

3 CH Digital Audio Amplifier

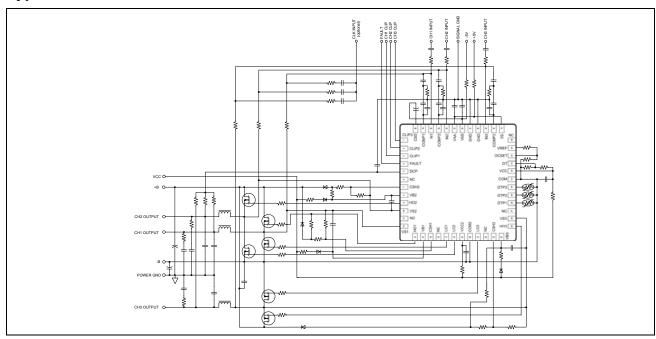
Features

- 3 channel integrated analog input Class D audio amplifier drivers
- Versatile protection control enabling latched, nonlatched, or host controlled shutdown function
- DC offset detection input
- Clipping detection
- Thermal sensor inputs
- Fault output
- Programmable over current protection
- Programmable dead-time generation
- Startup click noise reduction
- Under voltage protection
- · High noise immunity
- RoHS compliant

Note

The IRS2053M digital audio driver is a three channel Class D audio driver housed in a 48 pin MLPQ. The IRS2053M features clipping detection outputs, DC offset detection input, over temperature sensor inputs and a fault reporting output.

Product Summary


Topology	Half-Bridge
V _{OFFSET (max)}	+/- 100 V
I _{O+} & I _{O-} (typical)	0.5 A & 0.6 A
Selectable deadtime	45/65/85/105 ns
DC offset	<20 mV
Error amplifier open loop gain	>60 dB

Package

MLPQ48 (7x7 mm, 0.50 mm pitch)

Typical Connection

www.irf.com © 2010 International Rectifier

1

International **TOR** Rectifier

Table of Contents	Page
Description	3
Qualification Information	4
Absolute Maximum Ratings	5
Recommended Operating Conditions	7
Electrical Characteristics	8
Functional Block Diagram	12
Input/Output Pin Equivalent Circuit Diagram	13
Lead Definitions	15
Lead Assignments	16
Application Information and Additional Details	17
Package Details	19
Tape and Reel Details	20
Part Marking Information	21
Ordering Information	22

International

TOR Rectifier

IRS2053MPbF

Description

The IRS2053 integrates three channels of high voltage, high performance Class D audio amplifier drivers with PWM modulators and protections. In conjunction with external MOSFET and external components, a complete 3 channel Class D audio amplifier can be realized. The IRS2053 is designed with floating analog inputs and protection control interface pin especially for half bridge topology. High and low side MOSFET are protected from over current conditions by a programmable bi-directional current sensing. Essential elements of PWM modulator section allow flexible system design. A small MLPQ48 package enhances the benefit of smaller size of Class D topology.

www.irf.com

Qualification Information[†]

		Industrial ^{††}		
Qualification Level		Comments: This family of ICs has passed JEDEC's		
Qualification Le	evei	Industrial qualification. IR's Consumer qualification level is		
		granted by extension of the higher Industrial level.		
Majatura Canait	indited and	MSL2 _{†††} , 260°C		
Moisture Sensitivity Level		(per IPC/JEDEC J-STD-020)		
	Machine Model	Class A		
ESD	Macrime Model	(per JEDEC standard EIA/JESD22-A115)		
LSD	Human Body Model	Class 1C		
	Human Body Wodel	(per EIA/JEDEC standard JESD22-A114)		
IC Latch-Up Test		Class I, Level A		
		(per JESD78A)		
RoHS Complian	nt	Yes		

- Qualification standards can be found at International Rectifier's web site http://www.irf.com/
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.
- ††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

