

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

Features

· Operating frequencies: 1164 - 1615 MHz

Insertion power gain: 17.0 dB

Input 1 dB compression point: -6 dBm

Low noise figure: 0.55 dB

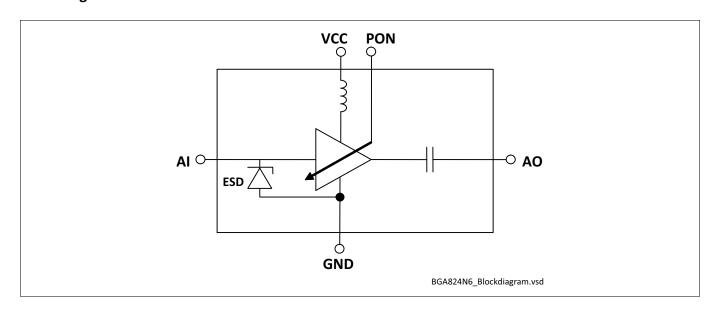

Low current consumption: 3.8 mA

• Digital on/off switch (1V logic level high)

Ultra small TSNP-6-2 and TSNP-6-10 leadless package

• RF output internally matched to 50 Ohm

• Low external component count


Application

Ideal for all Global Navigation Satellite Systems (GNSS) like GPS, GLONASS, Beidou, Galileo and others.

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22

Block diagram

Data Sheet www.infineon.com

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Table of Contents

Table of Contents

	Table of Contents	2
1	Features	3
2	Maximum Ratings	5
3	Electrical Characteristics	6
4	Application Information	10
5	Package Information	13

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Features

1 Features

- Insertion power gain: 17.0 dB
- Out-of-band input 3rd order intercept point: +7 dBm
- Input 1 dB compression point: -6 dBm
- Low noise figure: 0.55 dB
- Low current consumption: 3.8 mA
- Operating frequencies: 1164 1615 MHz
- Digital on/off switch (1V logic level high)
- Supply voltage: 1.5 V to 3.6 V
- Ultra small TSNP-6-2 and TSNP-6-10 leadless package (footprint: 0.7 x 1.1 mm²)
- B7HF Silicon Germanium technology
- RF output internally matched to 50 Ohm
- Low external component count
- 2kV HBM ESD protection (including Al-pin)
- Pb-free (RoHS compliant) package

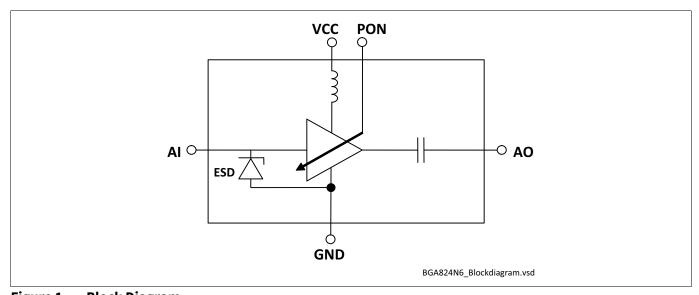


Figure 1 Block Diagram

Product Name	Marking	Package
BGA824N6	F	TSNP-6-2/TSNP-6-10

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Features

Description

The BGA824N6 is a front-end low noise amplifier for Global Navigation Satellite Systems (GNSS) from 1164 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 17.0 dB gain and 0.55 dB noise figure at a current consumption of 3.8 mA in the application configuration described in **Chapter 4**. The BGA824N6 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates from 1.5 V to 3.6 V supply voltage.

