

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

BSS84

P-channel enhancement mode vertical DMOS transistor Rev. 06 — 16 December 2008 Product data

Product data sheet

Product profile

1.1 General description

P-channel enhancement mode vertical Diffusion Metal-Oxide Semiconductor (DMOS) transistor in a small Surface-Mounted Device (SMD) plastic package.

Table 1. Product overview

Type number 11	Package	
	NXP	JEDEC
BSS84	SOT23	TO-236AB
BSS84/DG		

^{[1] /}DG: halogen-free

1.2 Features

Low threshold voltage

High-speed switching

Direct interface to CMOS and Transistor-Transistor Logic (TTL)

No secondary breakdown

1.3 Applications

■ Line current interrupter in telephone sets ■ Relay, high-speed and line transformer drivers

1.4 Quick reference data

 $V_{DS} \le -50 \text{ V}$

 \blacksquare R_{DSon} \leq 10 Ω

■ $I_D \le -130 \text{ mA}$

P_{tot} ≤ 250 mW

P-channel enhancement mode vertical DMOS transistor

001aaa025

2 of 11

Pinning information 2.

Table 2. **Pinning** Pin **Symbol** Simplified outline **Graphic symbol** Description 1 G gate 2 S source 3 D drain SOT23 (TO-236AB)

Ordering information 3.

Ordering information Table 3.

Type number[1]				
	Name	Description	Version	
BSS84	TO-236AB	plastic surface-mounted package; 3 leads	SOT23	
BSS84/DG				

^{[1] /}DG: halogen-free

Marking

Table 4. **Marking codes**

Type number[1]	Marking code[2]
BSS84	13*
BSS84/DG	ZV*

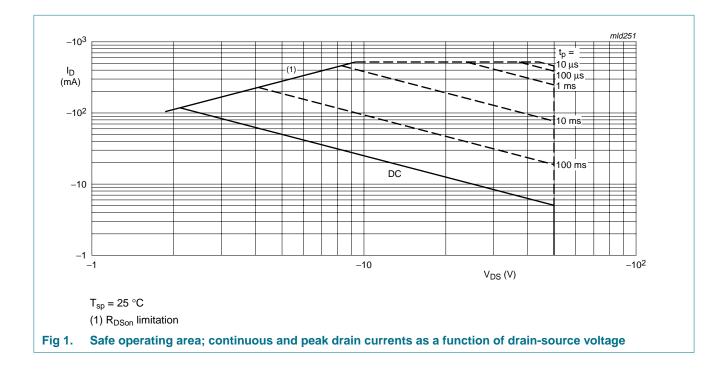
^{[1] /}DG: halogen-free

[2] * = -: made in Hong Kong

* = p: made in Hong Kong

* = t: made in Malaysia

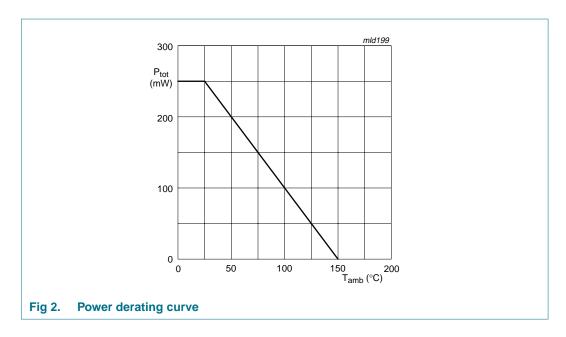
* = W: made in China


P-channel enhancement mode vertical DMOS transistor

Limiting values

Table 5. **Limiting values** In accordance with the Absolute Maximum Rating System (IEC 60134).

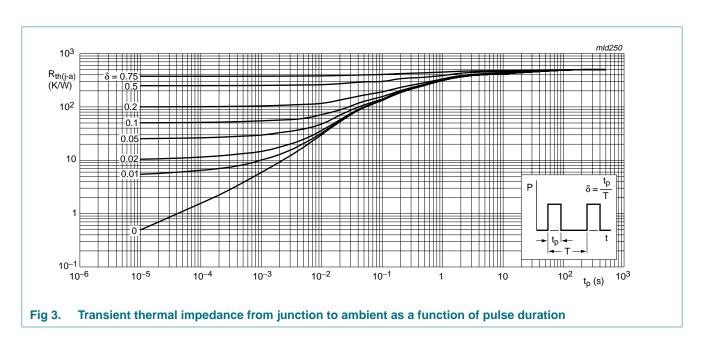
		0 , (
Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage	25 °C \leq T $_{j}$ \leq 150 °C	-	-50	V
V_{GS}	gate-source voltage		-	±20	V
I _D drain current	$T_{sp} = 25 ^{\circ}\text{C}; V_{GS} = -10 \text{V};$ see Figure 1	-	-130	mA	
		T _{sp} = 100 °C; V _{GS} = -10 V	-	- 75	mA
I _{DM}	peak drain current	T_{sp} = 25 °C; $t_p \le 10 \mu s$; see <u>Figure 1</u>	-	-520	mA
P _{tot}	total power dissipation	T _{sp} = 25 °C; see <u>Figure 2</u>	[1] -	250	mW
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-65	+150	°C


^[1] Device mounted on a Printed-Circuit Board (PCB).

