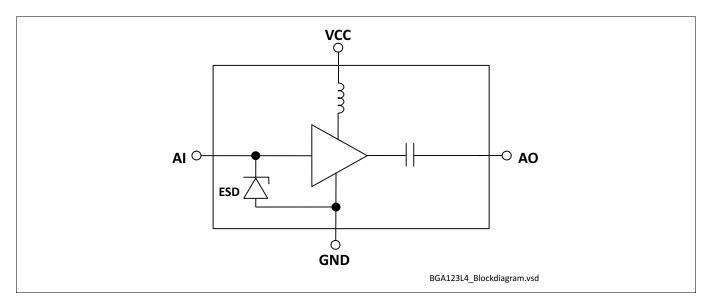


BGA123L4

Small Footprint Ultra Low Current Low Noise Amplifier for Global Navigation Satellite Systems (GNSS)

Features

- Operating frequencies: 1550 1615 MHz
- Ultra low current consumption: 1.1 mA
- Wide supply voltage range: 1.1 V to 3.6 V
- High insertion power gain: 18.2 dB
- Low noise figure: 0.75 dB
- 2 kV HBM ESD protection (including AI pin)
- Ultra small TSLP-4-11 leadless package (footprint: 0.7 x 0.7 x 0.31 mm³)
- RF output internally matched to 50 Ohm
- Only one external SMD compenent necessary
- Pb-free (RoHS complaint) package


Application

BGA123L4 is designed to enhance GNSS signal sensitivity especially in wearables and mobile cellular IoT devices. With 18.2 dB gain and only 0.75 dB noise figure it ensures high system sensitivity. The current needed is only 1.1 mA which means just 1.3 mW power consumption, which is critical to help to conserve batteries. The wide supply voltage range of 1.1 V to 3.6 V ensures flexible design and high compatibility. It supports all GNSS systems including GPS, GLONASS, Beidou and Galileo.

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

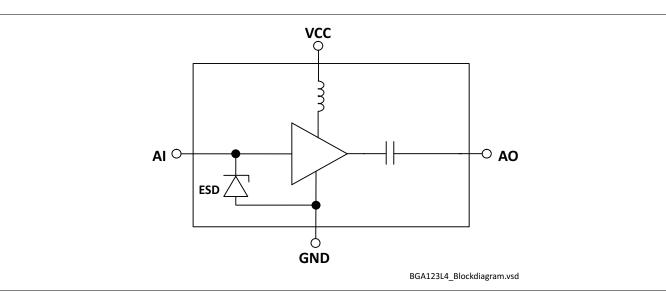
Block diagram

Table of Contents

Table of Contents

	Table of Contents	2
1	Features	3
2	Maximum Ratings	5
3	Electrical Characteristics	6
4	Application Information	9
5	Package Information	10

Data Sheet


Features

RoHS

1 Features

- Operating frequencies: 1550 1615 MHz
- Ultra low current consumption: 1.1 mA
- Wide supply voltage range: 1.1 V to 3.6 V
- High insertion power gain: 18.2 dB
- Low noise figure: 0.75 dB
- 2 kV HBM ESD protection (including AI pin)
- Ultra small TSLP-4-11 leadless package (footprint: 0.7 x 0.7 x 0.31 mm³)
- RF output internally matched to 50 Ohm
- Only one external SMD compenent necessary
- Pb-free (RoHS complaint) package
- B7HF Silicon Germanium technology

Product Name	Marking	Package
BGA123L4	В	TSLP-4-11

Features

4

Description

The BGA123L4 is a ultra low current low noise amplifier for Global Navigation Satellite Systems (GNSS) which covers all GNSS frequency bands from 1550 MHz to 1615 MHz like GPS, GLONASS, Beidou, Galileo and others. The LNA provides 18.2 dB gain and 0.75 dB noise figure at a current consumption of only 1.1 mA in the application configuration described in **Chapter 4**. The BGA123L4 is based upon Infineon Technologies' B7HF Silicon Germanium technology. It operates from 1.1 V to 3.6 V supply voltage.

