74HC238; 74HCT238

3-to-8 line decoder/demultiplexer Rev. 03 — 16 July 2007

Product data sheet

1. **General description**

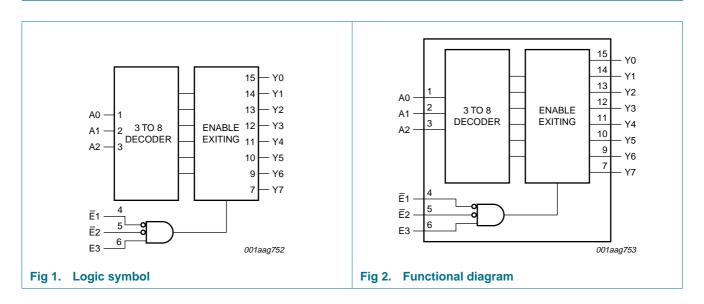
74HC238 and 74HCT238 are high-speed Si-gate CMOS devices and are pin compatible with Low-Power Schottky TTL (LSTTL).

The 74HC238/74HCT238 decoders accept three binary weighted address inputs (A0, A1, A2) and when enabled, provide 8 mutually exclusive active HIGH outputs (Y0 to Y7). The 74HC238/74HCT238 features three enable inputs: two active LOW (E1 and E2) and one active HIGH (E3). Every output will be LOW unless E1 and E2 are LOW and E3 is HIGH. This multiple enable function allows easy parallel expansion of the "238" to a 1-to-32 (5 lines to 32 lines) decoder with just four "238" ICs and one inverter. The "238" can be used as an eight output demultiplexer by using one of the active LOW enable inputs as the data input and the remaining enable inputs as strobes. Unused enable inputs must be permanently tied to their appropriate active HIGH or LOW state.

The 74HC238/74HCT238 is similar to the 74HC138/74HCT138 but has non-inverting outputs.

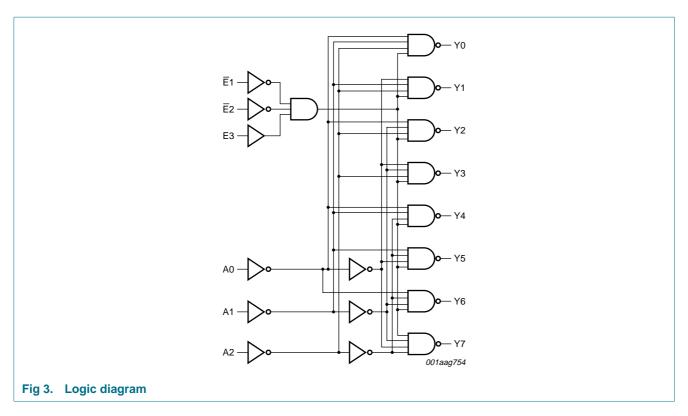
Features 2.

- Demultiplexing capability
- Multiple input enable for easy expansion
- Ideal for memory chip select decoding
- Active HIGH mutually exclusive outputs
- Multiple package options
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

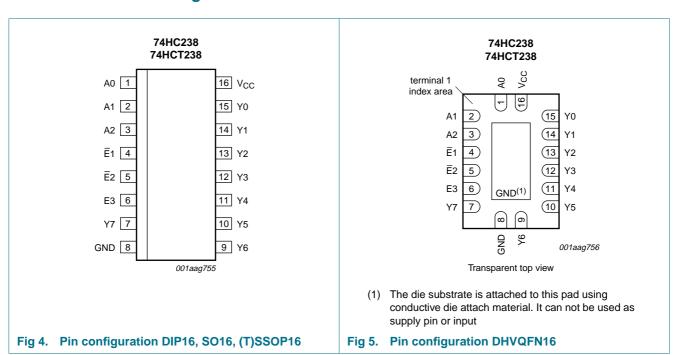

2 of 18

Ordering information

Table 1. **Ordering information**


Type number	Package			
	Temperature range	Name	Description	Version
74HC238N	-40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HC238D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HC238DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HC238PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HC238BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body 2.5 \times 3.5 \times 0.85 mm	SOT763-1
74HCT238N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4
74HCT238D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74HCT238DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1
74HCT238PW	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1
74HCT238BQ	–40 °C to +125 °C	DHVQFN16	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 16 terminals; body $2.5\times3.5\times0.85$ mm	SOT763-1