© NXP B.V. 2008. All rights reserved. Rev. 06 — 16 December 2008

3 of 11

P-channel enhancement mode vertical DMOS transistor



6. Thermal characteristics

Table 6. **Thermal characteristics**

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	see Figure 3	[1] _	-	500	K/W

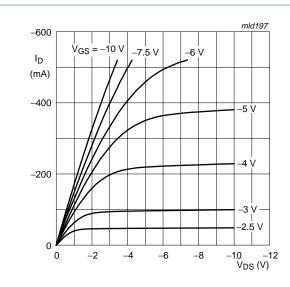
[1] Mounted on a PCB, vertical in still air.

© NXP B.V. 2008. All rights reserved. Rev. 06 — 16 December 2008

4 of 11

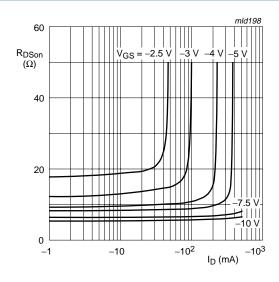
P-channel enhancement mode vertical DMOS transistor

7. **Characteristics**

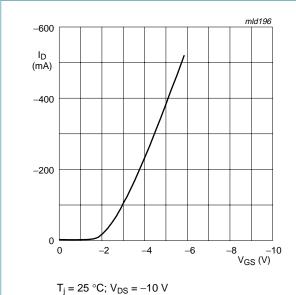

Table 7. Characteristics

 $T_j = 25 \,^{\circ}C$ unless otherwise specified.

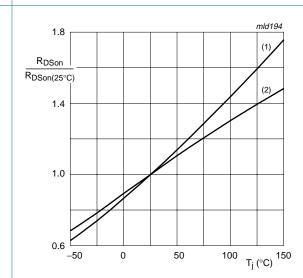
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Static cha	racteristics					
$V_{(BR)DSS}$	drain-source breakdown voltage	$I_D = -10 \ \mu A; \ V_{GS} = 0 \ V$	-50	-	-	V
$V_{GS(th)}$	gate-source threshold voltage	$I_D = -1$ mA; $V_{DS} = V_{GS}$; see Figure 8				
		T _j = 25 °C	-0.8	-	-2	V
		T _j = −55 °C	-	-	-1.8	V
I _{DSS}	drain leakage current	$V_{DS} = -40 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	-100	nA
		$V_{DS} = -50 \text{ V}; V_{GS} = 0 \text{ V}$				
		T _j = 25 °C	-	-	-10	μΑ
		T _j = 125 °C	-	-	-60	μΑ
I _{GSS}	gate leakage current	$V_{GS} = +20 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	100	nA
		$V_{GS} = -20 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	100	nA
R _{DSon}	drain-source on-state resistance	$V_{GS} = -10 \text{ V};$ $I_D = -130 \text{ mA};$ see Figure 5 and 7	-	6	10	Ω
Dynamic o	characteristics					
Y _{fs}	transfer admittance	$V_{DS} = -25 \text{ V};$ $I_D = -130 \text{ mA}$	50	-	-	mS
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = -25 \text{ V};$	-	25	45	pF
C _{oss}	output capacitance	f = 1 MHz; see Figure 9	-	15	25	pF
C _{rss}	reverse transfer capacitance		-	3.5	12	pF
t _{on}	turn-on time	$V_{DS} = -40 \text{ V}; V_{GS} = 0 \text{ V}$ to -10 V; $I_{D} = -200 \text{ mA};$ see Figure 10 and 11	-	3	-	ns
t _{off}	turn-off time	$V_{DS} = -40 \text{ V};$ $V_{GS} = -10 \text{ V to 0 V};$ $I_{D} = -200 \text{ mA};$ $SEE = \frac{\text{Figure 10}}{\text{Incomplete}} \text{ and } \frac{11}{\text{Incomplete}}$	-	7	-	ns


BSS84 NXP Semiconductors

P-channel enhancement mode vertical DMOS transistor


T_i = 25 °C

Output characteristics: drain current as a Fig 4. function of drain-source voltage; typical values

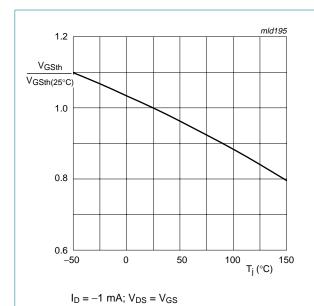


T_i = 25 °C

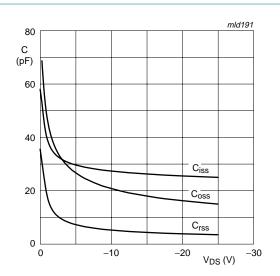
Fig 5. Drain-source on-state resistance as a function of drain current; typical values