Pin Definition and Function

Table 1 Pin Definition and Function

Pin No.	Name	Function
1	GND	Ground
2	VCC	DC supply
3	AO	LNA output
4	GND	Ground
5	Al	LNA input
6	PON	Power on control

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Maximum Ratings

2 Maximum Ratings

Table 2 Maximum Ratings

Parameter	Symbol		Value	S	Unit	Note or	
		Min.	Тур.	Max.		Test Condition	
Voltage at pin VCC	V _{cc}	-0.3	_	3.6	V	1)	
Voltage at pin AI	V_{AI}	-0.3	_	0.9	V	_	
Voltage at pin AO	V _{AO}	-0.3	_	V _{CC} + 0.3	V	_	
Voltage at pin PON	V_{PON}	-0.3	_	V _{CC} + 0.3	V	_	
Voltage at pin GNDRF	V_{GNDRF}	-0.3	_	0.3	V	_	
Current into pin VCC	I _{cc}	_	_	23	mA	_	
RF input power	P _{IN}	_	_	25	dBm	_	
Total power dissipation, $T_S < 148 ^{\circ}\text{C}^{2)}$	P _{tot}	-	-	60	mW	-	
Junction temperature	T_{J}	_	_	150	°C	_	
Ambient temperature range	T_{A}	-40	_	85	°C	_	
Storage temperature range	$T_{\rm STG}$	-55	_	150	°C	_	
ESD capability all pins	V _{ESD_HBM}	-2000	-	+2000	V	according to JS- 001	

¹⁾ All voltages refer to GND-Node unless otherwise noted

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Thermal Resistance

Table 3 Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R _{thJS}	25	K/W

¹⁾ For calculation of $R_{\rm thJA}$ please refer to Application Note Thermal Resistance

²⁾ T_S is measured on the ground lead at the soldering point

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Electrical Characteristics

3 Electrical Characteristics

Table 4 Electrical Characteristics f = 1550 - 1615 MHz, $V_{CC} = 1.8V^{1)}$

 $T_{A} = 25 \, ^{\circ}\text{C}, V_{CC} = 1.8 \, \text{V}, V_{PON,ON} = 1.8 \, \text{V}, V_{PON,OFF} = 0 \, \text{V}, f = 1550 - 1615 \, \text{MHz}$

Parameter	Symbol		Value	S	Unit	Note or Test Condition
		Min.	Тур.	Max.		
Supply voltage	$V_{\rm cc}$	1.5	1.8	3.6	٧	-
Supply current	I _{cc}	-	3.8	4.8	mA	ON-mode
		-	0.2	3	μΑ	OFF-mode
Power On voltage	V_{PON}	1.0	_	Vcc	٧	ON-mode
		0	_	0.4	٧	OFF-mode
Power On current	I _{PON}	-	5	10	μΑ	ON-mode
		-	_	1	μΑ	OFF-mode
Insertion power gain f = 1575 MHz	$ S_{21} ^2$	16.0	17.0	18.0	dB	-
Noise figure ²⁾ f = 1575 MHz	NF	-	0.55	1.1	dB	-
Input return loss ³⁾ f = 1575 MHz	RL _{IN}	10	14	-	dB	-
Output return loss ³⁾ f = 1575 MHz	RL _{OUT}	10	17	-	dB	-
Reverse isolation ³⁾ f = 1575 MHz	$1/ S_{12} ^2$	19	23	-	dB	-
Power gain settling time ⁴⁾⁵⁾	t _S	_	5	8	μs	OFF-mode - - -
		_	5	8	μs	ON- to OFF-mode
		_	1.2	3	μs	OFF- to ON-mode ⁶⁾
		-	0.9	3	μs	ON- to OFF-mode ⁶⁾
Inband input 1dB-compression point ³⁾ $f = 1575 \text{ MHz}$	IP _{1dB}	-13	-9	-	dBm	-
Inband input 3 rd -order intercept point ³⁾⁷⁾	IIP ₃	-3	+2	-	dBm	$f_1 = 1575 \text{ MHz}$ $f_2 = f_1 + / - 1 \text{ MHz}$
Out-of-band input 3 rd -order intercept point ⁵⁾⁸⁾	IIP _{300B}	+2	+7	-	dBm	$f_1 = 1712.7 \text{ MHz}$ $f_2 = 1850 \text{ MHz}$
Stability ⁵⁾	k	> 1	_	_		f = 20 MHz 10 GHz