4

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V_{Bn}	High side floating supply voltage	-0.3	215	V
V_{Sn}	High side floating supply voltage ^{††} , n=1-3	V _{Bn} -15	V _{Bn} +0.3	V
V_{Hon}	High side floating output voltage, n=1-3	V _{Sn} -0.3	V _{Bn} +0.3	V
V_{CSHn}	CSH pin input voltage, n=1-3	V _{Sn} -0.3	V _{Bn} +0.3	V
V_{CCn}	Low side fixed supply voltage ^{††} , n=1-2	-0.3	20	V
V_{LOn}	Low side output voltage, n=1-3	-0.3	VCC2 +0.3	V
V_{AA}	Floating input positive supply voltage ^{††}	(See I _{AAZ})	210	V
V _{SS}	Floating input negative supply voltage ^{††}	-1 (See I _{SSZ})	GND +0.3	V
V_{GND}	Floating input supply ground voltage	V _{SS} -0.3 (See I _{SSZ})	V _{AA} +0.3 (See I _{AAZ})	V
COM2	Low side output supply return	-0.3	+0.3	V
I _{IN-n}	Inverting input current [†] , n=1-3	-	±3	mA
V _{CSD}	SD pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
V _{COMPn}	COMP pin input voltage, n=1-3	V _{SS} -0.3	V _{AA} +0.3	V
V _{DS}	DS pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
V_{CLIPn}	CLIP pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
I _{CLIPn}	CLIP pin sinking current	-	5	mA
V_{FAULT}	FAULT pin input voltage	V _{SS} -0.3	V _{AA} +0.3	V
I _{FAULT}	FAULT pin sinking current	-	5	mA
V_{DCP}	DCP pin input voltage	(See I _{DCP})	(See I _{DCP})	V
I _{DCP}	DCP pin sinking/sourcing current	-1	1	mA
V_{DT}	DT pin input voltage	-0.3	V _{CC} +0.3	V
V_{OCSET}	OCSET pin input voltage	-0.3	V _{CC} +0.3	V
V_{OTPn}	OTP pin input voltage	-0.3	V _{CC} +0.3	V
I _{AAZ}	Floating input positive supply zener clamp current	-	20	mA
I _{SSZ}	Floating input negative supply zener clamp current	-	20	mA
I _{CCZn}	Low side supply zener clamp current ^{†††} , n=1-2	-	10	mA
I _{BSZn}	Floating supply zener clamp current ^{†††} , n=1-3	-	10	mA
I _{OREF}	Reference output current	-	5	mA
dV _{Sn} /dt	Allowable Vs voltage slew rate, n=1-3	-	50	V/ns
dV _{SS} /dt	Allowable Vss voltage slew rate ^{†††}	-	50	V/ms

Absolute Maximum Ratings (cont'd)

Symbol	Definition	Min.	Max.	Units
Pd	Maximum power dissipation @ T _A ≤ +25°C	-	6.2	W
Rth _{JA}	Thermal resistance, Junction to ambient ^{††††}	-	20	°C/W
Rth_{JC}	Thermal resistance, Junction to case	-	3	°C/W
T _J	Junction Temperature	-	150	°C
T _S	Storage Temperature	-55	150	°C
TL	Lead temperature (Soldering, 10 seconds)	-	300	°C

[†] IN-1-3 contains clamping diode to GND.

^{††} VAA-VSS, Vcc1-COM, Vcc2-COM2, VB1-VS1, VB2-VS2 and VB3-VS3 contain internal shunt zener diodes. Please note that the voltage ratings of these can be limited by the clamping current.

^{†††} For the rising and falling edges of step signal of 10V. Vss=15V to 200V.

^{††††} According to JESD51-5. JEDEC still air chamber.

Recommended Operating Conditions

For proper operation, the device should be used within the recommended conditions below. The Vs and COM offset ratings are tested with supplies biased at V_{AA} - V_{SS} =10V, V_{CC} =12V and V_{B} - V_{S} =12V. All voltage parameters are absolute voltages referenced to COM; all currents are defined positive into any lead.

