ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

N-channel TrenchMOS logic level FET

Rev. 02 — 23 February 2009

Product data sheet

Suitable for thermally demanding environments due to 175 °C rating

General purpose power switching

1. Product profile

1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

1.2 Features and benefits

- Low conduction losses due to low on-state resistance
- Suitable for logic level gate drive sources

1.3 Applications

- DC motor control
- DC-to-DC convertors

1.4 Quick reference data

Table 1. Quick reference

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C	-	-	75	V
I _D	drain current	$T_{mb} = 25 \text{ °C}; V_{GS} = 5 \text{ V};$ see <u>Figure 1;</u> see <u>Figure 3</u>	-	-	30	A
P _{tot}	total power dissipation	$T_{mb} = 25 \text{ °C}; \text{ see } Figure 2$	-	-	75	W
Dynamic	characteristics					
Q _{GD}	gate-drain charge	$V_{GS} = 5 V; I_D = 25 A;$ $V_{DS} = 60 V; T_j = 25 °C;$ see <u>Figure 11</u>	-	9	-	nC
Static ch	aracteristics					
R _{DSon}	drain-source on-state resistance	$V_{GS} = 10 \text{ V}; I_D = 15 \text{ A};$ $T_j = 25 \text{ °C}; \text{ see } Figure 9;$ see Figure 10	-	23	28	mΩ

N-channel TrenchMOS logic level FET

2. Pinning information

Table 2.	Pinning	information				
Pin	Symbol	Description	Simplified outline	Graphic symbol		
1	S	source		_		
2	S	source	mb			
3	S	source				
4	G	gate	q			
mb	D	mounting base; connected to drain	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}$	mbb076 S		
			SOT669 (LFPAK)			

3. Ordering information

Table 3. Ordering information

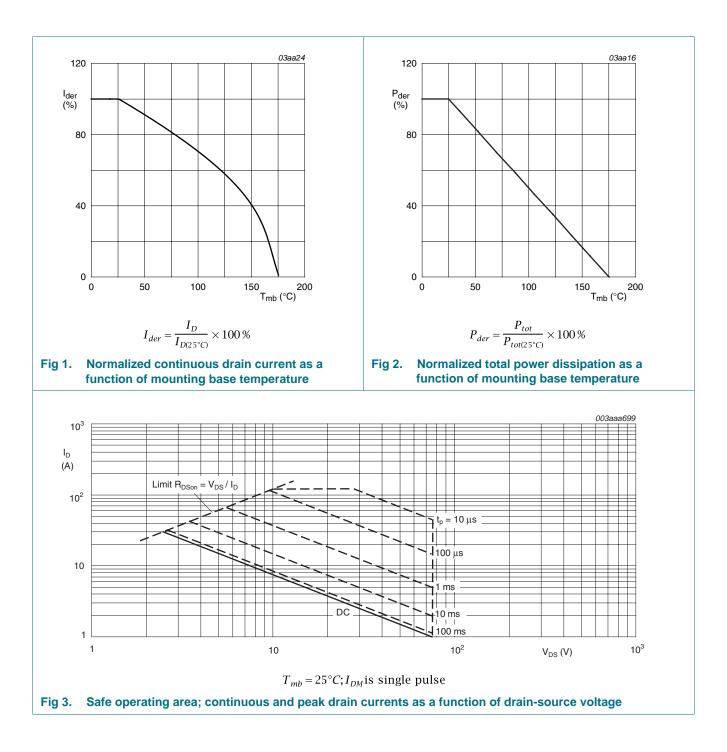
Type number	Package		
	Name	Description	Version
PH3075L	LFPAK	plastic single-ended surface-mounted package (LFPAK); 4 leads	SOT669

