

AZ7500B

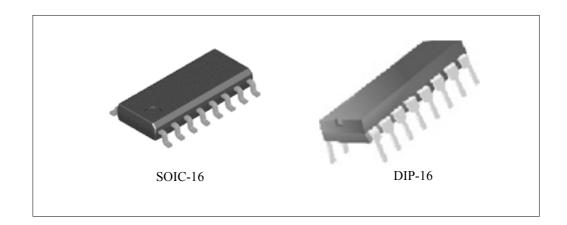
PULSE-WIDTH-MODULATION CONTROL CIRCUITS

General Description

The AZ7500B is a voltage mode pulse width modulation switching regulator control circuit designed primarily for power supply control.

The AZ7500B consists of a reference voltage circuit, two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, and an output control circuit. The precision of voltage reference (V_{REF}) is improved up to \pm 1% through trimming and this provides a better output voltage regulation. The AZ7500B provides for pushpull or single-ended output operation, which can be selected through the output control.

The difference between AZ7500B and AZ7500C is that they have 4.95V and 5V reference voltage respectively.


The AZ7500B is available in standard packages of DIP-16 and SOIC-16.

Features

- Stable 4.95V Reference Voltage Trimmed to ±1.0% Accuracy
- Uncommitted Output TR for 200mA Sink or Source Current
- Single-End or Push-Pull Operation Selected by Output Control
- Internal Circuitry Prohibits Double Pulse at Either Output
- Complete PWM Control Circuit with Variable Duty Cycle
- On-Chip Oscillator with Master or Slave Operation

Applications

- SMPS
- Back Light Inverter
- Charger

Figure 1. Package Types of AZ7500B

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Pin Configuration

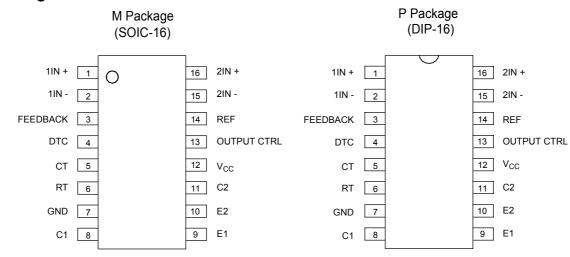
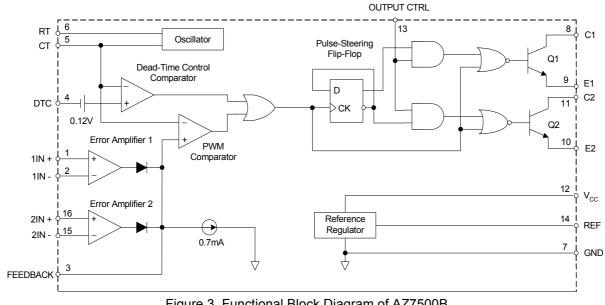



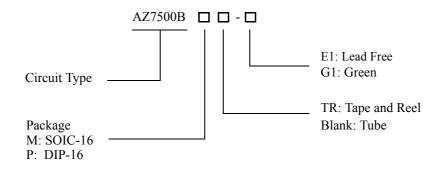
Figure 2. Pin Configuration of AZ7500B (Top View)

Output Function Control Table

Signal for Output Control	Output Function		
V _I = GND	Single-ended or parallel output		
$V_I = V_{REF}$	Normal push-pull operation		

Functional Block Diagram

Figure 3. Functional Block Diagram of AZ7500B


Apr. 2010 Rev. 1. 6

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Ordering Information

Package Temperature	Part Number		Mark	Packing Type		
Range Range		Lead Free	Green	Lead Free	Green	I acking Type
SOIC-16		AZ7500BM-E1	AZ7500BM-G1	AZ7500BM-E1	AZ7500BM-G1	Tube
5010-10	-40 to 85°C	AZ7500BMTR-E1	AZ7500BMTR-G1	AZ7500BM-E1	AZ7500BM-G1	Tape & Reel
DIP-16		AZ7500BP-E1	AZ7500BP-G1	AZ7500BP-E1	AZ7500BP-G1	Tube

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant. Products with "G1" suffix are available in green packages.

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value		Unit
Supply Voltage (Note 2)	V _{CC}	40		V
Amplifier Input Voltage	VI	-0.3 to V _{CC} + 0.3		V
Collector Output Voltage	V _O	40		V
Collector Output Current	IO	250		mA
Package Thermal Impedance	P	M Package	73	00/00
(Note 3)	$R_{\theta JA}$	P Package	67	- °C/W
Lead Temperature 1.6mm from case for 10 seconds		260		°C
Storage Temperature Range	T _{STG}	-65 to 150		°C
ESD rating (Machine Model)		200		V

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Note 2: All voltage values are with respect to the network ground terminal.