Symbol	Definition	Min.	Max.	Units
V_{Bn}	High side floating supply absolute voltage, n=1-3	V _{Sn} +10	V _{Sn} +14	V
V_{Sn}	High side floating supply offset voltage	†	200	V
I _{AAZ}	Floating input positive supply zener clamp current	1	11	mA
I _{SSZ}	Floating input negative supply zener clamp current	1	11	mA
V _{SS}	Floating input supply absolute voltage	0	200	V
V_{HOn}	High side floating output voltage, n=1-3	Vs	V _B	V
V _{CC}	Low side fixed supply voltage	10	15	V
V_{LOn}	Low side output voltage, n=1-3	0	V _{CC} 2	V
V_{GND}	GND pin input voltage	V _{SS} ^{†††}	$V_{AA}^{\dagger\dagger\dagger}$	V
V _{IN-n}	Inverting input voltage, n=1-3	V _{GND} -0.5	V _{GND} +0.5	V
V _{CSD}	CSD pin input voltage	V _{SS}	V _{AA}	V
V_{COMPn}	COMP pin input voltage, n=1-3	V _{SS}	V _{AA}	V
C_{COMPn}	COMP pin phase compensation capacitor to GND, n=1-3	1	-	nF
V_{DT}	DT pin input voltage	0	V _{CC}	V
I _{OREF}	Reference output current to COM ^{††}	0.3	0.8	mA
V _{OCSET}	OCSET pin input voltage	0.5	5	V
V_{CSHn}	CSH pin input voltage, n=1-3	V_{Sn}	V_{Bn}	V
dVss/dt	Allowable Vss voltage slew rate upon power-up ^{††††}	-	50	V/ms
f _{SW}	Switching Frequency	-	800	kHz
T _A	Ambient Temperature	-40	125	°C

[†] Logic operational for Vsn equal to –5V to +200V. Logic state held for Vsn equal to –5V to –V_{BSn}.

^{††} Nominal voltage for V_{REF} is 5.1V. I_{OREF} of 0.3 – 0.8mA dictates total external resistor value on VREF to be 6.3k to 16.7k ohm.

^{†††} GND input voltage is limited by I_{IN-n}.

^{††††} Vss ramps up from 0V to 200V.

Electrical Characteristics

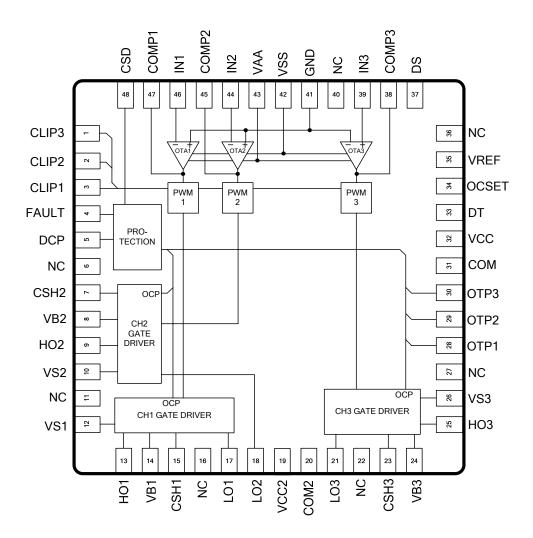
 $V_{CC} = V_{CC2} = V_{BS1} = V_{BS2} = V_{BS3} = 12V, \ V_{SS} = V_{S1} = V_{S2} = V_{S3} = COM = 0V, \ V_{GND} = 5V, \ V_{AA} = 10V, \ C_L = 1nF \ and \ T_A = 25^{\circ}C \ unless \ otherwise \ specified.$

