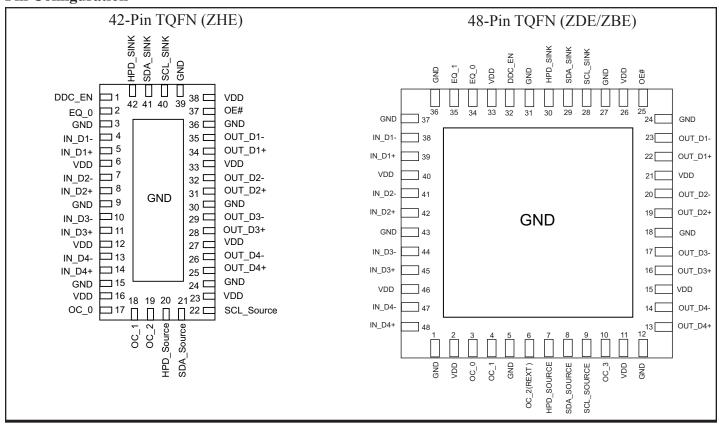


Digital Video Level Shifter from AC coupled digital video input to a DVI/HDMI transmitter

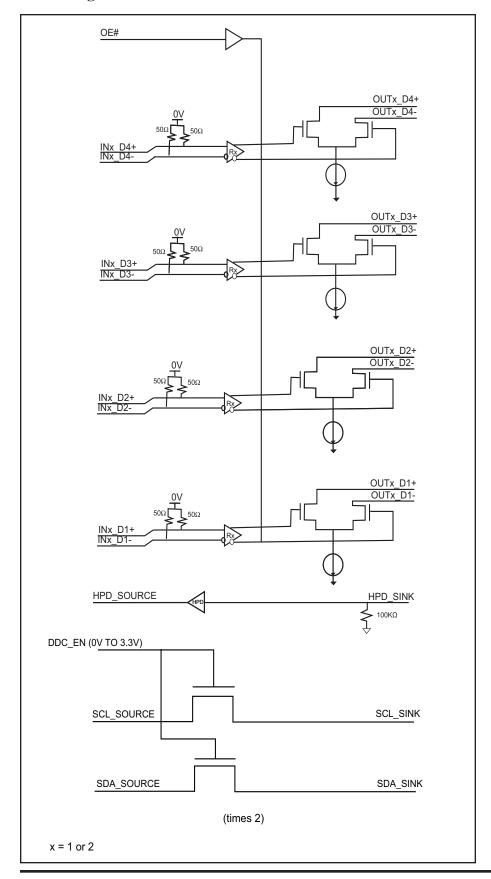
Features


- Converts low-swing AC coupled differential input to HDMI rev 1.3 compliant open-drain current steering Rx terminated differential output
- HDMI level shifting operation up to 2.5Gbps per lane (250MHz pixel clock)
- Integrated 50-ohm termination resistors for AC-coupled differential inputs.
- · Enable/Disable feature to turn off TMDS outputs to enter lowpower state.
- Output slew rate control on TMDS outputs to minimize EMI.
- Transparent operation: no re-timing or configuration required.
- 3.3 Power supply required.
- Integrated ESD protection to 8kV contact on all high speed I/O pins (IN_x and OUT_x) per IEC61000-4-2 test spec, level 4
- DDC level shifters from 5V from sink side down to 3.3V on source side
- · Level shifter for HPD signal from HDMI/DVI connector
- Integrated pull-down on HPD sink input guarantees "input low" when no display is plugged in
- Packaging (Pb-Free & Green available)
 - $-48 \text{ TQFN}, 7 \text{mm} \times 7 \text{mm} \text{ (ZDE)}$
 - 48 TOFN, 7mm x 7mm (ZBE)
 - -42 TQFN, 9mm \times 3.5mm (ZHE)

Description

Pericom Semiconductor's PI3VDP411LS provides the ability to use a Dual-mode DP transmitter in HDMI mode. This flexibility provides the user a choice of how to connect to their favorite display. All signal paths accept AC coupled video signals. The PI3VDP411LS converts this AC coupled signal into an HDMI rev 1.3 compliant signal with proper signal swing. This conversion is automatic and transparent to the user.

The PI3VDP411LS supports up to 2.5Gbps, which provides 12bits of color depth per channel, as indicated in HDMI rev 1.3.