Transfer characteristics: drain current as a Fig 6. function of gate-source voltage; typical values

(1)
$$I_D = -130$$
 mA; $V_{GS} = -10$ V


(2)
$$I_D = -20 \text{ mA}$$
; $V_{GS} = -2.4 \text{ V}$

Normalized drain-source on-state resistance Fig 7. factor as a function of junction temperature


6 of 11

BSS84 6 © NXP B.V. 2008. All rights reserved. Rev. 06 — 16 December 2008

P-channel enhancement mode vertical DMOS transistor

Gate-source threshold voltage as a function of Fig 8. junction temperature

 $V_{GS} = 0 \text{ V}; f = 1 \text{ MHz}$

Input, output and reverse transfer Fig 9. capacitances as a function of drain-source voltage; typical values

8. **Test information**

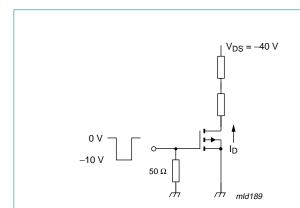
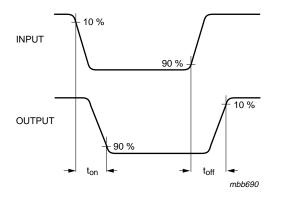



Fig 10. Switching time test circuit

7 of 11

Fig 11. Input and output waveforms

P-channel enhancement mode vertical DMOS transistor

Package outline

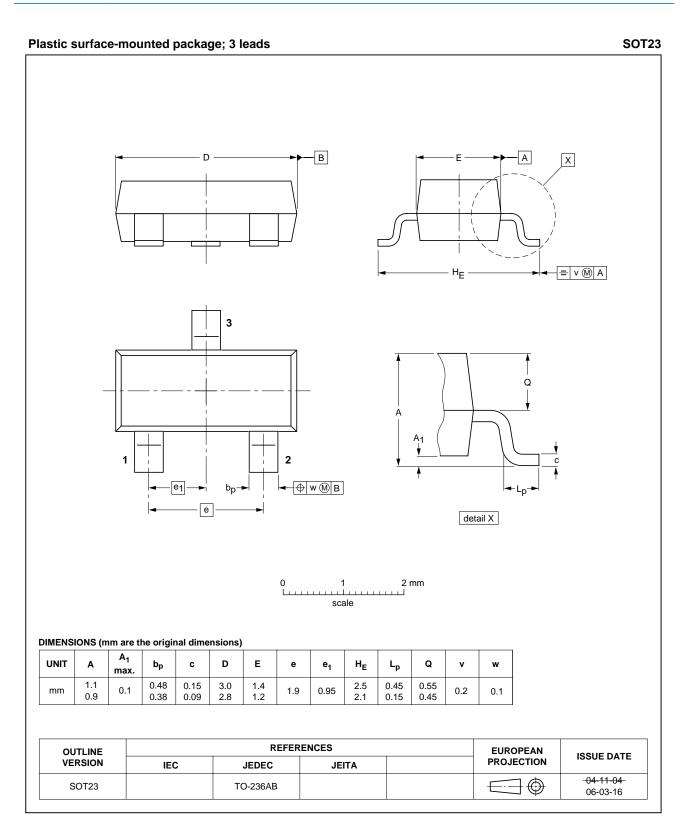


Fig 12. Package outline SOT23 (TO-236AB)

© NXP B.V. 2008. All rights reserved. Rev. 06 — 16 December 2008

8 of 11

P-channel enhancement mode vertical DMOS transistor

10. Revision history

Table 8. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BSS84_6	20081216	Product data sheet	-	BSS84_5
Modifications:	• Table 5 "Lim	niting values": P _{tot} figure refere	nce updated	
BSS84_5	20081209	Product data sheet	-	BSS84_4
BSS84_4	20070717	Product data sheet	-	BSS84_3
BSS84_3	20030804	Product specification	-	BSS84_2
BSS84_2	19970618	Product specification	-	BSS84_1
BSS84_1	19950407	Product specification	-	-

P-channel enhancement mode vertical DMOS transistor

11. Legal information

11.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

11.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

11.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

11.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

© NXP B.V. 2008. All rights reserved.

Product data sheet Rev. 06 — 16 December 2008 10 of 11

P-channel enhancement mode vertical DMOS transistor

13. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
1.4	Quick reference data
2	Pinning information
3	Ordering information 2
4	Marking 2
5	Limiting values 3
6	Thermal characteristics 4
7	Characteristics 5
8	Test information
9	Package outline 8
10	Revision history 9
11	Legal information 10
11.1	Data sheet status
11.2	Definitions
11.3	Disclaimers
11.4	Trademarks 10
12	Contact information 10
13	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

founded by

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 December 2008

Document identifier: BSS84_6