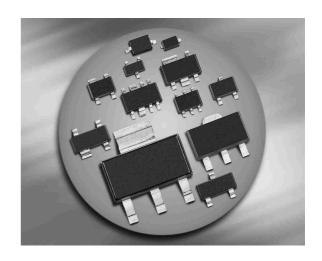


Low VF Schottky Diode


• Reverse voltage: 30 V

• Forward current: 1 A

• Low forward voltage and smallest package form factor $(1.0 \times 0.6 \times 4 \text{ mm})$ for mobile phone battery charger application

• Pb-free (RoHS compliant) package

BAS3010S-02LRH

Туре	Package	Configuration	Marking
BAS3010S-02LRH	TSLP-2-17	single	1T

Maximum Ratings at T_A = 25 °C, unless otherwise specified

Parameter	Symbol	Value	Unit	
Diode reverse voltage ¹⁾	V_{R}	30	V	
Forward current ¹⁾ , <i>T</i> _S ≤ 114 °C	I _F	1	Α	
Non-repetitive peak surge forward current	I _{FSM}	4		
(<i>t</i> _p ≤ 10 ms)				
Junction temperature	T _i	150	°C	
Operating temperature range	T _{op}	-55150		
Storage temperature	T _{stq}	-65150		
Storage temperature	T _{stg}	-65150		

Thermal Resistance

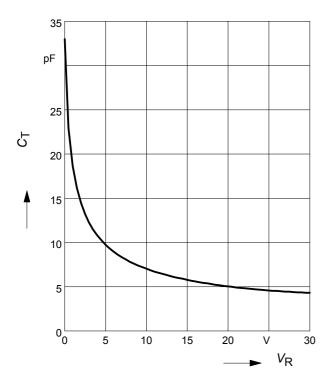
Junction - soldering point ²⁾	R _{thJS}	≤ 60	K/W

¹For T_A > 25 °C the derating of V_R and I_F has to be considered

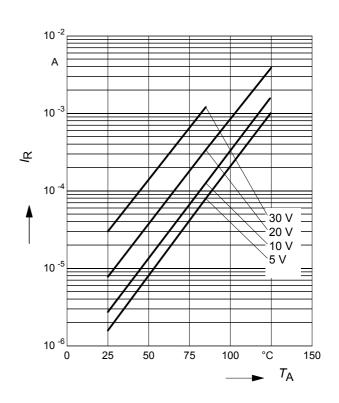
 $^{^2\}mbox{For calculation of }R_{\mbox{\scriptsize thJA}}$ please refer to Application Note Thermal Resistance

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

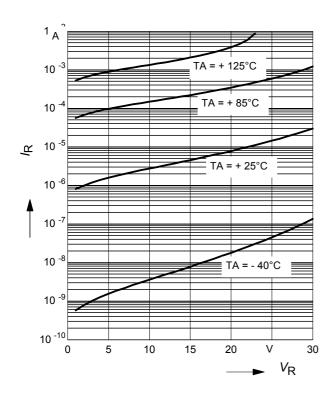
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Reverse current ¹⁾	I _R				μA
V _R = 10 V		-		30	
V _R = 30 V		-	-	300	
Forward voltage ¹⁾	V _F				mV
$I_{F} = 1 \; mA$		-	200	250	
$I_{\rm F}$ = 100 mA		-	340	390	
$I_{\rm F}$ = 700 mA		_	500	570	
$I_{\rm F}$ = 1000 mA		-	570	650	
AC Characteristics					
Diode capacitance	C _T	_	10	15	pF
$V_{R} = 5 \text{ V}, f = 1 \text{ MHz}$					


¹Pulsed test: t_p = 300 µs; D = 0.01

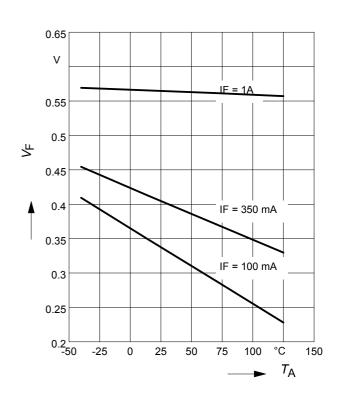
2 2011-06-08


Diode capacitance $C_T = f(V_R)$

f = 1MHz


Reverse current $I_R = f(T_A)$

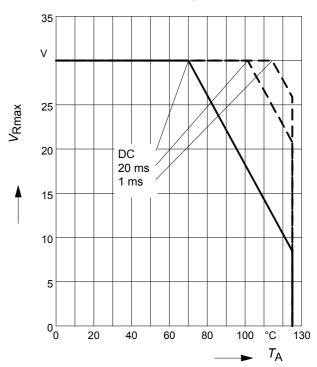
 V_{R} = Parameter


Reverse current $I_R = f(V_R)$

 T_A = Parameter

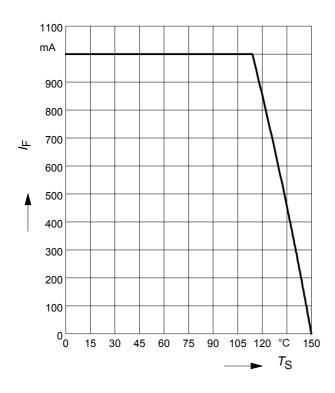
Forward Voltage $V_F = f(T_A)$

 I_{F} = Parameter

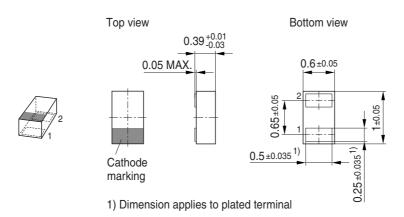


Forward current $I_F = f(V_F)$

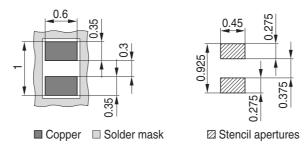
10 ⁰ 10 ⁻¹ 10 -2 TA= +125°C +85°C 10 +25°C 40°C 10 10 ⁻⁵ 10 ⁻⁶ 0.3 0.4 0.6 0.2 V_{F}


Permissible Reverse voltage $V_R = f(T_A)$ t_p = Paramter, Duty cycle < 0.01

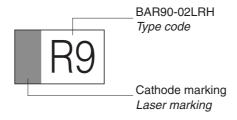
Device mounted on PCB with R_{th} = 160 K/W


Forward current $I_F = f(T_S)$

BAS3010S-02LRH

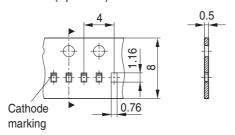


Package Outline



Foot Print

For board assembly information please refer to Infineon website "Packages"



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel Reel ø330 mm = 50.000 Pieces/Reel (optional)

5

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

6