- 1) Based on the application described in Figure 2 in **Chapter 4**
- 2) PCB losses are subtracted
- 3) Verification based on AQL; not 100% tested in production
- 4) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode
- 5) Guaranteed by device design; not tested in production
- 6) 120 pF DC block capacitor at RF input
- 7) Input power = -30 dBm for each tone
- 8) Input power = -20 dBm for each tone

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Electrical Characteristics

Table 5 Electrical Characteristics f = 1550 - 1615 MHz, $V_{CC} = 2.8V^{1)}$

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 1550 - 1615 MHz

Parameter	Symbol		Value	S	Unit	Note or Test Condition		
		Min.	Тур.	Max.				
Supply voltage	$V_{\rm cc}$	1.5	2.8	3.6	V	-		
Supply current	I _{cc}	_	3.9	4.9	mA	ON-mode		
		_	0.2	3	μΑ	OFF-mode		
Power On voltage	V_{PON}	1.0	-	Vcc	V	ON-mode		
		0	_	0.4	V	OFF-mode		
Power On current	I _{PON}	-	10	15	μΑ	ON-mode		
		_	_	1	μΑ	OFF-mode		
Insertion power gain f = 1575 MHz	$ S_{21} ^2$	16.1	17.1	18.1	dB	-		
Noise figure ²⁾ f = 1575 MHz	NF	_	0.55	1.1	dB	-		
Input return loss ³⁾ f= 1575 MHz	RL _{IN}	10	15	_	dB	-		
Output return loss ³⁾ f= 1575 MHz	RL _{OUT}	10	18	_	dB	-		
Reverse isolation ³⁾ f = 1575 MHz	$1/ S_{12} ^2$	19	23	-	dB	-		
Power gain settling time ⁴⁾⁵⁾	t_{S}	_	5	8	μs	OFF- to ON-mode		
		_	5	8	μs	ON- to OFF-mode		
		_	1.2	3	μs	OFF- to ON-mode ⁶⁾		
		_	0.9	3	μs	ON- to OFF-mode ⁶⁾		
Inband input 1dB-compression point ³⁾ $f = 1575 \text{ MHz}$	IP _{1dB}	-10	-6	-	dBm	-		
Inband input 3 rd -order intercept point ³⁾⁷⁾	IIP ₃	-2	+3	_	dBm	$f_1 = 1575 \text{ MHz}$ $f_2 = f_1 + /- 1 \text{ MHz}$		
Out-of-band input 3 rd -order intercept point ⁵⁾⁸⁾	IIP _{300B}	+2	+7	-	dBm	$f_1 = 1712.7 \text{ MHz}$ $f_2 = 1850 \text{ MHz}$		
Stability ⁵⁾	k	> 1	_	_		f = 20 MHz 10 GHz		

- 1) Based on the application described in Figure 2 in Chapter 4
- 2) PCB losses are subtracted
- 3) Verification based on AQL; not 100% tested in production
- 4) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode
- 5) Guaranteed by device design; not tested in production
- 6) 120 pF DC block capacitor at RF input
- 7) Input power = -30 dBm for each tone
- 8) Input power = -20 dBm for each tone

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Electrical Characteristics

Table 6 Electrical Characteristics f = 1164 - 1300 MHz, $V_{CC} = 1.8V^{1)}$

 $T_{\rm A} = 25$ °C, $V_{\rm CC} = 1.8$ V, $V_{\rm PON,ON} = 1.8$ V, $V_{\rm PON,OFF} = 0$ V, f = 1164 - 1300 MHz