N-channel TrenchMOS logic level FET

4. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions		Min	Max	Unit
V _{DS}	drain-source voltage	T _j ≥ 25 °C; T _j ≤ 175 °C		-	75	V
V _{DGR}	drain-gate voltage	$T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}; R_{GS} = 20 \text{ k}\Omega$		-	75	V
V _{GS}	gate-source voltage			-15	15	V
I _D	drain current	$V_{GS} = 5 \text{ V}; T_{mb} = 100 \text{ °C}; \text{ see } \frac{\text{Figure 1}}{100 \text{ C}}$		-	21	А
		$V_{GS} = 5 \text{ V}; T_{mb} = 25 \text{ °C}; \text{ see } Figure 1; \text{ see } Figure 3$		-	30	А
I _{DM}	peak drain current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^\circ C$; see Figure 3		-	120	А
P _{tot}	total power dissipation	T _{mb} = 25 °C; see <u>Figure 2</u>		-	75	W
T _{stg}	storage temperature			-55	175	°C
Tj	junction temperature			-55	175	°C
Source-dra	ain diode					
I _S	source current	T _{mb} = 25 °C		-	30	А
I _{SM}	peak source current	$t_p \le 10 \ \mu s$; pulsed; $T_{mb} = 25 \ ^{\circ}C$		-	120	А
Avalanche	ruggedness					
E _{DS(AL)R}	repetitive drain-source avalanche energy	V_{GS} = 10 V; I_{D} = 3 A; V_{sup} \leq 75 V; unclamped; R_{GS} = 50 $\Omega;$	[1][2]	-	0.89	mJ
E _{DS(AL)S}	non-repetitive drain-source avalanche energy	V_{GS} = 10 V; $T_{j(init)}$ = 25 °C; I_D = 30 A; V_{sup} ≤ 75 V; unclamped; R_{GS} = 50 Ω		-	89	mJ

[1] Duty cycle is limited by the maximum junction temperature.

[2] Repetitive avalanche failure is not determined simply by thermal effects. Repetitive avalanche transients should only be applied for short bursts, not every switching cycle.

PH3075L

N-channel TrenchMOS logic level FET

1

10⁻¹

10⁻²

10⁻⁶

0.2

0.1

0.02

single shot

PH3075L

N-channel TrenchMOS logic level FET

Р

10⁻¹

tp

Т

t_p (s)

t

1

5. Thermal characteristics

10⁻⁵

П

10⁻⁴

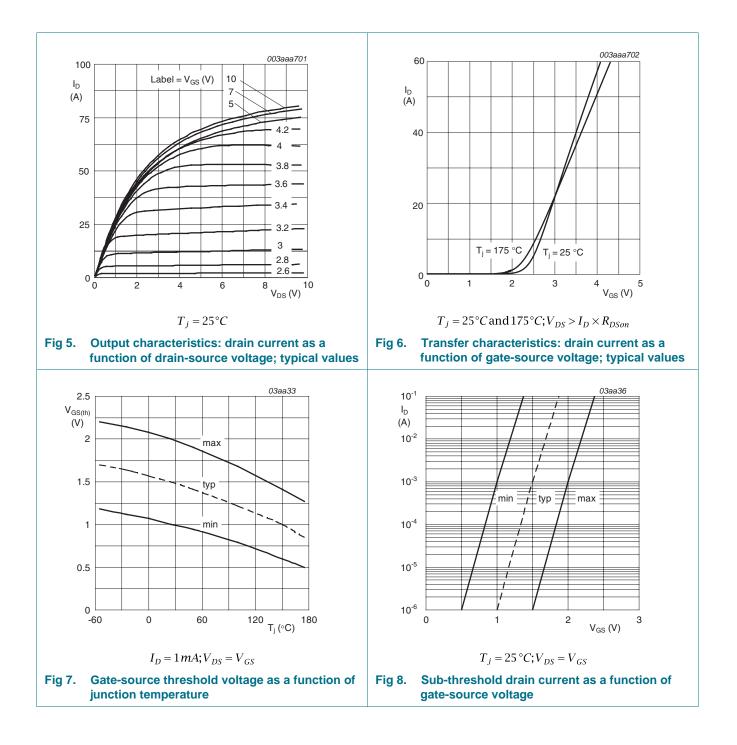
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-mb)}	thermal resistance from junction to mounting base	see <u>Figure 4</u>	-			K/W
10 Z _{th(j-mb)}					003aaa700	

Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

10⁻³

10⁻²

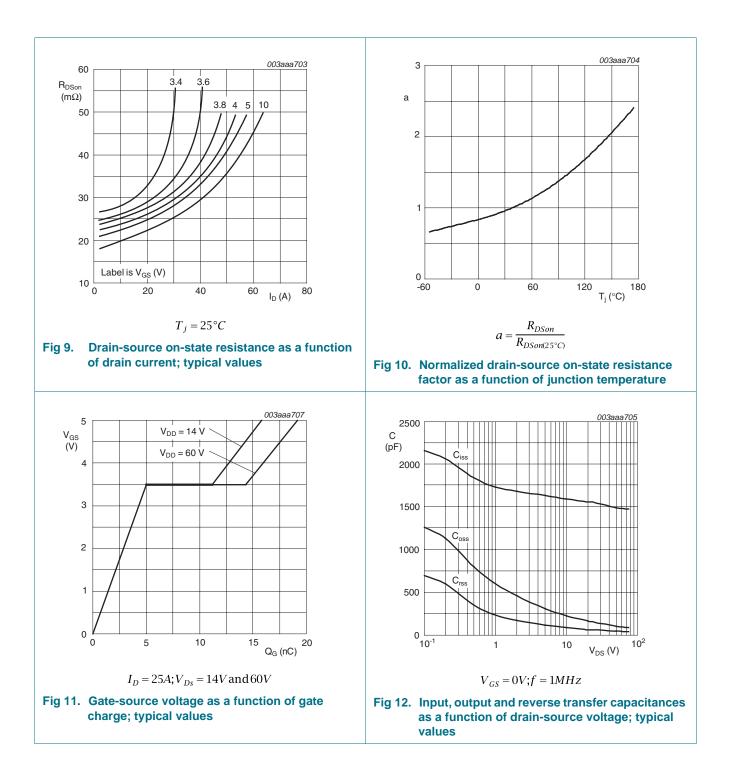
PH3075L


N-channel TrenchMOS logic level FET

6. Characteristics

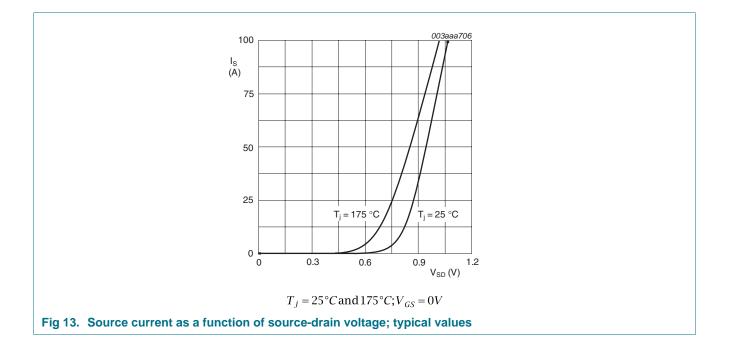
	Table 6.	Characteristics					
	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	Static cha	racteristics					
$ \begin{array}{c c c c c c } \mbox{Wage} & \begin{tabular}{ c c c c } \mbox{Wage} & \begin{tabular}{ c c c c } \mbox{Wage} & \begin{tabular}{ c c c c c } \mbox{Wage} & \begin{tabular}{ c c c c c c } \mbox{Wage} & \begin{tabular}{ c c c c c c c } \mbox{Wage} & \begin{tabular}{ c c c c c c c } \mbox{Wage} & \begin{tabular}{ c c c c c c c } \mbox{Wage} & \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	V _{(BR)DSS}		$I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^\circ C$	70	-	-	V
		breakdown voltage	$I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = 25 \ ^\circ C$	75	-	-	V
	V _{GS(th)}			-	-	2.3	V
$\begin{tabular}{ c c c c } c c c c c c c c c c c c c c $				1	1.5	2	V
$\begin{tabular}{ c c c c c } \hline $V_{DS} = 75 \ V; \ V_{GS} = 0 \ V; \ T_j = 175 \ ^{\circ}C & - & - & 500 \ \mu A \\ V_{GS} gate leakage current $V_{GS} = 15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & 2 & 100 \ nA \\ $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & 2 & 100 \ nA \\ $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & 2 & 100 \ nA \\ $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & 2 & 100 \ nA \\ $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & - & 72 \ m\Omega \\ $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C & - & - & 72 \ m\Omega \\ $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ I_j = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & - & 34 \ m\Omega \\ $V_{GS} = -10 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & 23 \ 28 \ m\Omega \\ $V_{GS} = 10 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & 25 \ 30 \ m\Omega \\ $V_{GS} = 5 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & 25 \ 30 \ m\Omega \\ $V_{GS} = 5 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & 25 \ 30 \ m\Omega \\ $V_{GS} = 5 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & 25 \ 30 \ m\Omega \\ $V_{GS} = 5 \ V; \ I_D = 15 \ A; \ T_j = 25 \ ^{\circ}C & - & 25 \ 30 \ m\Omega \\ $V_{GS} = 5 \ V; \ V_{GS} = 0 \ V; \ V_{GS} = 5 \ V \\ $V_{GS} = 10 \ U; \ V_{GS} = 5 \ V; \ V_{GS} = 0 \ V; \ V_{GS} = 5 \ V \\ $V_{GS} = 0 \ V; \ V_{GS} = 5 \ V \\ $V_{GS} = 0 \ V; \ f = 1 \ MHz; \ - & 1550 \ 2070 \ PF \\ $C_{GSS} \ 0 \ uput \ capacitance \ V_{DS} = 25 \ V; \ V_{GS} = 0 \ V; \ f = 1 \ MHz; \ - & 1550 \ 2070 \ PF \\ $C_{GSS} \ 0 \ uput \ capacitance \ V_{DS} = 30 \ V; \ R_j = 12 \ \Omega; \ V_{GS} = 5 \ V; \ - & 16 \ ns \\ $t_j \ rise time \ R_{G(ext)} = 10 \ \Omega; \ T_j = 25 \ ^{\circ}C \ e^{-} \ 106 \ - \ ns \\ $t_j \ fint \ m^{\circ} \ m^{\circ}$			= == == ,	0.5	-	-	V
	I _{DSS}	drain leakage current	V_{DS} = 75 V; V_{GS} = 0 V; T_j = 25 °C	-	-	1	μΑ