LNA input

Pin Definition and Function

Table 1 Pint	Table 1 Pin Definition and Function							
Pin No.	Name	Function						
1	VCC	DC supply						
2	AO	LNA output						
3	GND	Ground						

Table 1Pin Definition and Function

AI

Downloaded from Arrow.com.

Data Sheet

Maximum Ratings

2 Maximum Ratings

Table 2Maximum Ratings

Parameter	Symbol		Value	Unit	Note or	
		Min.	Тур.	Max.		Test Condition
Voltage at pin VCC	V _{cc}	-0.3	-	3.6	V	1)
Voltage at pin Al	V _{AI}	-0.3	-	0.9	V	-
Voltage at pin AO	V _{AO}	-0.3	-	V _{CC} + 0.3	V	-
Voltage at pin GND	V _{GND}	-0.3	-	0.3	V	-
Current into pin VCC	I _{cc}	-	-	10	mA	-
RF input power	P _{IN}	-	-	0	dBm	-
Total power dissipation, $T_{\rm S} < 148 ^{\circ}{\rm C}^{2)}$	P _{tot}	-	-	40	mW	-
Junction temperature	TJ	-	-	150	°C	-
Ambient temperature range	T _A	-40	-	85	°C	-
Storage temperature range	T _{STG}	-65	-	150	°C	-
ESD capability all pins	V _{ESD_HBM}	-2000	-	2000	V	according to JS-001

1) All voltages refer to GND-Node unless otherwise noted

2) $T_{\rm S}$ is measured on the ground lead at the soldering point

Attention: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Electrical Characteristics

3 Electrical Characteristics

Table 3 Electrical Characteristics¹⁾

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.2 V, f = 1550 - 1615 MHz

Parameter	Symbol	Values			Unit	Note or Test Condition	
		Min.	Тур.	Max.			
Supply voltage	V _{cc}	1.1	1.8	3.6	V	ON-Mode	
		0.0	-	0.4	V	OFF-Mode	
Supply current	I _{CC}	-	1.05	1.55	mA	ON-Mode, Vcc=1.2V	
		-	0.1	2	μA	OFF-Mode	
Insertion power gain f = 1575 MHz	S ₂₁ ²	16.4	17.9	19.4	dB	ON-Mode	
Noise figure ²⁾ f = 1575 MHz, $Z_{\rm S}$ = 50 Ω	NF	-	0.75	1.25	dB	ON-Mode, $Z_S = 50 \Omega$	
Input return loss ³⁾ f = 1575 MHz	RL _{IN}	7	9	-	dB	ON-Mode	
Output return loss ³⁾ f = 1575 MHz	RL _{OUT}	10	16	-	dB	ON-Mode	
Reverse isolation ³⁾ f = 1575 MHz	1/ S ₁₂ ²	25	36	-	dB	ON-Mode	
Transient time ⁴⁾⁷⁾	t _s	-	0.5	2	μs	ON- to OFF-Mode	
		-	9	12	μs	OFF- to ON-Mode	
Inband input 1dB-compression point, $f = 1575 \text{ MHz}^{3}$	<i>IP</i> _{1dB}	-21	-17	-	dBm	ON-Mode	
Inband input 3 rd -order intercept point ³⁾⁵⁾ $f_1 = 1575$ MHz, $f_2 = f_1 + / - 1$ MHz	IIP ₃	-19	-14	-	dBm	ON-Mode	
Out of band input 3 rd -order intercept point ³⁾⁶⁾ $f_1 = 1713$ MHz, $f_2 = 1851$ MHz	OOB-IIP ₃	-14	-9	-	dBm	ON-Mode	
Stability ⁷⁾	k	> 1	-	-		f = 20 MHz 10 GHz	

1) Based on the application described in chapter 4

2) PCB losses are subtracted

3) Verification based on AQL; not 100% tested in production

4) To be within 1 dB of the final gain

- 5) Input power = -30 dBm for each tone
- 6) Input power = -20 dBm at f_1 and -65 dBm at f_2
- 7) Guaranteed by device design; not tested in production

Electrical Characteristics

Table 4Electrical Characteristics1)