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Low Side			- 7 P	1310031	00	100100110110
UV _{CC+}	Vcc supply UVLO positive threshold	8.4	8.9	9.4	V	
UV _{CC} -	Vcc supply UVLO negative threshold	8.2	8.7	9.2	V	
UV _{CCHYS}	UV _{CC} hysteresis	ı	0.2	-	V	
I_{QCC}	Low side quiescent current	-	5	8	mA	V _{DT} =V _{CC}
V_{CLAMPL1}	Low side zener diode clamp voltage	19.0	20.4	21.6	V	I _{CC1} =10mA
Low Side	Supply 2					
I_{QCC2}	Low side quiescent current	-	4.2	8	mA	
V_{CLAMPL2}	Low side zener diode clamp voltage	19.6	20.4	21.6	V	I _{CC2} =10mA
High Side	Floating Supply					
UV_{BS+n}	High side well UVLO positive threshold, n=1-3	8.0	8.5	9.0	V	
UV_{BS-n}	High side well UVLO negative threshold, n=1-3	7.8	8.3	8.8	V	
UV_{BSHYSn}	UV _{BS} hysteresis, n=1-3	-	0.2	-	V	
I_{QBSn}	High side quiescent current, n=1-3	-	0.5	1	mA	
I _{LKHn}	High to Low side leakage current, n=1-3	-	-	50	μΑ	V _{Bn} =V _{Sn} =200V
V_{CLAMPHn}	High side zener diode clamp voltage, n=1-3	14.7	15.3	16.2	V	I _{BSn} =5mA
Floating I	nput Supply		•		•	
UV _{AA+}	VA+, VA- floating supply UVLO positive threshold from V _{SS}	8.2	8.7	9.2	V	GND pin floating
UV_{AA}	VA+, VA- floating supply UVLO negative threshold from V _{SS}	7.7	8.2	8.7	V	GND pin floating
UV_{AAHYS}	UV _{AA} hysteresis	•	0.5	-	V	GND pin floating
I_{QAA0}	Floating Input positive quiescent supply current in shutdown mode	-	1	3	mA	V _{CSD} =VSS
I _{QAA10}	Floating Input positive quiescent supply current, positive input	-	12	25	mA	V _{IN-} = VSS+5.2V
I _{QAA11}	Floating Input positive quiescent supply current, negative input	-	9	20	mA	V _{IN-} = VSS+4.8V
I _{QAA2}	Floating Input positive quiescent supply current in start-up mode	-	20	35	mA	V _{CSD} =VSS+5.0V
I_{LKM}	Floating input side to Low side leakage current	-	-	50	μA	$V_{AA}=V_{SS}=V_{GND}=$ 100V
V_{CLAMPM}	Floating supply zener diode clamp voltage	19.6	20.4	21.6	V	I_{AA} =5mA, V_{CSD} =VSS

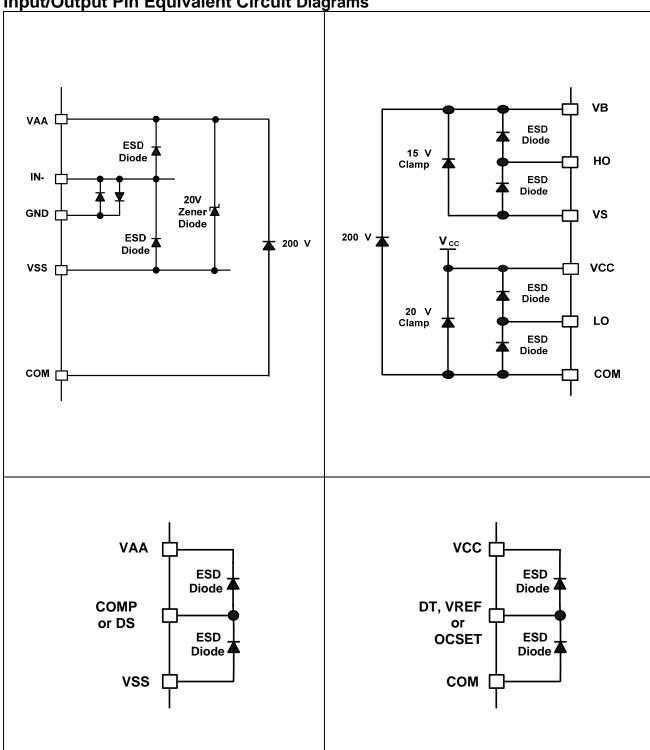
Electrical Characteristics (cont'd)

