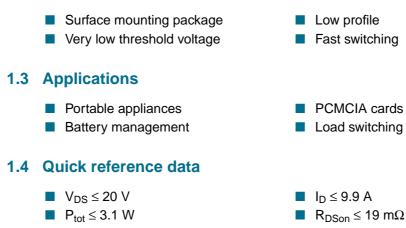


Dual N-channel μTrenchMOS™ ultra low level FETRev. 02 — 24 March 2005Product data


Product data sheet

Product profile 1.

1.1 General description

Dual N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS[™] technology.

1.2 Features

Pinning information 2.

Table 1:	Pinning		
Pin	Description	Simplified outline	Symbol
1	drain1 (D1)		
2, 3	source1 (S1)	8 5	$D_1 D_2$
4	gate1 (G1)		
5	gate2 (G2)		
6, 7	source2 (S2)		
8	drain2 (D2)		S ₁ G ₁ S ₂ G ₂ <i>msd901</i>
		SOT530-1 (TSSOP8)	

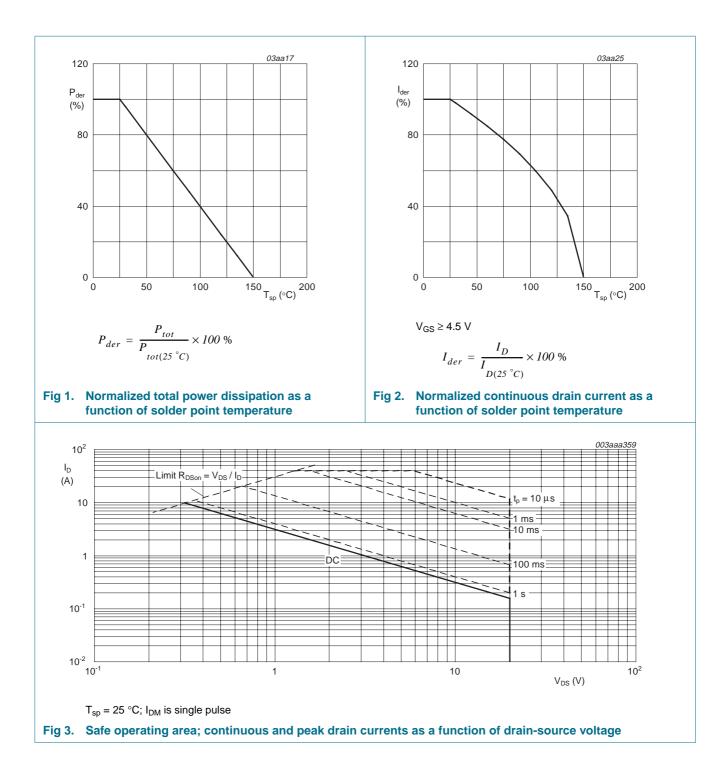
Dual N-channel μTrenchMOS™ ultra low level FET

3. Ordering information

Table 2: Ordering	g information				
Type number Package					
	Name	Description	Version		
PMWD16UN	TSSOP8	plastic thin shrink small outline package; 8 leads; body width 4.4 mm	SOT530-1		

4. Limiting values

Table 3: Limiting values

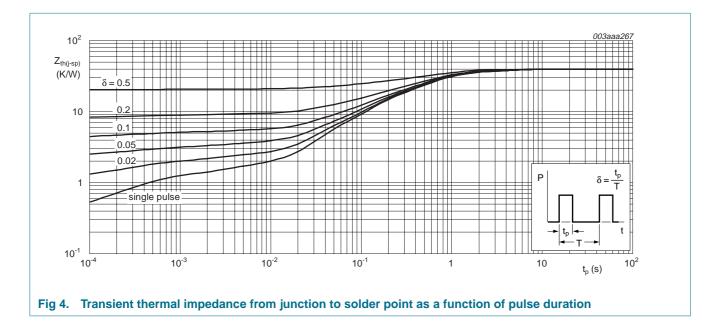

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DS}	drain-source voltage (DC)	25 °C ≤ T _j ≤ 150 °C	-	20	V
V _{DGR}	drain-gate voltage (DC)	25 °C \leq T_j \leq 150 °C; R_{GS} = 20 k Ω	-	20	V
V _{GS}	gate-source voltage		-	±10	V
I _D	drain current (DC)	T_{sp} = 25 °C; V_{GS} = 4.5 V; Figure 2 and 3	<u>[1]</u> _	9.9	А
		T_{sp} = 100 °C; V_{GS} = 4.5 V; Figure 2	<u>[1]</u> _	5.9	А
I _{DM}	peak drain current	T_{sp} = 25 °C; pulsed; $t_p \le 10 \ \mu s$; Figure 3	<u>[1]</u> _	39.5	А
P _{tot}	total power dissipation	T _{sp} = 25 °C; Figure 1	<u>[1]</u> _	3.1	W
T _{stg}	storage temperature		-55	+150	°C
Tj	junction temperature		-55	+150	°C
Source-o	drain diode				
I _S	source (diode forward) current (DC)	T _{sp} = 25 °C	<u>[1]</u> _	2.6	А
I _{SM}	peak source (diode forward) current	T_{sp} = 25 °C; pulsed; $t_p \leq$ 10 μs	<u>[1]</u> _	10	А
-					

[1] Single device conducting.