$ \begin{array}{ c c c c c c } \hline V_{GS} = 15 \ V; \ V_{DS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C & - & 2 & 100 & nA \\ \hline N_{GS} = 15 \ V; \ V_{DS} = 5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 175 \ ^{\circ}C; & - & - & 72 & m\Omega \\ \hline N_{GS} = 4.5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & - & 34 & m\Omega \\ \hline N_{GS} = 4.5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & - & 34 & m\Omega \\ \hline N_{GS} = 4.5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 23 & 28 & m\Omega \\ \hline N_{GS} = 5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 25 & 30 & m\Omega \\ \hline N_{GS} = 5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 25 & 30 & m\Omega \\ \hline N_{GS} = 5 \ V; \ I_{D} = 15 \ A; \ T_{j} = 25 \ ^{\circ}C; & - & 25 & 30 & m\Omega \\ \hline N_{GS} = gate-drain \ charge & I_{D} = 25 \ ^{\circ}C; \ see \ Figure 10 & - & 5 & - & nC \\ \hline Q_{GS} & gate-drain \ charge & T_{j} = 25 \ ^{\circ}C; \ see \ Figure 11 & - & 5 & - & nC \\ \hline Q_{GS} & gate-drain \ charge & T_{j} = 25 \ ^{\circ}C; \ see \ Figure 11 & - & 5 & - & nC \\ \hline Q_{GS} & gate-drain \ charge & T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 & - & 150 & 179 \ PF \\ \hline C_{rss} & reverse \ transfer \ capacitance & T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 & - & 106 & - & ns \\ \hline t_{i} & rise \ time & R_{G(ext)} = 10 \ \Omega; \ T_{j} = 25 \ ^{\circ}C \\ & - & 106 & - & ns \\ \hline t_{d(off)} & turn-off \ delay \ time & R_{G(ext)} = 10 \ \Omega; \ T_{j} = 25 \ ^{\circ}C \\ & see \ Figure 13 & - & ns \\ \hline Source-drain \ voltage & I_{S} = 15 \ A; \ V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}C \\ & see \ Figure 13 \\ \hline t_{r} & reverse \ recovery \ time & I_{S} = 20 \ A; \ dls \ dls = -100 \ A/\mu s; \ V_{GS} = -10 \ V; \\ & - & 0.85 \ 1.2 \ V \\ \hline \end{array}$			$V_{DS} = 75 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 175 \text{ °C}$	-	-	500	μΑ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	I_{GSS}	gate leakage current	V_{GS} = 15 V; V_{DS} = 0 V; T_j = 25 °C	-	2	100	nA
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			$V_{GS} = -15 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C}$	-	2	100	nA
	R _{DSon}			-	-	72	mΩ
$ \frac{\text{see Figure 9; see Figure 10}}{\text{V}_{GS} = 5 \text{ V; } \text{ I}_{D} = 15 \text{ A; } \text{ T}_{j} = 25 ^{\circ}\text{C; see Figure 10}} - 25 30 \text{ m}\Omega $				-	-	34	mΩ
$\begin{array}{ c c c c c c } \hline see \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$				-	23	28	mΩ
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				-	25	30	mΩ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Dynamic	characteristics					
$\begin{array}{c c c c c c c } \hline Q_{GD} & gate-drain charge & & & & & & & & & & & & & & & & & & &$	Q _{G(tot)}	total gate charge		-	19	-	nC
$ \begin{array}{c c c c c c c c } \hline C_{iss} & input capacitance \\ \hline C_{iss} & output capacitance \\ \hline C_{oss} & output capacitance \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 12 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 13 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 13 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 13 \\ \hline T_{j} = 25 \ ^{\circ}C; \ see \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 25 \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ See \ Figure 13 \\ \hline T_{j} = 20 \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ ^{\circ}C; \ See \ Figure 10 \ ^{\circ}C; \ ^{\circ}C; \ ^{\circ}C; \ ^{\circ}C; \ ^{\circ}C; \ ^{\circ}C$	Q_{GS}	gate-source charge	T _j = 25 °C; see <u>Figure 11</u>	-	5	-	nC