Pin Configuration

08-0294 PS8913D 11/05/08 1

Block Diagram

Maximum Ratings (Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature65°C to +150°C
Supply Voltage to Ground Potential0.5V to +5V
DC Input Voltage–0.5V to V _{DD}
DC Output Current120mA
Power Dissipation1.0W

Note: Stresses greater than those listed under MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Table 2: Signal Descriptions

Pin Name	Туре	Description			
OE#	5.5V tolerant low-voltage	Enable for level shifter path			
	single-ended input	OE# IN_D Termination OUT_D Outputs			
		1 >100 KΩ High-Z			
		0 50 Ω Active			
IN_D4+	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D4+ makes a differential pair with IN_D4			
IN_D4-	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D4- makes a differential pair with IN_D4+.			
IN_D3+	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D3+ makes a differential pair with IN_D3			
IN_D3-	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D3- makes a differential pair with IN_D3+.			
IN_D2+	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D2+ makes a differential pair with IN_D2			
IN_D2-	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D2- makes a differential pair with IN_D2+.			
IN_D1+	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D1+ makes a differential pair with IN_D1			
IN_D1-	Differential input	Low-swing diff input from GMCH PCIE outputs. IN_D1- makes a differential pair with IN_D1+.			
OUT_D4+	TMDS Differential output	HDMI 1.3 compliant TMDS output. OUT_D4+ makes a differential output signal with OUT_D4			
OUT_D4-	TMDS Differential output	HDMI 1.3 compliant TMDS output. OUT_D4— makes a differential output signal with OUT_D4+.			
OUT_D3+	TMDS Differential output	HDMI 1.3 compliant TMDS output. OUT_D3+ makes a differential output signal with OUT_D3			
OUT_D3-	TMDS Differential output	HDMI 1.3 compliant TMDS output. OUT_D3-makes a differential output signal with OUT_D3+.			

(Continued)

Pin Name	Туре	Description				
OUT_D2+	TMDS Differential output	HDMI 1.3 compliant TMD	S output. OUT_D2+ makes			
		a differential output signal	with OUT_D2			
OUT_D2-	TMDS Differential output	HDMI 1.3 compliant TMDS output. OUT_D2- makes				
		a differential output signal				
OUT_D1+	TMDS Differential output	HDMI 1.3 compliant TMD a differential output signal	S output. OUT_D1+ makes with OUT_D1-			
OUT_D1-	TMDS Differential output	<u> </u>	S output. OUT_D1- makes			
HPD_SINK	5V tolerance single-ended input		s pulled down by an			
HPD_SOURCE	3.3V single-ended output	HPD_SOURCE: 0V to 3.3V (nominal) output signal. This is level-shifted version of the HPD_SINK signal.				
SCL_SOURCE	Single-ended 3.3V open-drain DDC I/O	3.3V DDC Data I/O. Pulled up by external termination to 3.3V. Connected to SCL_SINK through voltage-limiting integrated NMOS passgate.				
SDA_SOURCE	Single-ended 3.3V open-drain DDC I/O	3.3V DDC Data I/O. Pulled to 3.3V. Connected to SDA limiting integrated NMOS	_			
SCL_SINK	Single-ended 5V open-drain DDC I/O	5V DDC Clock I/O. Pulled to 5V. Connected to SCL_S limiting integrated NMOS				
SDA_SINK	Single-ended 5V open-drain DDC I/O	5V DDC Data I/O. Pulled uto 5V. Connected to SDA_limiting integrated NMOS	up by external termination SOURCE through voltage-			
DDC_EN	5.0V tolerant Single-ended input					
		DDC_EN	Passgate			
		0V	Disabled			
		3.3V	Enabled			
VDD	3.3V DC Supply	$3.3V \pm 10\%$				
OC_2 (REXT)	3.3V single-ended control input	Acceptable connections to sistor to GND; Resistor to 3 be 0-ohm).	OC_1 (REXT) pin are: Re-3.3V; NC. (Resistor should			

Pin Name	Туре	Description
OC_3	Analog connection to external component or supply	Acceptable connections to OC_3 pin are: short to 3.3V or to GND; NC.
OC_0 OC_1 EQ_0 EQ_1	Output and Input jitter elimination control	Control pins are to enable Jitter elimination features. For normal operation these pins are tied GND or to VDD. Please see the truth tables for more information.

