ID bit 0 | R    | 0                  | Not Applicable     |       |
| 3   | Vendor ID bit 3   | R    | 0                  | Not Applicable     |       |
| 2   | Vendor ID bit 2   | R    | 0                  | Not Applicable     |       |
| 1   | Vendor ID bit 1   | R    | 1                  | Not Applicable     |       |
| 0   | Vendor ID bit 0   | R    | 1                  | Not Applicable     |       |



### Absolute Maximum Ratings¹ (Over operating free-air temperature range)

| Parameters                             | Min. | Max. | Units |
|----------------------------------------|------|------|-------|
| Storage Temperature                    | -65  | 150  | °C    |
| Ambient Temperature with Power Applied | -40  | 85   |       |
| 3.3V Analog Supply Voltage             | -0.5 | 4.6  | V     |
| ESD Protection (HBM)                   |      | 2000 | T v   |

#### Note:

### **Recommended Operating Conditions**

| Symbol                             | Parameters                                             | Test Condition         | Min. | Тур. | Max. | Units |
|------------------------------------|--------------------------------------------------------|------------------------|------|------|------|-------|
| $V_{_{ m DD}}$                     | Power supply                                           |                        | 3.0  | -    | 3.6  | V     |
| $I_{DD}$                           | Total Power Supply Current                             | All outputs unloaded   | -    | 1    | 65   | mA    |
| I <sub>DD</sub> _Output Tri-stated | Total power supply current with tri-<br>stated outputs | OE = "0", no load      | -    | -    | 42   | mA    |
| I <sub>DD Power-Down</sub>         | Total power supply current in power down mode          | PD_RESET= "0", no load | -    | -    | 3.8  | mA    |
| T <sub>A</sub>                     | Operating temperature                                  |                        | -40  | -    | +85  | °C    |

### **LVCMOS DC Electrical Characteristics**

Over Operating Conditions

| Symbol          | Parameter                        | Conditions                        | Min                    | Тур | Max                  | Units |
|-----------------|----------------------------------|-----------------------------------|------------------------|-----|----------------------|-------|
| $V_{_{ m IH}}$  | Input High Voltage               |                                   | 2                      | -   | V <sub>DD</sub> +0.3 |       |
| $V_{_{ m IL}}$  | Input Low Voltage                |                                   | -0.3                   | -   | 0.8                  | 3.7   |
| $V_{OH}$        | Output High Voltage              | $I_{OH} = -8mA$                   | $V_{\mathrm{DD}}$ -0.4 | -   | -                    | V     |
| $V_{OL}$        | Output Low Voltage               | $I_{OL} = 8mA$                    | -                      | -   | 0.4                  |       |
| $I_{_{ m IH}}$  | Input High Current               | $V_{\rm IN} = V_{\rm DD} - 0.1 V$ | -                      | -   | 45                   | 4     |
| $I_{_{ m IL}}$  | Input Low Current                | $V_{IN} = 0V$                     | -45                    | -   | -                    | μΑ    |
| R <sub>PU</sub> | Internal Pull-Up Resistance      | PDRESET                           | -                      | 216 | -                    | kOhm  |
| R <sub>DN</sub> | Internal Pull-Down<br>Resistance | 25M_OUT1, 25M_OUT2                | -                      | 110 | -                    | KOIIM |

<sup>1.</sup> Stress beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device.



#### **HCSL DC Electrical Characteristics**

Over Operating Conditions

| Symbol                   | Parameter                                           | Conditions                                                           | Min | Тур | Max | Units |
|--------------------------|-----------------------------------------------------|----------------------------------------------------------------------|-----|-----|-----|-------|
| $V_{OH}$                 | Output High Voltage                                 |                                                                      | 660 | -   | 950 |       |
| $V_{OL}$                 | Output Low Voltage                                  |                                                                      | -   | -   | 150 |       |
| V <sub>CROSS</sub>       | Absolute Crossing<br>Point Voltages                 |                                                                      | 250 | -   | 550 | mV    |
| $\Delta V_{	ext{CROSS}}$ | Total variation of V <sub>CROSS</sub> overall edges |                                                                      | -   | -   | 140 |       |
| I <sub>OH</sub>          | Input High Current                                  | With 475-Ohm resistor connected between I <sub>REF</sub> pin and GND | -   | 12  | -   | mA    |