Note 3: Maximum power dissipation is a function of $T_J(max)$, $R_{\theta JA}$ and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/R_{\theta JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	V _{CC}	7	15	36	V
Collector Output Voltage	V _{C1} , V _{C2}		30	36	V
Collector Output Current (Each Transistor)	I _{C1} , I _{C2}			200	mA
Amplifier Input Voltage	VI	0.3		V _{CC} - 2	V
Current Into Feedback Terminal	I _{FB}			0.3	mA
Reference Output Current	I _{REF}			10	mA
Timing Capacitor	C _T	0.00047	0.001	10	μF
Timing Resistor	R _T	1.8	30	500	KΩ
Oscillator Frequency	f _{osc}	1.0	40	200	KHz
PWM Input Voltage (Pin 3, 4, 14)		0.3		5.3	V
Operating Free-Air Temperature	T _A	-40		85	°C

Apr. 2010 Rev. 1. 6

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Electrical Characteristics

 $T_A=25^{\circ}C$, $V_{CC}=20V$, f=10KHz unless otherwise noted.

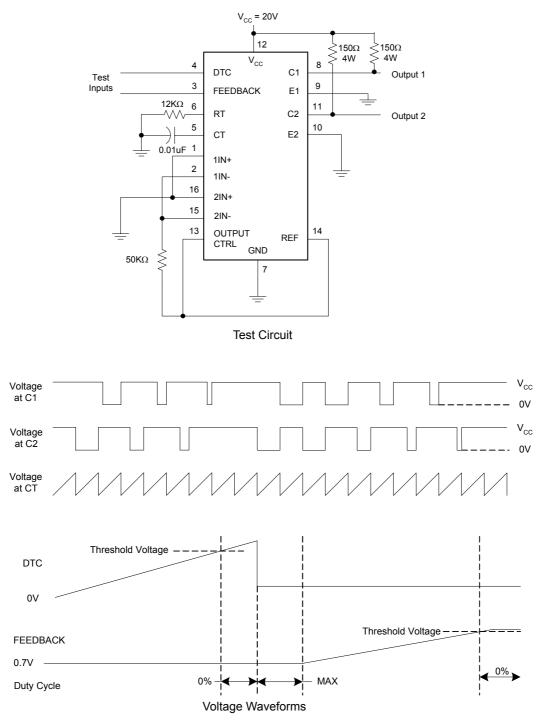
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reference Section			•		1	
Output Reference Voltage	V _{REF}	I _{REF} =1mA	4.90	4.95	5.0	V
		I_{REF} =1mA, T_A = -40 to 85°C	4.85	4.95	5.05	V
Line Regulation	R _{LINE}	$V_{CC} = 7V \text{ to } 36V$		2	25	mV
Load Regulation	R _{LOAD}	I _{REF} =1mA to 10mA		1	15	mV
Short-Circuit Output Current	I _{SC}	$V_{REF} = 0V$	10	35	50	mA
Oscillator Section					1	
		C _T =0.001μF, R _T =30KΩ,		40		
Oscillator Frequency	f _{OSC}	$C_{T}=0.01 \mu F, R_{T}=12 K \Omega$	9.2	10	10.8	KHz
obonianos i requency	-080	$C_T=0.01\mu F$, $R_T=12K\Omega$, $T_A=-40$	0.0		12	
		to 85°C	9.0			
Frequency Change with Temperature	$\Delta f / \Delta T$	$C_{T}=0.01\mu F, R_{T}=12K\Omega, T_{A}=-40$			1	%
		to 85°C			1	
Dead-Time Control Section		·				
Input Bias Current	I _{BIAS}	V_{CC} =15V, V4= 0 to 5.25V		-2	-10	μΑ
Maximum Duty Cycle	D(MAX)	V _{CC} =15V, V4= 0V,	45			%
Waximum Duty Cycle		Pin 13= V _{REF}				
Input Threshold Voltage	V _{ITH}	Zero Duty Cycle		3	3.3	v
		Maximum Duty Cycle	0			
Error-Amplifier Section	1		1	-	1	
Input Offset Voltage	V _{IO}	V3 = 2.5V		2	10	mV
Input Offset Current	I _{IO}	V3 = 2.5V		25	250	nA
Input Bias Current	I _{BIAS}	V3 = 2.5V		0.2	1	μΑ
Common-Mode Input Voltage Range	V _{CM}	$V_{CC}=7V$ to 36V	-0.3		V _{CC} -2	V
Open-Loop Voltage Gain	G _{VO}	$V_{\rm O} = 0.5 V$ to 3.5 V	70	95		dB
Unity-Gain Bandwidth	BW			650		KHz
Common-Mode Rejection Ratio	CMRR		65	80		dB
Output Sink Current (Feedback)	I _{SINK}	$V_{ID} = -15mV$ to -5V, V3 = 0.7V	-0.3	-0.7		mA
Output Source Current (Feedback)	I _{SOURCE}	$V_{ID}=15mV$ to 5V V3 = 3.5V	2			mA