Functional diagram


74HC_HCT238_3 © NXP B.V. 2007. All rights reserved. Rev. 03 — 16 July 2007

3 of 18

Pinning information

5.1 Pinning

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved. Rev. 03 — 16 July 2007

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
A[0:2]	1, 2, 3	address input
E1	4	enable input (active LOW)
E2	5	enable input (active LOW)
E3	6	enable input (active HIGH)
Y[0:7]	15, 14, 13, 12, 11, 10, 9, 7	output (active HIGH)
GND	8	ground (0 V)
V _{CC}	16	supply voltage

6. Functional description

Table 3. Function table[1]

Inputs						Outp	Outputs								
Ē1	E2	E3	A0	A1	A2	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7		
Н	Χ	X	X	X	X	L	L	L	L	L	L	L	L		
Χ	Н	Х	X	Х	Х	L	L	L	L	L	L	L	L		
Χ	Χ	L	Χ	Χ	Χ	L	L	L	L	L	L	L	L		
L	L	Н	L	L	L	Н	L	L	L	L	L	L	L		
L	L	Н	Н	L	L	L	Н	L	L	L	L	L	L		
L	L	Н	L	Н	L	L	L	Н	L	L	L	L	L		
L	L	Н	Н	Н	L	L	L	L	Н	L	L	L	L		
L	L	Н	L	L	Н	L	L	L	L	Н	L	L	L		
L	L	Н	Н	L	Н	L	L	L	L	L	Н	L	L		
L	L	Н	L	Н	Н	L	L	L	L	L	L	Н	L		
L	L	Н	Н	Н	Н	L	L	L	L	L	L	L	Н		

^[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
I _{OK}	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	<u>[1]</u> _	±20	mA
Io	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	50	mA
I_{GND}	ground current		-50	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	DIP16 package	[2] -	750	mW
		SO16, SSOP16, TSSOP16 and DHVQFN16 packages	<u>[3]</u> _	500	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		74HC238	3	7	8	Unit	
			Min	Тур	Max	Min	Тур	Max	
V_{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
V_{I}	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t/\Delta V$	input transition rise	$V_{CC} = 2.0 \text{ V}$	-	-	625	-	-	-	ns/V
a	and fall rate	V _{CC} = 4.5 V	-	1.67	139	-	1.67	139	ns/V
		$V_{CC} = 6.0 \text{ V}$	-	-	83	-	-	-	ns/V

^[2] For DIP16 packages: above 70 °C the value of Ptot derates linearly at 12 mW/K.

^[3] For SO16 packages: above 70 °C the value of P_{tot} derates linearly at 8 mW/K.
For SSOP16 and TSSOP16 packages: above 60 °C the value of P_{tot} derates linearly at 5.5 mW/K.
For DHVQFN16 packages: above 60 °C the value of P_{tot} derates linearly at 4.5 mW/K.

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C to	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
74HC238	8									
V _{IH}	HIGH-level	V _{CC} = 2.0 V	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	V _{CC} = 4.5 V	3.15	2.4	-	3.15	-	3.15	-	V
		V _{CC} = 6.0 V	4.2	3.2	-	4.2	-	4.2	-	V
V_{IL}	LOW-level	V _{CC} = 2.0 V	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	V _{CC} = 4.5 V	-	2.1	1.35	-	1.35	-	1.35	V
		V _{CC} = 6.0 V	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = -20 \mu A$; $V_{CC} = 2.0 \text{ V}$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -20 \mu A$; $V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_O = -20 \mu A$; $V_{CC} = 6.0 \text{ V}$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 20 \mu A; V_{CC} = 2.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 4.5 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 20 \mu A; V_{CC} = 6.0 V$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 6.0 \text{ V}$	-	-	8.0	-	80	-	160	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF
74HCT2	38									
V_{IH}	HIGH-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	2.0	1.6	-	2.0	-	2.0	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	-	1.2	8.0	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}$	3.98	4.32	-	3.84	-	3.7	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 4.5 \text{ V}$								
	output voltage	Ι _O = 20 μΑ	-	0	0.1	-	0.1	-	0.1	V
		I _O = 4.0 mA	-	0.16	0.26	-	0.33	-	0.4	V
Iį	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$	-	-	±0.1	-	±1.0	-	±1.0	μΑ

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved.