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 1.8 V, f = 1550 - 1615 MHz

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{CC}	1.1	1.8	3.6	V	ON-Mode
		0.0	-	0.4	V	OFF-Mode
Supply current	I _{CC}	-	1.1	1.6	mA	ON-Mode, Vcc=1.8V
		-	0.1	2	μA	OFF-Mode
Insertion power gain f = 1575 MHz	S ₂₁ ²	16.7	18.2	19.7	dB	ON-Mode
Noise figure ²⁾ $f = 1575 \text{ MHz}, Z_{\text{S}} = 50 \Omega$	NF	-	0.75	1.25	dB	ON-Mode, $Z_S = 50 \Omega$
Input return loss ³⁾ f = 1575 MHz	RL _{IN}	7	9	-	dB	ON-Mode
Output return loss ³⁾ f = 1575 MHz	RL _{OUT}	10	16	_	dB	ON-Mode
Reverse isolation ³⁾ f = 1575 MHz	$1/ S_{12} ^2$	25	36	-	dB	ON-Mode
Transient time ⁴⁾⁷⁾	t _s	-	0.5	2	μs	ON- to OFF-Mode
		-	6	9	μs	OFF- to ON-Mode
Inband input 1dB-compression point, $f = 1575 \text{ MHz}^{3)}$	<i>IP</i> _{1dB}	-19	-15	-	dBm	ON-Mode
Inband input 3 rd -order intercept point ³⁾⁵⁾ $f_1 = 1575$ MHz, $f_2 = f_1 + / - 1$ MHz	IIP ₃	-19	-14	-	dBm	ON-Mode
Out of band input 3 rd -order intercept point ³⁾⁶⁾ $f_1 = 1713$ MHz, $f_2 = 1851$ MHz	OOB-IIP ₃	-14	-9	-	dBm	ON-Mode
Stability ⁷⁾	k	> 1	-	-		f = 20 MHz 10 GHz

1) Based on the application described in chapter 4

2) PCB losses are subtracted

3) Verification based on AQL; not 100% tested in production

4) To be within 1 dB of the final gain

5) Input power = -30 dBm for each tone

6) Input power = -20 dBm at f_1 and -65 dBm at f_2

7) Guaranteed by device design; not tested in production

Electrical Characteristics

Table 5Electrical Characteristics1)

 $T_{\rm A}$ = 25 °C, $V_{\rm CC}$ = 2.8 V, f = 1550 - 1615 MHz

Parameter	Symbol	Values			Unit	Note or Test Condition
		Min.	Тур.	Max.		
Supply voltage	V _{cc}	1.1	1.8	3.6	V	ON-Mode
		0.0	-	0.4	V	OFF-Mode
Supply current	I _{cc}	_	1.2	1.7	mA	ON-Mode, Vcc=2.8V
		_	0.1	2	μA	OFF-Mode
Insertion power gain f = 1575 MHz	S ₂₁ ²	16.9	18.4	19.9	dB	ON-Mode
Noise figure ²⁾ $f = 1575 \text{ MHz}, Z_{\text{S}} = 50 \Omega$	NF	-	0.75	1.25	dB	ON-Mode, $Z_S = 50 \Omega$
Input return loss ³⁾ f = 1575 MHz	RL _{IN}	7	9	-	dB	ON-Mode
Output return loss ³⁾ f = 1575 MHz	RL _{OUT}	10	15	-	dB	ON-Mode
Reverse isolation ³⁾ f = 1575 MHz	1/ S ₁₂ ²	25	36	-	dB	ON-Mode
Transient time ⁴⁾⁷⁾	t _s	-	0.5	2	μs	ON- to OFF-Mode
	-	-	5	8	μs	OFF- to ON-Mode
Inband input 1dB-compression point, $f = 1575 \text{ MHz}^{3}$	<i>IP</i> _{1dB}	-17	-13	-	dBm	ON-Mode
Inband input 3 rd -order intercept point ³⁾⁵⁾ $f_1 = 1575$ MHz, $f_2 = f_1 + / - 1$ MHz	IIP ₃	-19	-14	-	dBm	ON-Mode
Out of band input 3 rd -order intercept point ³⁾⁶⁾ $f_1 = 1713$ MHz, $f_2 = 1851$ MHz	OOB-IIP ₃	-14	-9	-	dBm	ON-Mode
Stability ⁷⁾	k	> 1	_	-		f = 20 MHz 10 GHz