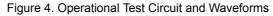
PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Electrical Characteristics (Continued)

Parameter		Symbol	Conditions	Min	Тур	Max	Unit	
PWM Comparator Sectio	n							
Input Threshold Voltage		V _{ITH}	Zero duty cycle		4	4.5	V	
Input Sink Current		I _{SINK}	V3 = 0.7V	-0.3	-0.7		mA	
Output Section						•		
Output Saturation Voltage	Common Emitter	V _{CE} (SAT)	$V_{\rm E} = 0V, I_{\rm C} = 200 {\rm mA}$		1.1	1.3		
	Emitter Follower	V _{CC} (SAT)	$V_{CC} = 15V,$ $I_E = -200mA$		1.5	2.5	V	
Collector Off-State Current		I _C (OFF)	$V_{CE} = 36V, V_{CC} = 36V$		2	100	μΑ	
Emitter Off-State Current		I _E (OFF)	$V_{CC} = V_C = 36V, V_E = 0$			-100	μΑ	
Total Device				ł				
Supply Current		I _{CC}	Pin 6 = V_{REF} , V_{CC} =15V		6	10	mA	
Output Switching Charac	teristics					•		
Rise Time		t _R	Common Emitter Common Collector		100	200	ns	
Fall Time		t _F	Common Emitter Common Collector		25	100	ns	

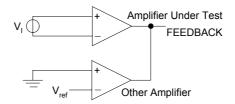

Apr. 2010 Rev. 1. 6

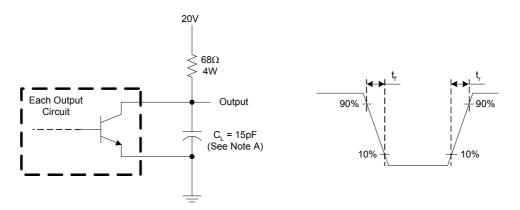


PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

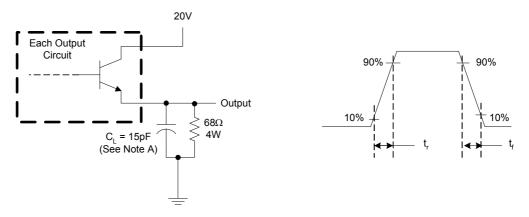
Parametr Measurement information


Apr. 2010 Rev. 1. 6


PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Parametr Measurement information (Continued)



Note A: C_L includes probe and jig capacitance.

Figure 6. Common-Emitter Configuration

Note A: C_L includes probe and jig capacitance.

Figure 7. Emitter-Follower Configuration

Apr. 2010 Rev. 1. 6

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Typical Performance Characteristics