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
	out (V _{GND} =0, V _{AA} =5V, V _{SS} =-5V, CON	1=COM2=	VCC=VCC	2=-5V, VS	1=VS2=V	S3=-5V,
	H2=CHS3=-5V, DT=OCSET=-5V)		T			
V_{OSn}	CHn input offset voltage, n=1-3	-18	0	18	mV	
I _{BINn}	CHn input bias current, n=1-3	-	-	40	nA	
GBWn	CHn small signal bandwidth	-	9	-	MHz	C _{COMPn} =1nF, Rfn=0
V_{COMPn}	CHn OTA Output voltage, n=1-3	VAA-1	-	VSS+1	V	
g_{mn}	CHn OTA transconductance, n=1-3	-	100	-	mS	V _{IN-n} =10mV
G _{Vn}	CHn OTA gain, n=1-3	60	-	-	dB	
V_{Nrmsn}	CHn OTA input noise voltage, n=1-3	-	250	-	mVrms	BW=20kHz, Resolution BW=22Hz Fig.5
SRn	CHn slew rate, n=1-3	-	±5	-	V/us	C _{COMPn} =1nF
CMRRn	CHn common-mode rejection ratio, n=1-3	-	60	-	dB	
PSRRn	CHn supply voltage rejection ratio, n=1-3	-	65	-	dB	
Vth+ _{CLIPn}	CHn clip detection positive threshold, n=1-3	0.85xV _{AA}	0.90xV _{AA}	0.95xV _{AA}	V	
Vth- _{CLIPn}	CHn clip detection negative threshold, n=1-3	0.05xV _{AA}	0.10xV _{AA}	0.15xV _{AA}	V	
t_{CLIPn}	CHn clipping detection propagation delay, n=1-3	-	40	-	ns	
t_{CLIPmin}	CHn clipping detection minimum output duration	-	3	-	us	
PWM com						
Vth _{PWM}	PWM comparator threshold in COMP	-	(V _{AA} - V _{SS})/2	-	V	
f _{OTAn}	CHn COMP pin star-up local oscillation frequency, n=1-3	0.6	1.0	-	MHz	V _{CSD} =VSS+5V

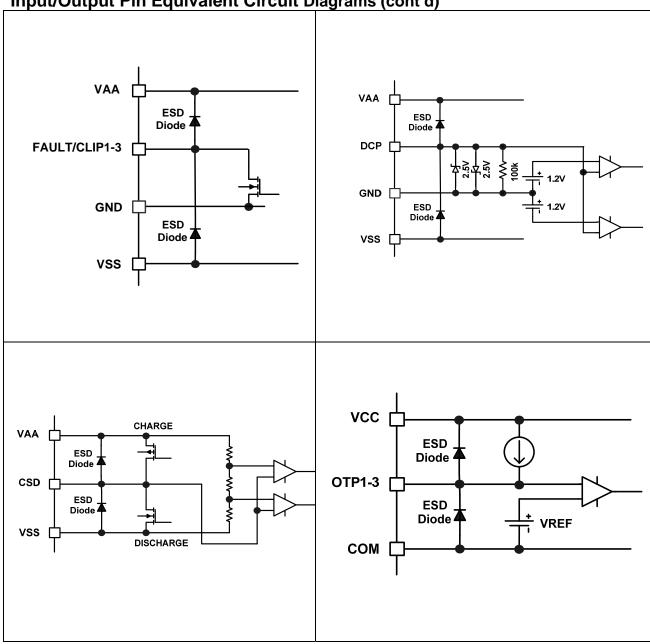
International
TOR Rectifier


Electrical Characteristics (cont'd)