© NXP B.V. 2007. All rights reserved.

 Table 6.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		–40 °C to	+85 °C	–40 °C to	Unit	
			Min	Тур	Max	Min	Max	Min	Max	
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5 \text{ V}$; $I_O = 0 \text{ A}$	-	-	8.0	-	80	-	160	μΑ
Δl _{CC}	additional supply current	per input pin; $V_{I} = V_{CC} - 2.1 \text{ V};$ other inputs at V_{CC} or GND; $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V};$ $I_{O} = 0 \text{ A}$								
		An inputs	-	70	252	-	315	-	343	μΑ
		E1, E2 inputs	-	40	144	-	180	-	196	μΑ
		E3 input	-	145	522	-	653	-	711	μΑ
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND = 0 V; test circuit see Figure 8.

Symbol	Parameter	Conditions			25 °C			+125 °C	
				Min	Тур	Max	Max (85 °C)	Max (125 °C)	Unit
74HC238	3								
t _{pd}	propagation delay	An to Yn; see Figure 6	<u>[1]</u>						
		V _{CC} = 2.0 V		-	47	150	190	225	ns
		V _{CC} = 4.5 V		-	17	30	38	45	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	14	-	-	-	ns
		V _{CC} = 6.0 V		-	14	26	33	38	ns
		E3 to Yn; see Figure 6	<u>[1]</u>						
		V _{CC} = 2.0 V		-	52	160	200	240	ns
		V _{CC} = 4.5 V		-	19	32	40	48	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	16	-	-	-	ns
		V _{CC} = 6.0 V		-	15	27	34	41	ns
		En to Yn or see Figure 7	<u>[1]</u>						
		V _{CC} = 2.0 V		-	50	155	195	235	ns
		V _{CC} = 4.5 V		-	18	31	39	47	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	17	-	-	-	ns
		V _{CC} = 6.0 V		-	14	26	33	40	ns
t _t	transition time	see Figure 6 and Figure 7	[2]						
		V _{CC} = 2.0 V		-	19	75	95	110	ns
		$V_{CC} = 4.5 \text{ V}$		-	7	15	19	22	ns
		$V_{CC} = 6.0 \text{ V}$		-	6	13	16	19	ns
C _{PD}	power dissipation capacitance	per package; $V_I = GND$ to V_{CC}	[3]	-	72	-	-	-	pF

74HC_HCT238_3

 Table 7.
 Dynamic characteristics

GND = 0 V; test circuit see Figure 8.

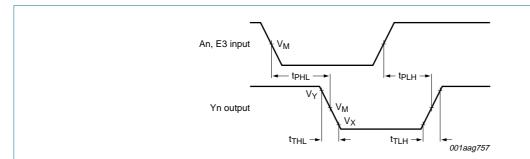
Symbol	Parameter	Conditions		25 °C		–40 °C to	+125 °C		
				Min	Тур	Max	Max (85 °C)	Max (125 °C)	Unit
74HCT2	38								
t _{pd}	propagation delay	An to Yn; see Figure 6	<u>[1]</u>						
		$V_{CC} = 4.5 \text{ V}$		-	19	35	44	53	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	18	-	-	-	ns
		E3 to Yn; see Figure 6	<u>[1]</u>						
		$V_{CC} = 4.5 \text{ V}$		-	20	37	46	56	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	20	-	-	-	ns
		En to Yn or see Figure 7	<u>[1]</u>						
		$V_{CC} = 4.5 \text{ V}$		-	20	35	44	53	ns
		$V_{CC} = 5.0 \text{ V}; C_L = 15 \text{ pF}$		-	21	-	-	-	ns
t _t	transition time	V _{CC} = 4.5 V; see <u>Figure 6</u> and <u>Figure 7</u>	[2]	-	7	15	19	22	ns
C_{PD}	power dissipation capacitance	per package; V _I = GND to V _{CC} – 1.5 V	[3]	-	76	-	-	-	pF

- [1] t_{pd} is the same as t_{PHL} and t_{PLH} .
- [2] t_t is the same as t_{THL} and t_{TLH} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

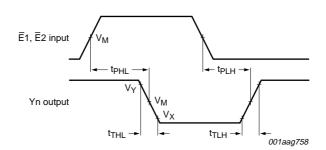

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

11. Waveforms


Measurement points are given in <u>Table 8</u>.