1) Based on the application described in chapter 4

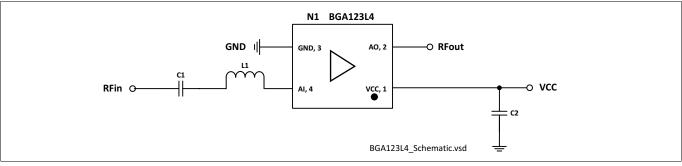
2) PCB losses are subtracted

3) Verification based on AQL; not 100% tested in production

4) To be within 1 dB of the final gain

5) Input power = -30 dBm for each tone

6) Input power = -20 dBm at f_1 and -65 dBm at f_2


7) Guaranteed by device design; not tested in production

Application Information

4 Application Information

Application Board Configuration

Figure 2 Application Schematic BGA123L4

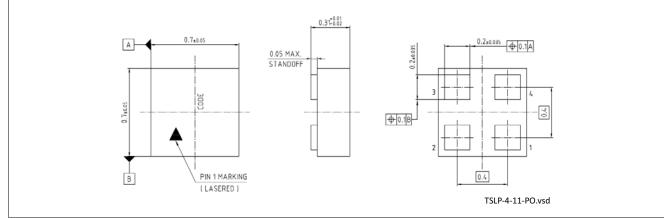
Table 6 Bill of Materials

Name	Value	Package	Manufacturer	Function
C1 (optional)	1nF	0402	Various	DC block ¹⁾
C2	≥ 1nF ²⁾	0402	Various	RF bypass ³⁾
L1	10nH	0402	Murata LQW15 type	Input matching
N1	BGA123L4	TSLP-4-11	Infineon	SiGe LNA

1) DC block might be realized with pre-filter in GNSS applications

2) For data sheet charcteristics 1nF used

3) RF bypass recommended to mitigate power supply noise


A list of all application notes is available at http://www.infineon.com/gpslna.appnotes

Downloaded from Arrow.com.

Package Information

5 Package Information

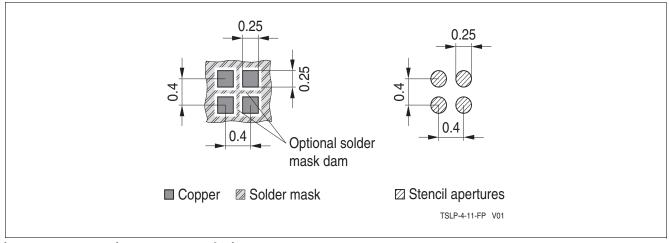
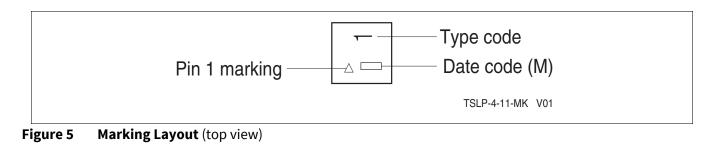
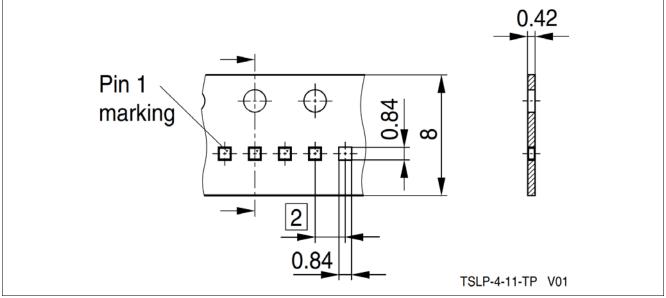




Figure 4 Footprint Recommendation TSLP-4-11

Package Information

Revision History							
Page or Item Subjects (major changes since previous revision)							
Revision 2.0 (min/max), 2017-09-14							
1, 3, 4, 6, 7, 8	Update Electrical Characteristics						
13	Update Trademark Information						

Edition 2017-09-14 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.