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Protection	n	•	•			
V_{REF}	Reference output voltage	4.8	5.1	5.4	V	I _{OREF} =0.5mA
Vth _{OCLn}	CHn low side OC threshold in Vsn, n=1-3	1.1	1.2	1.3	V	OCSET=1.2V
Vth _{OCHn}	CHn high side OC threshold in V _{CSHn} , n=1-3	1.1+ Vs	1.2+ Vs	1.3+ Vs	V	Vs=200V
V _{DCP+}	DCP pin positive detecting threshold		1.3		V	
V _{DCP} -	DCP pin negative detecting threshold		-1.3		V	
V _{DCPZ+}	DCP pin positive clamping voltage		3.0		V	
V _{DCPZ}	DCP pin negative clamping voltage		-2.5		V	
V_{OTPn}	CHn OTP pin threshold, n=1-3		2.8		V	
I _{OTPn}	CHn OTP bias sourcing current, n=1-3		0.6		mA	OTPn=0V
V _{CSDH}	CSD pin shutdown release threshold	0.62xV _{AA}	0.70xV _{AA}	0.78xV _{AA}	V	
V_{CSDL}	CSD pin self reset threshold	$0.26xV_{AA}$	$0.30xV_{AA}$	$0.34xV_{AA}$	V	
I_{CSD+}	CSD pin discharge current	70	100	130	μΑ	$V_{CSD} = V_{SS} + 5V$
I_{CSD-}	CSD pin charge current	70	100	130	μΑ	$V_{CSD} = V_{SS} + 5V$
t _{SDn}	CHn shutdown propagation delay from V _{CSD} > V _{SS} + Vth _{OCH} to Shutdown	-	-	250	ns	
t _{OCHn}	CHn propagation delay time from V_{CSHn} > Vth _{OCHn} to Shutdown, n=1-3	-	-	500	ns	Fig.4
t _{OCLn}	CHn propagation delay time from Vsn> Vth _{OCL} to Shutdown, n=1-3	-	-	500	ns	Fig.3
toclfault	CH1 propagation delay time from Vs1> Vth _{OCL} to FAULT	-	285	-	ns	


Electrical Characteristics (cont'd)

Symbol	Definition	Min	Тур	Max	Units	Test Conditions
Gate Driv		IVIIII	тур	IVIAX	Ullits	Test Conditions
lo+n	CHn output high short circuit current (Source) , n=1-3	-	0.5	-	Α	Vo=0V, PW≤10µS
lo-n	CHn output low short circuit current (Sink) , n=1-3	-	0.6	-	Α	Vo=12V, PW <u><</u> 10μS
V_{OLn}	CHn low level out put voltage LO – COM, HO - VS, n=1-3	-	-	0.1	V	lo=0A
V_{OHn}	CHn high level out put voltage VCC – LO, VB - HO, n=1-3	-	-	1.4	V	10-07
Ton0n	CHn high and low side turn-on propagation delay, n=1-3	-	350	-	ns	$V_{DT} = V_{CC}, V_{DS} = V_{AA}$
Toff0n	CHn high and low side turn-off propagation delay, n=1-3	-	325	-	ns	VDT - VCC, VDS-VAA
Ton1n	CHn high and low side turn-on propagation delay, n=1-3	-	145	-	ns	$V_{DT} = V_{CC}, V_{DS} = V_{SS}$
Toff1n	CHn high and low side turn-off propagation delay, n=1-3	-	100	-	ns	VDT - VCC, VDS-VSS
tr	Turn-on rise time	-	25	50	ns	
tf	Turn-off fall time	-	20	40	ns	
DT1n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HOn turn-off to LnO turn-on (DT _{HO-LO})	30	45	60	ns	V _{DT} >V _{DT1,}
DT2n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HOn turn-off to LOn turn-on (DT _{HO-LO})	45	65	85	ns	$V_{DT1}>V_{DT}>V_{DT2,}$
DT3n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HOn turn-off to LOn turn-on (DT _{HO-LO})	60	85	110	ns	$V_{DT2}>V_{DT}>V_{DT3,}$
DT4n	CHn deadtime: LOn turn-off to HOn turn-on (DT _{LO-HO}) & HO turn-off to LOn turn-on (DT _{HO-LO})V _{DT} = V_{DT4}	80	105	145	ns	V _{DT} <v<sub>DT3</v<sub>
V_{DT1}	DT mode select threshold 1			0.63xVcc	V	
V_{DT2}	DT mode select threshold 2			0.40xVcc	V	
V_{DT3}	DT mode select threshold 3	0.21xVcc	0.23xVcc	0.25xVcc	V	
Vth _{DS}	DS pin input threshold	$0.4xV_{AA}$	$0.5xV_{AA}$	$0.6xV_{AA}$	V	V _{SS} =0V


Functional Block Diagram

Input/Output Pin Equivalent Circuit Diagrams

Input/Output Pin Equivalent Circuit Diagrams (cont'd)