Parameter	Symbol		Value	S	Unit	Note or Test Condition		
		Min.	Тур.	Max.				
Supply voltage	$V_{\rm cc}$	1.5	1.8	3.6	V	-		
Supply current	I _{cc}	_	3.8	4.8	mA	ON-mode		
		-	0.2	3	μΑ	OFF-mode		
Power On voltage	V_{PON}	1.0	-	Vcc	V	ON-mode		
		0	-	0.4	V	OFF-mode		
Power On current	I _{PON}	_	5	10	μΑ	ON-mode		
		-	-	1	μΑ	OFF-mode		
Insertion power gain f = 1214 MHz	$ S_{21} ^2$	16.4	17.9	19.4	dB	-		
Noise figure ²⁾ f = 1214 MHz	NF	_	0.70	1.25	dB	-		
Input return loss ³⁾ f= 1214 MHz	RL _{IN}	10	15	-	dB	-		
Output return loss ³⁾ f= 1214 MHz	RL _{OUT}	10	18	_	dB	-		
Reverse isolation ³⁾ f= 1214 MHz	$1/ S_{12} ^2$	19	25	_	dB	-		
Power gain settling time ⁴⁾⁵⁾	t_{S}	_	5	8	μs	OFF- to ON-mode		
		_	5	8	μs	ON- to OFF-mode		
		-	1.2	3	μs	OFF- to ON-mode ⁶⁾		
		-	0.9	3	μs	ON- to OFF-mode ⁶⁾		
Inband input 1dB-compression point ³⁾ $f = 1214$ MHz	IP _{1dB}	-16	-12	-	dBm	-		
Inband input 3 rd -order intercept point ³⁾⁷⁾	IIP ₃	-11	-6	_	dBm	$f_1 = 1214 \text{ MHz}$ $f_2 = f_1 + /-1 \text{ MHz}$		
Out-of-band input 3 rd -order intercept point ⁵⁾⁸⁾	IIP _{300B}	-3	+1.3		dBm	$f_1 = 1850 \text{ MHz}$ $f_2 = 2500 \text{ MHz}$		
Stability ⁵⁾	k	> 1	_	_		f = 20 MHz 10 GHz		

- 1) Based on the application described in Figure 3 in Chapter 4
- 2) PCB losses are subtracted
- 3) Verification based on AQL; not 100% tested in production
- 4) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode
- 5) Guaranteed by device design; not tested in production
- 6) 120 pF DC block capacitor at RF input
- 7) Input power = -30 dBm for each tone
- 8) Input power = -25 dBm for each tone

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Electrical Characteristics

Table 7 Electrical Characteristics f = 1164 - 1300 MHz, $V_{CC} = 2.8V^{1)}$

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, $V_{\rm PON,ON}$ = 2.8 V, $V_{\rm PON,OFF}$ = 0 V, f = 1164 - 1300 MHz

Parameter	Symbol		Value	S	Unit	Note or Test Condition		
		Min.	Тур.	Max.				
Supply voltage	V_{cc}	1.5	2.8	3.6	٧	-		
Supply current	I _{cc}	-	3.9	4.8	mA	ON-mode		
		_	0.2	3	μΑ	OFF-mode		
Power On voltage	V_{PON}	1.0	_	Vcc	V	ON-mode		
		0	_	0.4	V	OFF-mode		
Power On current	I _{PON}	_	10	15	μΑ	ON-mode		
		_	_	1	μΑ	OFF-mode		
Insertion power gain f = 1214 MHz	$ S_{21} ^2$	16.5	18.0	19.5	dB	-		
Noise figure ²⁾ f = 1214 MHz	NF	_	0.70	1.25	dB	-		
Input return loss ³⁾ f = 1214 MHz	RL _{IN}	10	16	-	dB	-		
Output return loss ³⁾ f = 1214 MHz	RL _{OUT}	10	18	-	dB	-		
Reverse isolation ³⁾ f= 1214 MHz	$1/ S_{12} ^2$	19	26	-	dB	-		
Power gain settling time ⁴⁾⁵⁾	t_{S}	_	5	8	μs	OFF- to ON-mode		
		_	5	8	μs	ON- to OFF-mode		
		-	1.2	3	μs	OFF- to ON-mode ⁶⁾		
		_	0.9	3	μs	ON- to OFF-mode ⁶⁾		
Inband input 1dB-compression point ³⁾ $f = 1214$ MHz	IP _{1dB}	-13	-9	-	dBm	-		
Inband input 3 rd -order intercept point ³⁾⁷⁾	IIP ₃	-10	-5	-	dBm	$f_1 = 1214 \text{ MHz}$ $f_2 = f_1 + /- 1 \text{ MHz}$		
Out-of-band input 3 rd -order intercept point ⁵⁾⁸⁾	IIP _{300B}	-3	+1.3		dBm	$f_1 = 1850 \text{ MHz}$ $f_2 = 2500 \text{ MHz}$		
Stability ⁵⁾	k	> 1	_	_		f = 20 MHz 10 GHz		
	1	1						