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical voltage output levels that occur with the output load.

Fig 6. Input (An, E3) to output (Yn) propagation delays and output transition times

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved.

9 of 18

Measurement points are given in Table 8.

 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical voltage output levels that occur with the output load.

Fig 7. Input ($\overline{E}1$, $\overline{E}2$) to output (Yn) propagation delays and output transition times

Table 8. **Measurement points**

Туре	Input	Output							
	V _M	V _M	V _X	V _Y					
74HC238	0.5V _{CC}	0.5V _{CC}	0.1V _{CC}	0.9V _{CC}					
74HCT238	1.3 V	1.3 V	0.1V _{CC}	0.9V _{CC}					

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved. Rev. 03 — 16 July 2007

10 of 18

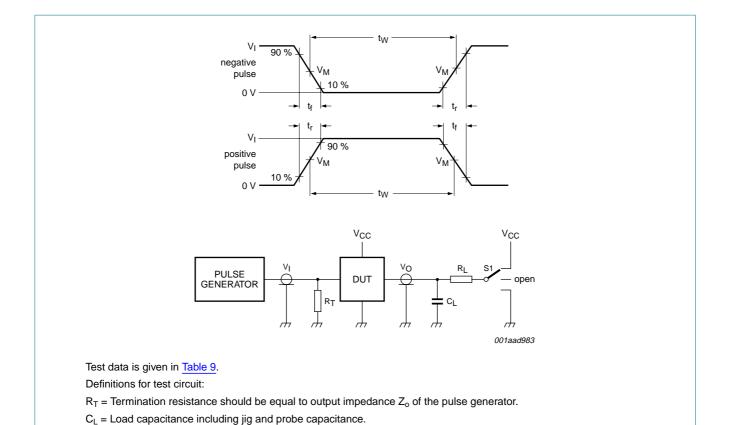
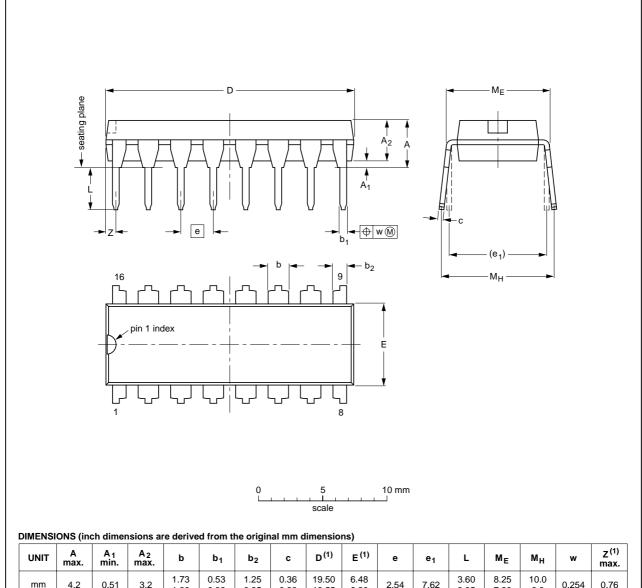


Fig 8. Load circuit for measuring switching times

R_L = Load resistance. S1 = Test selection switch

Table 9. **Test data**


Туре	Input I		Load	S1 position	
	V_{l} t_{r}, t_{f}		CL	R _L	t _{PHL} , t _{PLH}
74HC238	V_{CC}	6 ns	15 pF, 50 pF	1 kΩ	open
74HCT238	3 V	6 ns	15 pF, 50 pF	1 kΩ	open

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved. Rev. 03 — 16 July 2007

12. Package outline

DIP16: plastic dual in-line package; 16 leads (300 mil)

SOT38-4

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	b ₂	С	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	M _H	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.30	0.53 0.38	1.25 0.85	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	0.76
inches	0.17	0.02	0.13	0.068 0.051	0.021 0.015	0.049 0.033	0.014 0.009	0.77 0.73	0.26 0.24	0.1	0.3	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.03

1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.