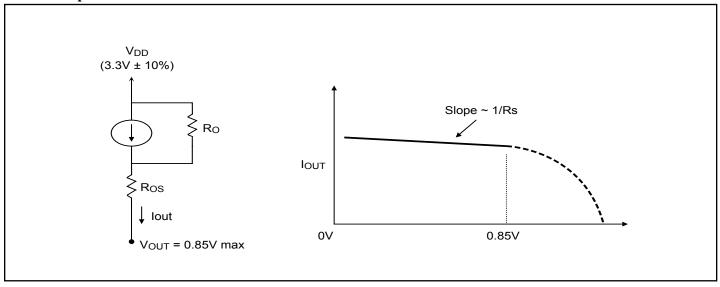
#### **LVCMOS AC Electrical Characteristics**

Over Operating Conditions

| Symbol        | Parameter             | Conditions                            | Min | Тур | Max | Units |
|---------------|-----------------------|---------------------------------------|-----|-----|-----|-------|
| Fin           | Input Frequency       |                                       | -   | 25  | -   | MIL   |
| Four          | Output Frequency      | $C_{LOAD} = 15pF$                     | -   | 25  | -   | MHz   |
| $T_{r}/T_{f}$ | Output Rise/Fall time | $20\%$ of $V_{DD}$ to 80% of $V_{DD}$ | -   | -   | 1.2 | ns    |
| TDC           | Output Duty Cycle     |                                       | 45  | -   | 55  | %     |
| Tj            | Period Jitter         | 25 MHz clock output                   | -   | -   | 30  | ps    |

# HCSLAC Switching Characteristics<sup>1,2,3</sup>

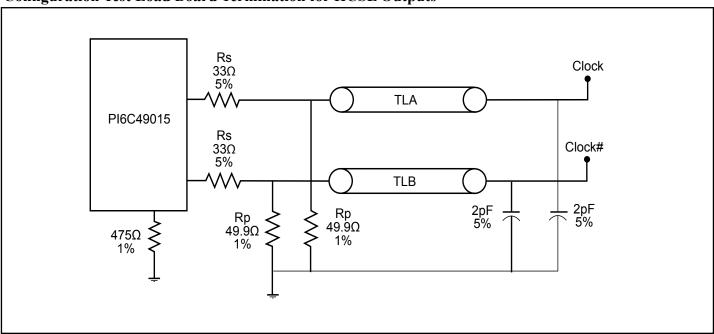
Over Operating Conditions


| Symbol                          | Parameter                                    | Conditions                                | Min | Тур | Max | Units |
|---------------------------------|----------------------------------------------|-------------------------------------------|-----|-----|-----|-------|
| Four                            | Output Frequency                             | HCSL termination                          | -   | -   | 100 | MHz   |
| Tr/Tf                           | Output Rise/Fall time                        | Between 0.175V and 0.525V                 | 175 | -   | 700 | ps    |
| $\Delta T_r \! / \! \Delta T_f$ | Rise and Fall Time<br>Variation <sup>2</sup> |                                           | -   | -   | 125 | ps    |
| T <sub>DC</sub>                 | Output Duty Cycle <sup>3</sup>               |                                           | 47  | -   | 53  | %     |
| Tcj                             | Cycle-to-Cycle Jitter <sup>3</sup>           | Differential waveform                     | -   | -   | 70  | ps    |
| Трј                             | Peak-to-Peak Phase<br>Jitter                 | Using PCIe jitter measure-<br>ment method |     |     | 86  | ps    |
| J <sub>RMS2.0</sub>             | PCIe 2.0 RMS Phase<br>Jitter                 | PCIe 2.0 Test Method @ 100MHz Output      |     |     | 3.1 | ps    |

#### Notes:

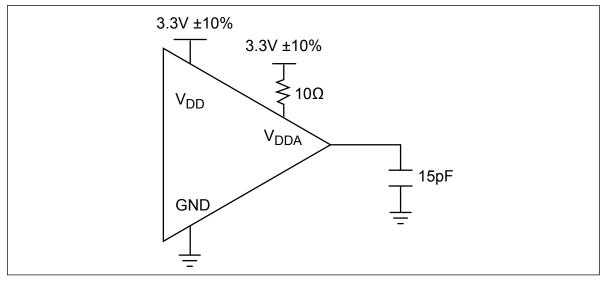
- 1. Test configuration is Rs=33 $\Omega$ , Rp=49.9 $\Omega$ , and 2pF
- 2. Measurement taken from a single-ended waveform.
- 3. Measurement taken from a differential waveform.