- 1) Based on the application described in Figure 3 in Chapter 4
- 2) PCB losses are subtracted
- 3) Verification based on AQL; not 100% tested in production
- 4) To be within 1 dB of the final gain OFF- to ON-mode; to be within 3 dB of the final gain ON- to OFF-mode
- 5) Guaranteed by device design; not tested in production
- 6) 120 pF DC block capacitor at RF input
- 7) Input power = -30 dBm for each tone
- 8) Input power = -25 dBm for each tone

Application Information

4 Application Information

Application Board Configuration f = 1550 - 1615 MHz

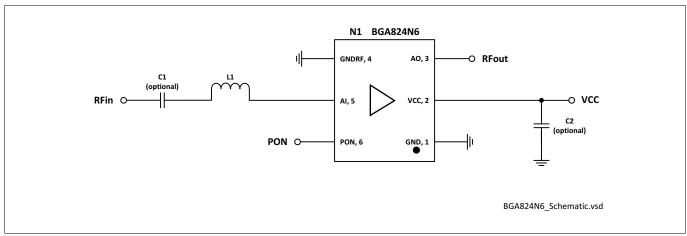


Figure 2 Application Schematic BGA824N6 f = 1550 - 1615 MHz

Table 8 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1 (optional)	1nF	0402	Various	DC block ¹⁾
C2 (optional)	≥ 10nF ²⁾	0402	Various	RF bypass 3)
L1	6.8nH	0402	Murata LQW type	Input matching
N1	BGA824N6	TSNP-6-2 and TSNP-6-10	Infineon	SiGe LNA

- 1) DC block might be realized with pre-filter in GNSS application
- 2) For data sheet characteristics $1\mu\text{F}$ used
- 3) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Application Information

Application Board Configuration f = 1164 - 1300 MHz

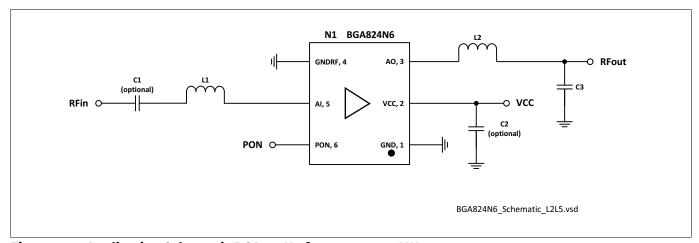


Figure 3 Application Schematic BGA824N6 f = 1164 - 1300 MHz

Table 9 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1 (optional)	1nF	0402	Various	DC block ¹⁾
C2 (optional)	≥ 10nF ²⁾	0402	Various	RF bypass 3)
C3	3.9pF	0402	Various	Output matching
L1	12nH	0402	Murata LQW type	Input matching
L2	3.9nH	0402	Murata LQW type	Output matching
N1	BGA824N6	TSNP-6-2 and TSNP-6-10	Infineon	SiGe LNA

- 1) DC block might be realized with pre-filter in GNSS application
- 2) For data sheet characteristics $1\mu F$ used
- 3) RF bypass recommended to mitigate power supply noise

A list of all application notes is available at http://www.infineon.com/gpslna.appnotes