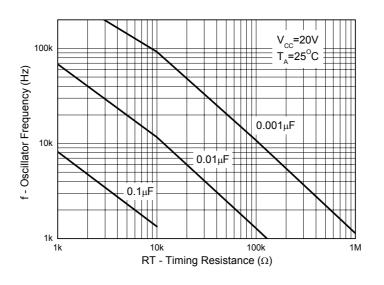


Figure 8. Oscillator Frequency vs. RT and CT

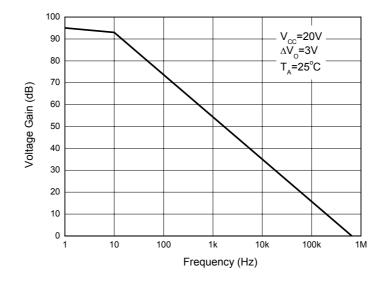


Figure 9. Error Amplifier Small-Signal Voltage Gain vs. Frequency

Apr. 2010 Rev. 1. 6

PULSE-WIDTH-MODULATION CONTROL CIRCUITS

AZ7500B

Typical Application

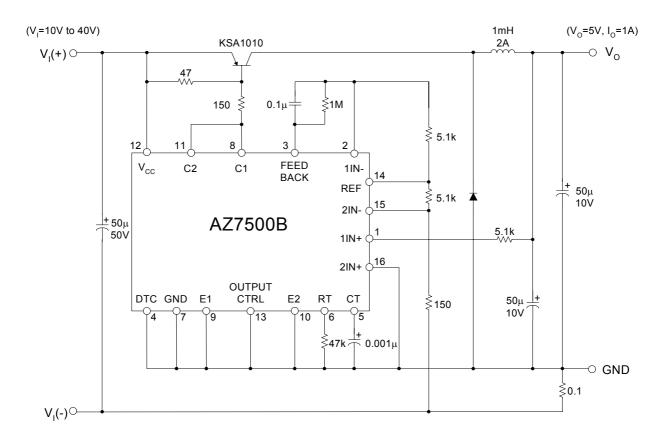
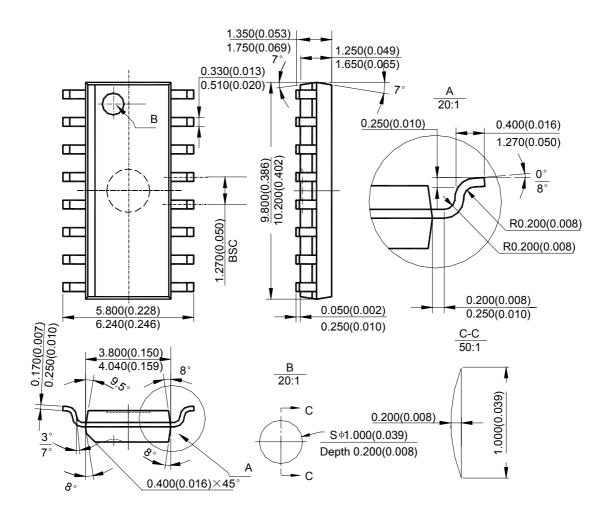


Figure 10. Pulse Width Modulated Step-Down Converter

Apr. 2010 Rev. 1. 6

PULSE-WIDTH-MODULATION CONTROL CIRCUITS


Data Sheet

AZ7500B

Mechanical Dimensions

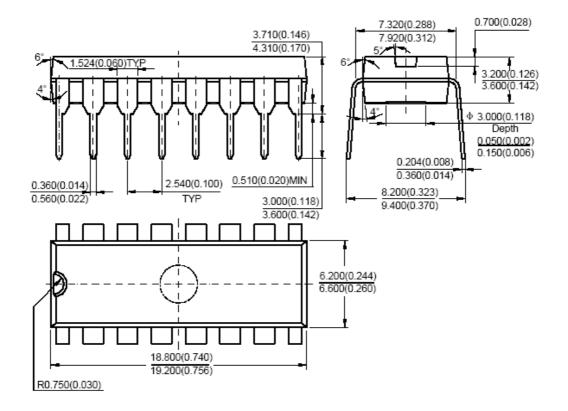
SOIC-16

Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

Apr. 2010 Rev. 1. 6

PULSE-WIDTH-MODULATION CONTROL CIRCUITS


Data Sheet

AZ7500B

Mechanical Dimensions (Continued)

DIP-16

Unit: mm(inch)

Note: Eject hole, oriented hole and mold mark is optional.

Apr. 2010 Rev. 1. 6

BCD Semiconductor Manufacturing Limited

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

- Headquarters

BCD Semiconductor Manufacturing Limited No. 1600, Zi Xing Road, Shanghai ZiZhu Science-based Industrial Park, 200241, China Tel: +86-21-24162266, Fax: +86-21-24162277

REGIONAL SALES OFFICE Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd., Shenzhen Office Unit A Room 1203, Skyworth Bldg., Gaoxin Ave.1.S., Nanshan District, Shenzhen, China Tel: +86-755-8826 7951

Fax: +86-755-8826 7865

- Wafer Fab

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. 800 Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei, Taiwan Tel: +886-2-2656 2808

Tel: +886-2-2656 2808 Fax: +886-2-2656 2806 USA Office BCD Semiconductor Corp. 30920 Huntwood Ave. Hayward, CA 94544, USA Tel : +1-510-324-2988 Fax: +1-510-324-2788