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Q_{GD}	gate-drain charge		-	9	-	nC
C_{rss} reverse transfer capacitance $V_{DS} = 30 \text{ V}; \text{ R}_L = 1.2 \Omega; \text{ V}_{GS} = 5 \text{ V};$ t_r $ 60$ 80 pF $t_{d(on)}$ turn-on delay time $V_{DS} = 30 \text{ V}; \text{ R}_L = 1.2 \Omega; \text{ V}_{GS} = 5 \text{ V};$ $R_{G(ext)} = 10 \Omega; \text{ T}_j = 25 °C$ $ 16$ $ ns$ $t_{d(off)}$ turn-off delay time $R_{G(ext)} = 10 \Omega; \text{ T}_j = 25 °C$ $ 106$ $ ns$ $t_{d(off)}$ turn-off delay time $ 51$ $ ns$ t_f fall time $ 83$ $ ns$ Source-drain diode V_{SD} source-drain voltage $I_S = 15 \text{ A}; \text{ V}_{GS} = 0 \text{ V}; \text{ T}_j = 25 °C;$ see Figure 13 $ 0.85$ 1.2 V t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A}/\mus; \text{ V}_{GS} = -10 \text{ V};$ $ 100$ $ ns$	C _{iss}	input capacitance		-	1550	2070	pF
$\begin{array}{c c c c c c c } \hline capacitance & & & & & & & & & & & & & & & & & & &$	C _{oss}	output capacitance	$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure } 12}{\text{Figure } 12}$	-	150	179	pF
t_r rise time $R_{G(ext)} = 10 \Omega; T_j = 25 °C$ - 106 -ns $t_{d(off)}$ turn-off delay time- 51 -ns t_f fall time- 83 -nsSource-drain diode V_{SD} source-drain voltage $I_S = 15 A; V_{GS} = 0 V; T_j = 25 °C;$ see Figure 13- 0.85 1.2 V t_{rr} reverse recovery time $I_S = 20 A; dI_S/dt = -100 A/\mu s; V_{GS} = -10 V;$ - 100 -ns	C _{rss}			-	60	80	pF
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	t _{d(on)}	turn-on delay time	$V_{DS} = 30 \text{ V}; \text{ R}_{L} = 1.2 \Omega; V_{GS} = 5 \text{ V}; \label{eq:VDS}$	-	16	-	ns
t_f fall time-83-nsSource-drain diode V_{SD} source-drain voltage $I_S = 15 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 ^{\circ}\text{C};$ see Figure 13-0.851.2V t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = -10 \text{ V};$ -100-ns	t _r	rise time	R _{G(ext)} = 10 Ω; T _j = 25 °C	-	106	-	ns
Source-drain diode V_{SD} source-drain voltage $I_S = 15 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ -0.851.2V t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = -10 \text{ V};$ -100-ns	t _{d(off)}	turn-off delay time		-	51	-	ns
V_{SD} source-drain voltage $I_S = 15 \text{ A}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C};$ see Figure 13-0.851.2V t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A/}\mu\text{s}; V_{GS} = -10 \text{ V};$ -100-ns	t _f	fall time		-	83	-	ns
see Figure 13 t_{rr} reverse recovery time $I_S = 20 \text{ A}; dI_S/dt = -100 \text{ A}/\mu\text{s}; V_{GS} = -10 \text{ V};$ - 100 - ns	Source-dr	rain diode					
1/2 - 20 1/2 - 25 °C	V_{SD}	source-drain voltage		-	0.85	1.2	V
Q_r recovered charge $V_{DS} = 30 \text{ V}; T_j = 25 \text{ °C}$ - 115 - nC	t _{rr}	reverse recovery time		-	100	-	ns
	Qr	recovered charge	V _{DS} = 30 V; T _j = 25 °C	-	115	-	nC