Lead Definitions

	Cumbal	Description
Pin#	Symbol	Description
		Clipping detection output
1	CLIP3	CH1, open drain,
		referenced to GND
		Clipping detection output
2	CLIP2	CH2, open drain,
		referenced to GND
		Clipping detection output
3	CLIP1	CH3, open drain,
		referenced to GND
4		Fault output, open drain,
4	FAULT	referenced to GND
5	DCP	DC offset protection input
6	NC	' '
-		CH2 High side over current
7	CSH2	sensing input, referenced
'	00112	to VS2
		CH2 High side floating
8	VB2	supply
9	HO2	CH2 High side output
9	1102	
10	VS2	CH2 High side floating
4.4	NO	supply return
11	NC	
12	VS1	CH1 High side floating
		supply return
13	HO1	CH1 High side output
14	VB1	CH1 High side floating
1 -	V D 1	supply
		CH1 High side over current
15	CSH1	sensing input, referenced
		to VS1
16	NC	
17	LO1	CH1 Low side output
18	LO2	CH2 Low side output
19	VCC2	Low side gate drive supply
		Low side gate drive supply
20	COM2	return
24	1.02	•
21	LO3	CH3 Low side output
22	NC	
23		CH3 High side over current
	CSH3	sensing input, referenced
		to VS3
24	VB3	CH3 High side floating
24	V D 3	supply
	-	

Pin#	Symbol	Description
25	HO3	CH3 High side output
26	VS3	CH3 High side floating supply return
27	NC	
28	OTP1	Over temperature sensor input 1
29	OTP2	Over temperature sensor input 2
30	OTP3	Over temperature sensor input 3
31	СОМ	Low side gate drive supply return
32	VCC	Low side gate drive supply
33	DT	Deadtime program, reference to COM
34	OCSET	Low side OCP threshold, referenced to COM
35	VREF	5.1V reference voltage output for OCSET
36	NC	
37	DS	Propagation delay select (VAA: Normal, VSS: Shorter)
38	COMP3	CH3 PWM comparator input
39	IN3	CH3 inverting audio input
40	NC	
41	GND	Input reference GND
42	VSS	Floating input negative supply
43	VAA	Floating input positive supply
44	IN2	CH2 inverting audio input
45	COMP2	CH2 PWM comparator input
46	IN1	CH1 inverting audio input
47	COMP1	CH1 PWM comparator input
48	CSD	Protection timer capacitor

Lead Assignments

CLIP3 GS
CLIP1 CCSET
FAULT DT 3
o DCP VCC 3
∞ NC COM 5
CSH2 OTP3
∞ VB2 OTP2 🖁
→ HO2 OTP1 🖁
₽ VS2 NC NC
F NC VS3 R
NS1 HO1 LO1 LO2 NCC2 COM2 CSH3 NC COM2 SH3
VS1