Application Information

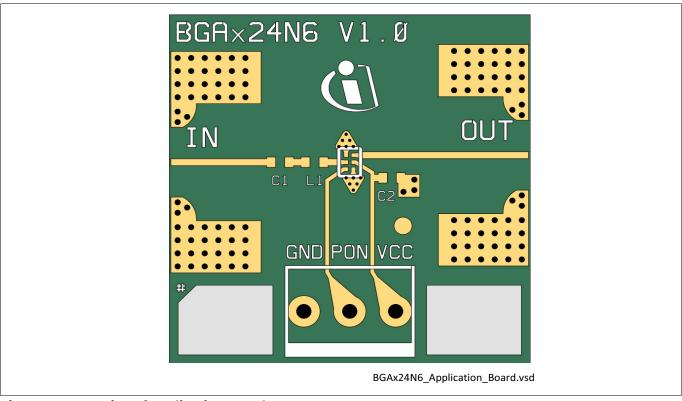


Figure 4 Drawing of Application Board

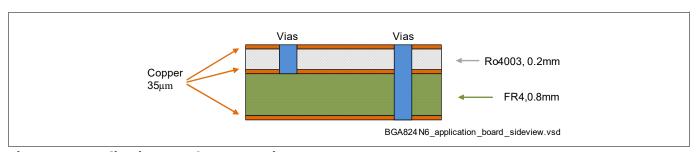


Figure 5 Application Board Cross-Section

Package Information

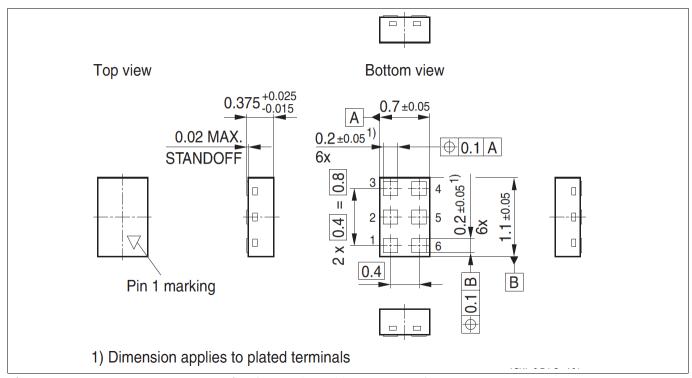


Figure 6 TSNP-6-2 Package Outline (top, side and bottom views)

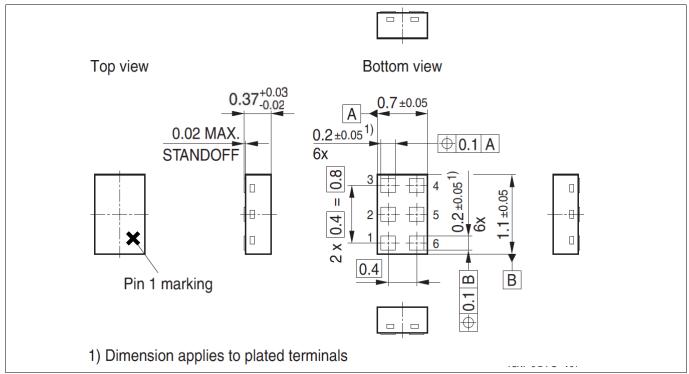


Figure 7 TSNP-6-10 Package Outline (top, side and bottom views)