Truth Table 1

OC_3 ⁽²⁾	OC_2 ⁽¹⁾	OC_1 ⁽¹⁾	OC_0 ⁽¹⁾	Vswing	Pre/De-
				(mV)	emphasis
0	0	0	0	500	0
0	0	0	1	600	0
0	0	1	0	750	0
0	0	1	1	1000	0
0	1	0	0	500	0
0	1	0	1	500	1.5dB
0	1	1	0	500	3.5dB
0	1	1	1	500	6dB
1	0	0	0	400	0
1	0	0	1	400	3.5dB
1	0	1	0	400	6dB
1	0	1	1	400	9dB
1	1	0	0	1000	0
1	1	0	1	1000	-3.5dB
1	1	1	0	1000	-6dB
1	1	1	1	1000	-9dB

Truth Table 2

EQ_1 ⁽²⁾	EQ_0 ⁽¹⁾	Equalization @ 1.25GHz (dB)
0	0	3
0	1	6
1	0	9
1	1	12

Notes:

¹⁾ These signals have internal $100k\Omega$ pull-ups.

²⁾ For 42-TQFN package, these signals are internally connected to GND directly. For 48-TQFN package, these signals have internal $100k\Omega$ pull-ups, with external connection.

Electrical Characteristics

Table 3: Power Supplies and Temperature Range

Symbol	Parameter	Min	Nom	Max	Units	Comments
VDD	3.3V Power Supply	3.0	3.3	3.6	V	
ICC	Max Current			100	mA	Total current from VDD 3.3V supply when de-emphasis/ pre-emphasis is set to 0dB.
ICCQ	Standby Current Consumption			2	mA	OE# = HIGH
TCASE	Case temperature range for operation with spec.	-40		85	Celcius	

Table 4: OE# Description

OE#	Device State	Comments
Asserted (low voltage)	Differential input buffers and output buffers enabled. Input impedance = 50Ω	Normal functioning state for IN_D to OUT_D level shifting function.
Unasserted (high voltage)	Low-power state. Differential input buffers and termination are disabled. Differential inputs are in a high-impedance state.	Intended for lowest power condition when: • No display is plugged in or • The level shifted data path is disabled
	OUT_D level-shifting outputs are disabled. OUT_D level-shifting outputs are in high-impedence state. Internal bias currents are turned off.	HPD_SINK input and HPD_SOURCE output are not affected by OE# SCL_SOURCE, SCL_SINK, SDA_SOURCE and SDA_SINK signals and functions are not affected by OE#

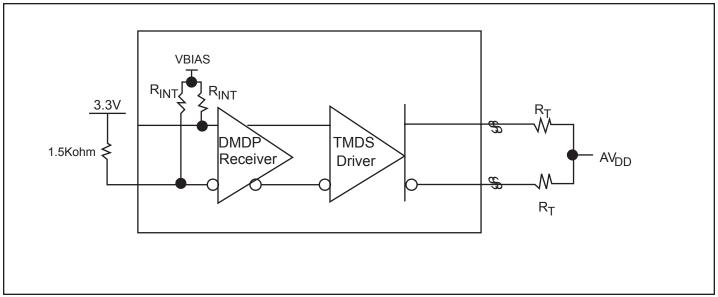
Table 5: Differential Input Characteristics for IN_D and RX_IN signals

Symbol	Parameter	Min	Nom	Max	Units	Comments
Tbit	Unit Interval	360			ps	Tbit is determined by the display mode. Nominal bit rate ranges from 250Mbps to 2.5Gbps per lane. Nominal Tbit at 2.5 Gbps=400ps. 360ps=400ps-10%
V _{RX-DIFFp-p}	Differential Input Peak to Peak Voltage	0.175		1.200	V	VRX-DIFFp-p=2' VRX-D+ x VRX-D- Applies to IN_D and RX_IN signals
T _{RX-EYE}	Minimum Eye Width at IN_D input pair	0.8			Tbit	The level shifter may add a maximum of 0.02UI jitter
V _{CM-AC-pp}	AC Peak Common Mode Input Voltage			100	mV	VCM-AC-pp = VRX-D+ + VRX-D- /2 - VRX-CM-DC. VRX-CM-DC = DC(avg) of VRX-D+ + VRX-D- /2 VCM-AC-pp includes all frequencies above 30 kHz.
Z _{RX-DC}		40	50	60	Ω	Required IN_D+ as well as IN_D- DC impedance $(50\Omega \pm 20\% \text{ tolerance})$.
V _{RX-Bias}		0		2.0	V	Intended to limit power-up stress on chipset's PCIE output buffers.
Z _{RX-HIGH-Z}		100			kΩ	Differential inputs must be in a high impedance state when OE# is HIGH.

TMDS Outputs

The level shifter's TMDS outputs are required to meet HDMI 1.3 specifications.

The HDMI 1.3 Specification is assumed to be the correct reference in instances where this document conflicts with the HDMI 1.3 specification.