Application Information and Additional Details

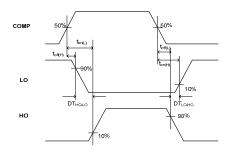


Figure 1 Switching Time Waveform Definitions

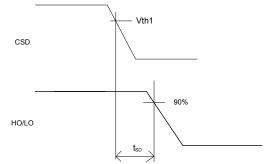


Figure 2 CSD to Shutdown Waveform Definitions

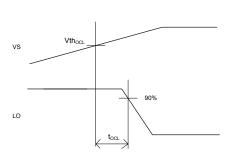


Figure 3 $V_S > Vth_{OCL}$ to Shutdown Waveform

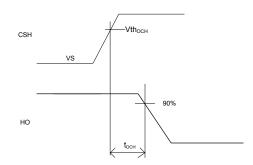
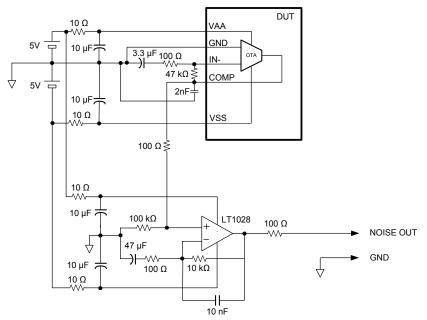
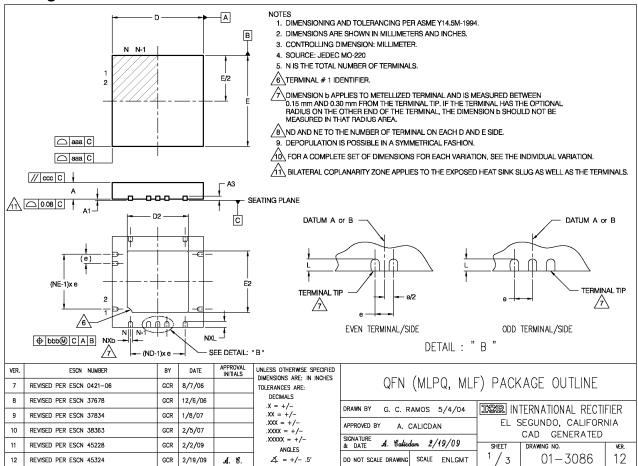
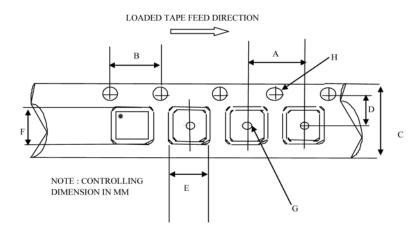
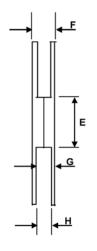


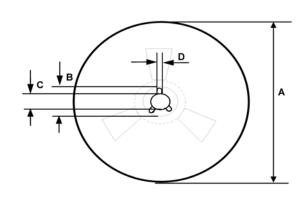
Figure 4 V_{CSH} > Vth_{OCH} to Shutdown Waveform


Figure 5: OTA input noise voltage measurement circuit

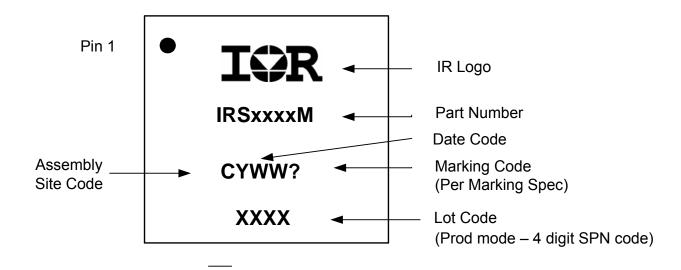
Package Details: MLPQ 7X7


VKKD-4NJ1						
MILLIMETERS		INCHES				
MIN	NOM	MAX	MIN	NOM	MAX	
0.80	0.90	1.00	.032	.035	.039	
0.00	0.02	0.05	.000	.0008	.0019	
0.20 REF			.008 REF			
0.18	0.25	0.30	.0071	.0098	.0118	
5.40	5.55	5.65	.213	.219	.222	
	7.00 BSC			.276 BSC		
7.00 BSC		.276 BSC				
5.40	5.55	5.65	.213	.219	.222	
0.30	0.40	0.50	.012	.016	.020	
0.50 PITCH		.020 PITCH				
	48		48			
12		12				
12		12				
0.15		.0059				
0.10			.0039			
0.10			.0039			
	0.05		.0019			


Tape and Reel Details: MLPQ 7X7

CARRIER TAPE DIMENSION FOR 48MLPQ7X7

	Metric		Imperial	
Code	Min Max		Min	Max
Α	11.90	12.10	0.474	0.476
В	3.90	4.10	0.153	0.161
С	15.70	16.30	0.618	0.641
D	7.40	7.60	0.291	0.299
E	7.15	7.35	0.281	0.289
F	7.15	7.35	0.281	0.289
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062



REEL DIMENSIONS FOR 48MLPQ7X7

	Metric		Imperial	
Code	Min Max		Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	22.4	n/a	0.881
G	18.5	21.1	0.728	0.83
Н	16.4	18.4	0.645	0.724

Part Marking Information

Ordering Information

Basa Bast Namelan		Standard	Pack	Occupation Boot Name Lan	
Base Part Number	Package Type	Form	Quantity	Complete Part Number	
IRS2053M	MLPQ 48 7x7	Tube / Bulk	52	IRS2053MPBF	
		Tape and Reel	3000	IRS2053MTRPBF	

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

WORLD HEADQUARTERS:

233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

www.irf.com