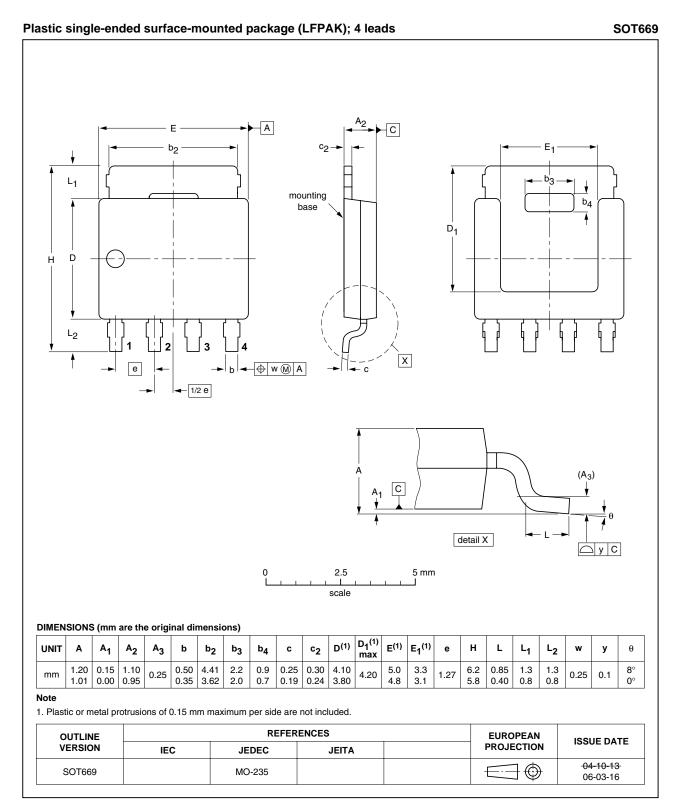
PH3075L


N-channel TrenchMOS logic level FET

PH3075L_2

PH3075L


N-channel TrenchMOS logic level FET


Product data sheet

PH3075L

N-channel TrenchMOS logic level FET

7. Package outline

Fig 14. Package outline SOT669 (LFPAK)

PH3075L_2

Product data sheet

N-channel TrenchMOS logic level FET

8. Revision history

Table 7. Revision his	ory				
Document ID	Release date	Data sheet status	Change notice	Supersedes	
PH3075L_2	20090223	Product data sheet	-	PH3075L_1	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts 	have been adapted to the	new company name whe	re appropriate.	
PH3075L_1 (9397 750 14603)	20050225	Product data sheet	-	-	

N-channel TrenchMOS logic level FET

9. Legal information

9.1 Data sheet status

Document status [1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

9.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

9.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk. **Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

TrenchMOS — is a trademark of NXP B.V.

10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

N-channel TrenchMOS logic level FET

11. Contents

1	Product profile1
1.1	General description1
1.2	Features and benefits1
1.3	Applications1
1.4	Quick reference data1
2	Pinning information2
3	Ordering information2
4	Limiting values3
5	Thermal characteristics5
6	Characteristics6
7	Package outline10
8	Revision history11
9	Legal information12
9.1	Data sheet status
9.2	Definitions12
9.3	Disclaimers
9.4	Trademarks12
10	Contact information12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009. All rights reserved. For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

salesaddresses@nxp.com Date of release: 23 February 2009 Document identifier: PH3075L_2