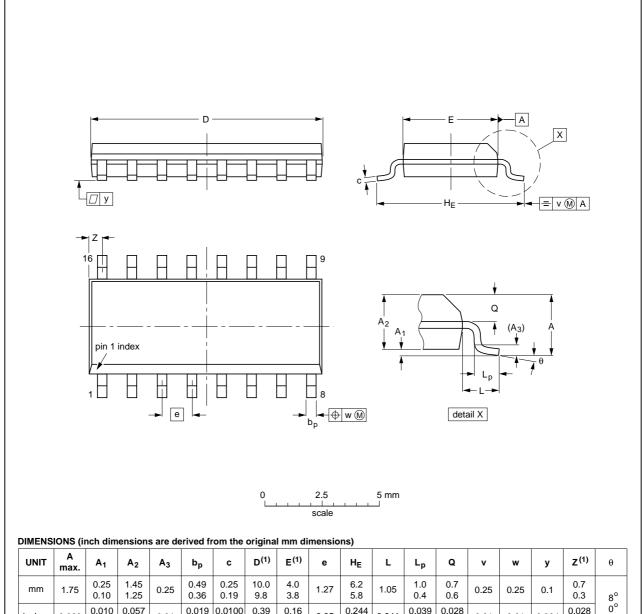

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT38-4						95-01-14 03-02-13	

Fig 9. Package outline SOT38-4 (DIP16)

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved.

SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.75	0.25 0.10	1.45 1.25	0.25	0.49 0.36	0.25 0.19	10.0 9.8	4.0 3.8	1.27	6.2 5.8	1.05	1.0 0.4	0.7 0.6	0.25	0.25	0.1	0.7 0.3	8°
inches	0.069	0.010 0.004	0.057 0.049	0.01		0.0100 0.0075	0.39 0.38	0.16 0.15	0.05	0.244 0.228	0.041	0.039 0.016	0.028 0.020	0.01	0.01	0.004	0.028 0.012	0°

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

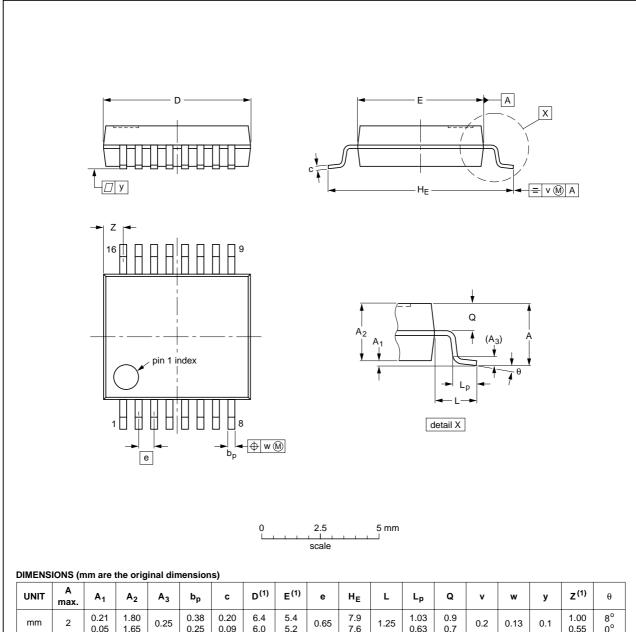

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	

Fig 10. Package outline SOT109-1 (SO16)

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved.

SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm

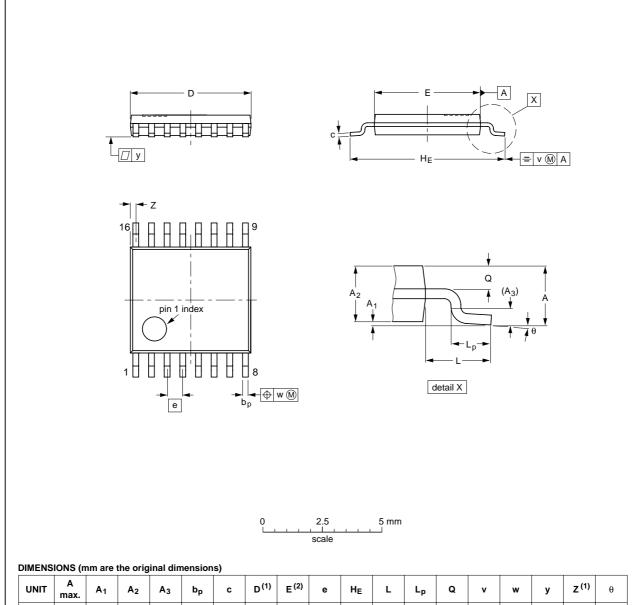
SOT338-1

ι	JNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	6.4 6.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	1.00 0.55	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC JEITA		PROJECTION	ISSUE DATE	
SOT338-1		MO-150			99-12-27 03-02-19	


Fig 11. Package outline SOT338-1 (SSOP16)

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

14 of 18

UNIT	A max.	A ₁	A ₂	А3	bp	C	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT403-1		MO-153			99-12-27 03-02-18	

Fig 12. Package outline SOT403-1 (TSSOP16)

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved. Rev. 03 — 16 July 2007

15 of 18

DHVQFN16: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; SOT763-1 16 terminals; body 2.5 x 3.5 x 0.85 mm

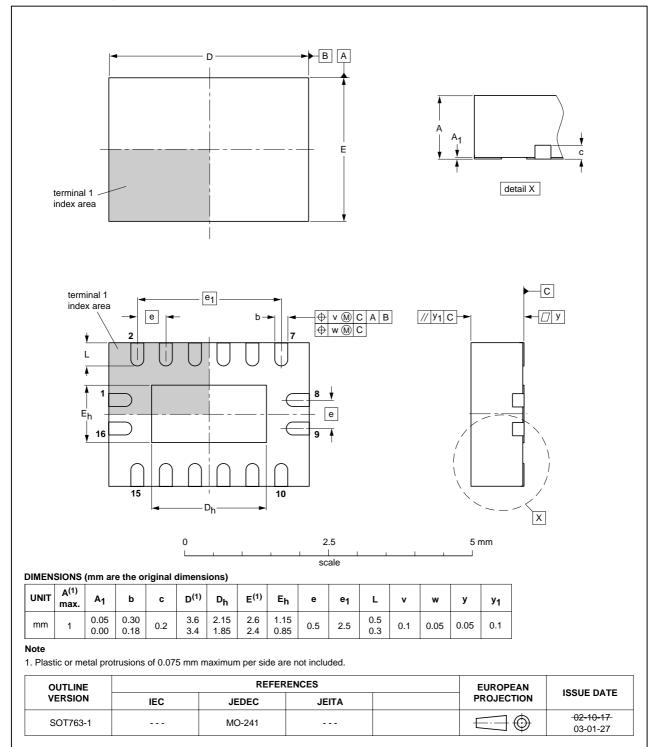


Fig 13. Package outline SOT763-1 (DHVQFN16)

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved. Rev. 03 — 16 July 2007

13. Abbreviations

Table 10. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC_HCT238_3	20070716	Product data sheet	-	74HC_HCT238_CNV_2
Modifications:		of this data sheet has been of NXP Semiconductors.	n redesigned to co	mply with the new identity
	 Legal texts 	have been adapted to the	new company nam	e where appropriate.
	 Added type 	number 74HC238BQ and	74HCT238BQ (DF	HVQFN16 package)
74HC_HCT238_CNV_2	19970828	Product specification	-	-

 74HC_HCT238_3
 © NXP B.V. 2007. All rights reserved.

 Product data sheet
 Rev. 03 − 16 July 2007
 16 of 18

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

74HC_HCT238_3 © NXP B.V. 2007. All rights reserved.

17. Contents

1	General description
2	Features
3	Ordering information
4	Functional diagram 2
5	Pinning information
5.1	Pinning
5.2	Pin description
6	Functional description 4
7	Limiting values 5
8	Recommended operating conditions 5
9	Static characteristics 6
10	Dynamic characteristics
11	Waveforms
12	Package outline 11
13	Abbreviations
14	Revision history
15	Legal information
15.1	Data sheet status
15.2	Definitions
15.3	Disclaimers
15.4	Trademarks17
16	Contact information
17	Contents 18

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 16 July 2007 Document identifier: 74HC_HCT238_3