Table 6: Differential Output Characteristics for TMDS_OUT signals

Symbol	Parameter	Min	Nom	Max	Units	Comments
V_{H}	Single-ended high level output voltage	VDD-10mV	VDD	VDD+10mV	V	VDD is the DC termination voltage in the HDMI or DVI Sink. VDD is nominally 3.3V
$V_{\rm L}$	Single-ended low level output voltage	VDD-600mV	VDD-500mV	VDD-400mV	V	The open-drain output pulls down from VDD.
V _{SWING}	Single-ended output swing voltage	450mV	500mV	600mV	V	Swing down from TMDS termination voltage (3.3V ± 10%)
I _{OFF}	Single-ended current in high-Z state			50	μA	Measured with TMDS outputs pulled up to VDD Max _(3.6V) through 50Ω resistors.
T_R	Rise time	125ps		0.4Tbit	ps	Max Rise/Fall time @2.7Gbps = 148ps. 125ps = 148-15%
T_{F}	Fall time	125ps		0.4Tbit	ps	Max Rise/Fall time @2.7Gbps = 148ps. 125ps = 148-15%
T _{SKEW-INTRA}	Intra-pair differential skew			30	ps	This differential skew budget is in addition to the skew presented between D+ and D- paired input pins. HDMI revision 1.3 source allowable intra-pair skew is 0.15Tbit.
T _{SKEW-INTER}	Inter-pair lane- to-lane output skew			100	ps	This lane-to-lane skew budget is in addition to skew between differential input pairs
$T_{ m JIT}$	Jitter added to TMDS signals			25	ps	Jitter budget for TMDS signals as they pass through the level shifter. 25ps = 0.056 Tbit at 2.25 Gb/s

TMDS output oscillation elimination

The inputs do not incorporate a squelch circuit. Therefore, we recomend the input to be externally biased to prevent output oscillation. Pericom recomends to add a 1.5Kohm pull-up to the CLK- input.

TMDS Input Fail-Safe Recommendation

Table 8: HPD Input Characteristics

Symbol	Parameter	Min	Nom	Max	Units	Comments
V _{IH-HPD}	Input High Level	2.0	5.0	5.3	V	Low-speed input changes state on cable plug/unplug
$V_{IL ext{-HPD}}$	HPD_sink Input Low Level	0		0.8	V	
I _{IN-HPD}	HPD_sink Input Leakage Current			70	μΑ	Measured with HPD_sink at V _{IH-HPD} max and V _{IL-HPD} min
V _{OH-HPDB}	HPD_sink Output High-Level	2.5		V _{DD}	V	$V_{DD} = 3.3V \pm 10\%$
V _{OL-HPDB}	HPD_sink Output Low-Level	0		0.02	V	
T _{HPD}	HPD_sink to HPD_source propagation delay			200	ns	Time from HPD_sink changing state to HPD_source changing state. Includes HPD_source rise/fall time
T _{RF-HPDB}	HPD_source rise/ fall time	1		20	ns	Time required to transition from $V_{OH-HPDB}$ to $V_{OL-HPDB}$ or from $V_{OL-HPDB}$ to $V_{OH-HPDB}$