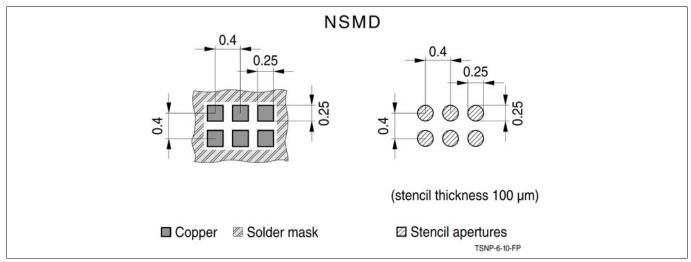


Figure 8 Footprint Recommendation TSNP-6-2 and TSNP-6-10

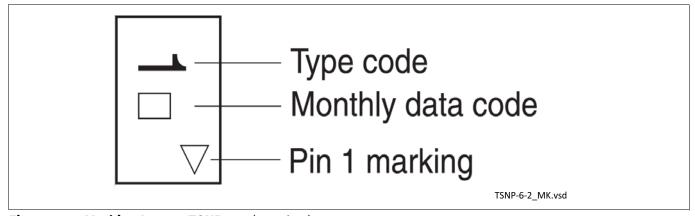
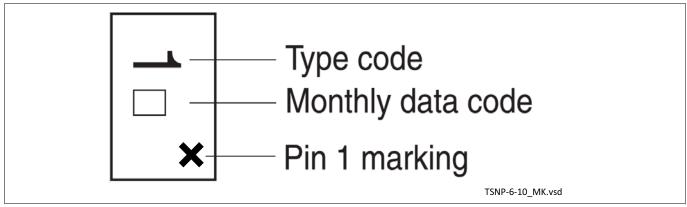



Figure 9 Marking Layout TSNP-6-2 (top view)

Figure 10 Marking Layout TSNP-6-10 (top view)

Month	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026
01	а	Р	А	Р	а	Р	А	Р	а	Р	А	Р
02	Ь	q	В	Q	Ь	q	В	Q	Ь	q	В	Q
03	С	Г	C	R	С	Г	C	R	С	Г	(R
04	В	s	D	S	В	s	D	S	В	S	D	S
05	e	t	E	Т	e	t	Е	T	e	†	Ε	Т
06	f	U	F	U	f	u	F	U	f	U	F	U
07	g	V	G	V	g	V	G	V	g	V	G	V
08	h	×	Н	X	h	×	Н	X	h	×	Н	X
09	ј	у	J	Υ	j	у	J	Υ	j	у	J	Υ
10	k	Z	K	Z	k	Z	K	Z	k	Z	K	Z
11	l	2	L	4	l	2	L	4	l	2	L	4
12	n	3	Ν	5	n	3	N	5	Π	3	Ν	5

Figure 11 Date Code Marking TSNP-6-2 and TSNP-6-10

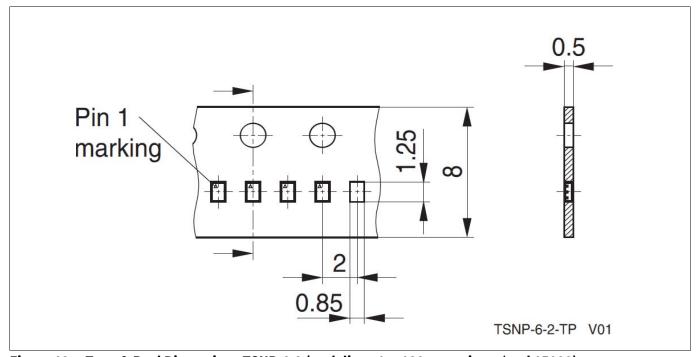


Figure 12 Tape & Reel Dimensions TSNP-6-2 (reel diameter 180 mm, pieces/reel 15000)

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

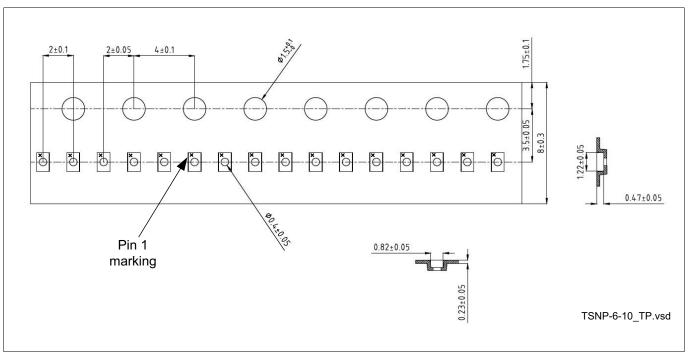


Figure 13 Tape & Reel Dimensions TSNP-6-10 (reel diameter 180 mm, pieces/reel 12000)

Silicon Germanium Low Noise Amplifier for Global Navigation Satellite Systems

Revision History	
Page or Item	Subjects (major changes since previous revision)
Revision 3.4, 2	021-04-26
16	Carrier Tape Drawing updated

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-04-26 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.