### **HCSL Output Buffer Characteristics**



### **HCSL Output Buffer Characteristics**

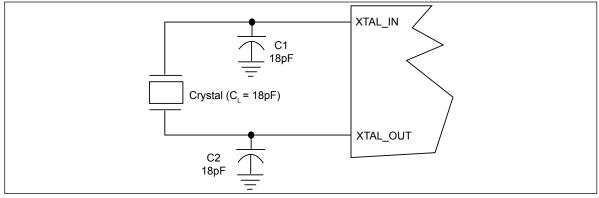

| Symbol           | Minimum     | Maximum     |
|------------------|-------------|-------------|
| R <sub>O</sub>   | 3000Ω       | N/A         |
| Ros              | unspecified | unspecified |
| V <sub>OUT</sub> | N/A         | 950mV       |

### **Configuration Test Load Board Termination for HCSL Outputs**





#### **LVCMOS Test Circuit**

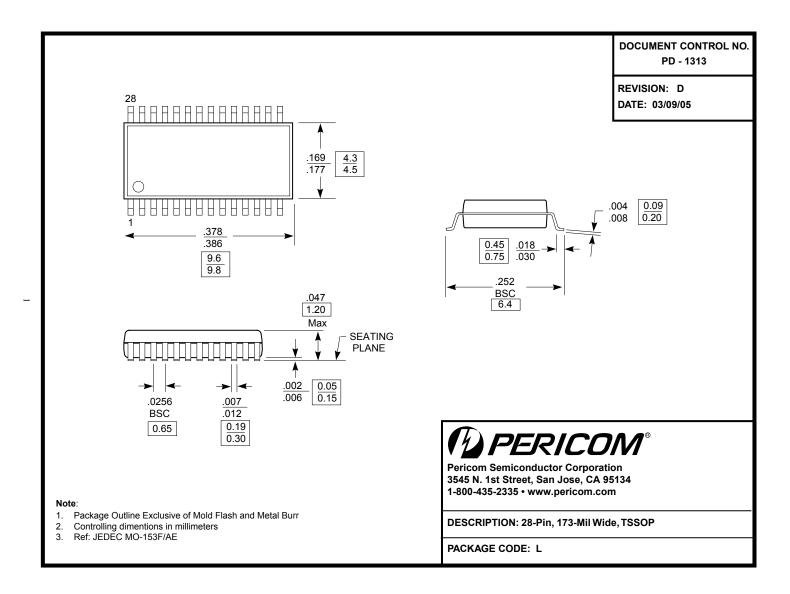



### **Application Notes**

### **Crystal circuit connection**

The following diagram shows PI6C49015 crystal circuit connection with a parallel crystal. For the CL=18pF crystal, it is suggested to use C1= 18pF, C2= 18pF. C1 and C2 can be adjusted to fine tune to the target ppm of crystal oscillator according to different board layouts.

# **Crystal Oscillator Circuit**




# **Recommended Crystal Specification**

#### **Pericom recommends:**

- a) GC2500003 XTAL 49S/SMD(4.0 mm), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/GC\_GF.pdf
- b) FY2500081, SMD 5x3.2(4P), 25M, CL=18pF, +/-30ppm, http://www.pericom.com/pdf/datasheets/se/FY F9.pdf
- c) FL2500047, SMD 3.2x2.5(4P), 25M, CL=18pF, +/-20ppm, http://www.pericom.com/pdf/datasheets/se/FL.pdf





#### Note:

• For latest package info, please check: http://www.pericom.com/products/packaging/mechanicals.php

### Ordering Information(1-3)

| Ordering Code | Package Code | Package Description                  |
|---------------|--------------|--------------------------------------|
| PI6C49015LIE  | L            | 28 pin, Pb-free & Green, TSSOP (L28) |

#### Notes

- 1. Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- 2. E = Pb-free and Green
- 3. Adding an X suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com