Table 9: OE# Input and DDC_EN

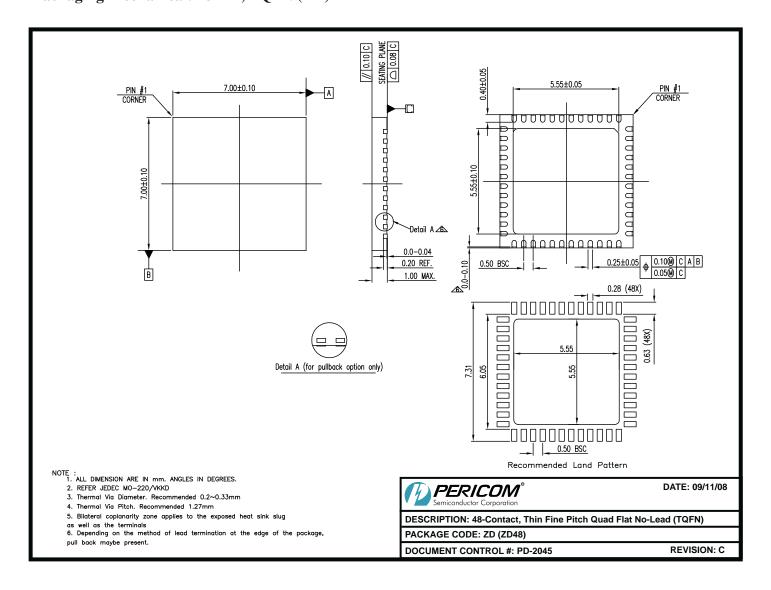
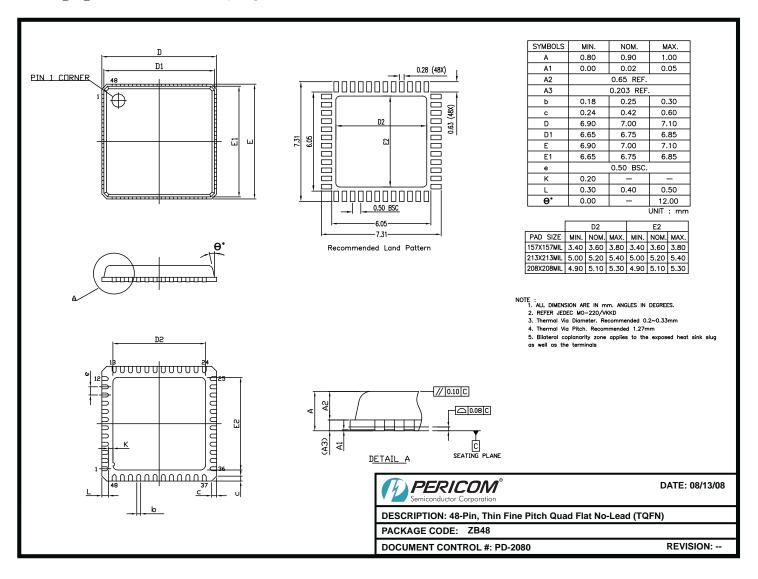
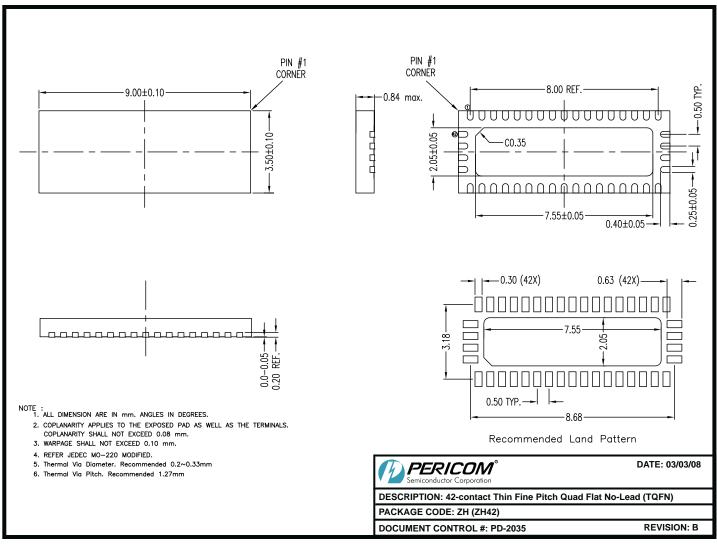

Symbol	Parameter	Min	Nom	Max	Units	Comments
V _{IH}	Input High Level	2.0		VDD	V	TMDS enable input changes state on cable plug/unplug
$V_{ m IL}$	Input Low Level	0		0.8	V	
I _{IN}	Input Leakage Current			10	μΑ	Measured with input at V _{IH-EN} max and V _{IL-EN} min

Table 10: Termination Resistors

Symbol	Parameter	Min	Nom	Max	Units	Comments
R _{HPD}	HPD_sink input pulldown resistor.	80K	100k	120K	Ω	Guarantees HPD_sink is LOW when no display is plugged in.



Packaging Mechanical: 48-Pin, TQFN (ZD)



Packaging Mechanical: 48-Pin, TQFN (ZB)

Packaging Mechanical: 42 pin, TQFN (ZH)

08-0098

Ordering Information

Ordering Code	Package Code	Package Description
PI3VDP411LSZBE	ZBE	48-pin Pb-free & Green, TQFN
PI3VDP411LSZDE	ZDE	48-pin Pb-free & Green, TQFN
PI3VDP411LSZHE	ZHE	42pin Pb-free & Green, TQFN

Notes:

- Thermal characteristics can be found on the company web site at www.pericom.com/packaging/
- E = Pb-free and Green
- Adding an X Suffix = Tape/Reel

Pericom Semiconductor Corporation • 1-800-435-2336 • www.pericom.com