PMWD16UN

Dual N-channel μTrenchMOS™ ultra low level FET


9397 750 14724 Product data sheet

Dual N-channel µTrenchMOS™ ultra low level FET

Thermal characteristics 5.

and all all successful to the s

Table 4:	I hermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-sp)}	thermal resistance from junction to solder point	Figure 4	-	-	40	K/W
R _{th(j-a)}	thermal resistance from junction to ambient	mounted on a printed-circuit board; minimum footprint; vertical in still air	-	100	-	K/W

.

Table

9397 750 14724

Unit

V

V

V

μΑ

μΑ

nA

mΩ

mΩ

mΩ

mΩ

nC

nC

nC

pF

pF

pF

ns

ns

ns

ns

V

ns

nC

5 of 12

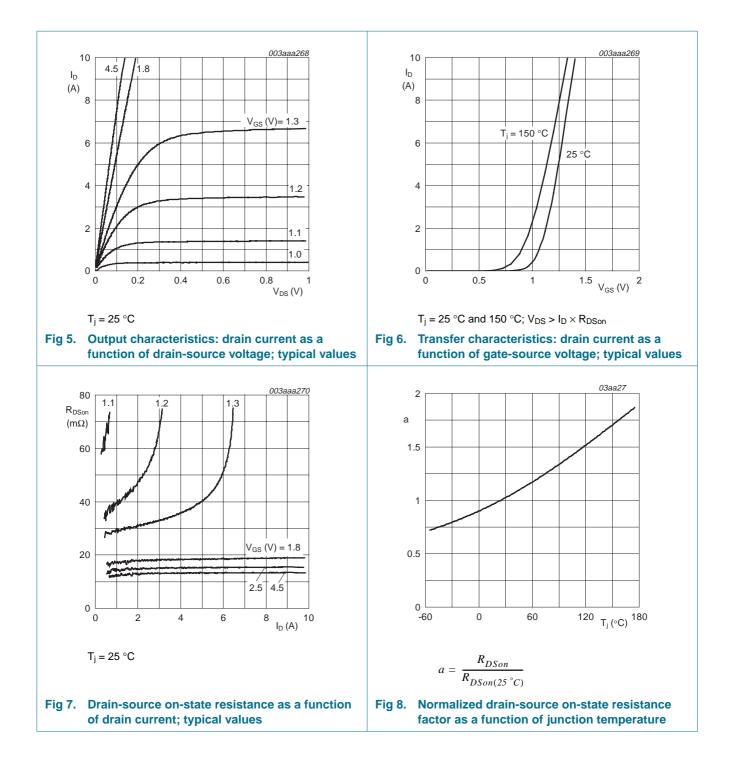
Dual N-channel µTrenchMOS™ ultra low level FET

Characteristics 6.

Table 5: **Characteristics** $T_i = 25 \circ C$ unless otherwise specified. Symbol Parameter Conditions Min Тур Max **Static characteristics** drain-source breakdown voltage $I_D = 250 \ \mu A; V_{GS} = 0 \ V$ V_{(BR)DSS} T_i = 25 °C 20 -_ $T_i = -55 \ ^{\circ}C$ 18 -_ gate-source threshold voltage $I_D = 1 \text{ mA}; V_{DS} = V_{GS};$ Figure 9 and 10 0.45 0.7 V_{GS(th)} - $V_{DS} = 20 \text{ V}; V_{GS} = 0 \text{ V}$ IDSS drain-source leakage current T_i = 25 °C _ _ 1 T_i = 150 °C -100 - $V_{GS} = \pm 10 \text{ V}; V_{DS} = 0 \text{ V}$ I_{GSS} gate-source leakage current --100 V_{GS} = 4.5 V; I_{D} = 3.5 A; Figure 7 and 8 drain-source on-state resistance R_{DSon} T_i = 25 °C -16 19 T_i = 150 °C _ 27 32 V_{GS} = 1.8 V; I_D = 3.5 A; Figure 7 and 8 22 30 - $V_{GS} = 2.5 \text{ V}; I_{D} = 3.5 \text{ A};$ Figure 7 and 8 18 22 -**Dynamic characteristics** Q_{g(tot)} total gate charge $I_D = 4 \text{ A}; V_{DS} = 16 \text{ V}; V_{GS} = 4.5 \text{ V};$ -23.6 -Figure 13 Q_{qs} gate-source charge -2.1 -Q_{gd} gate-drain (Miller) charge 6.7 --1366 V_{GS} = 0 V; V_{DS} = 16 V; f = 1 MHz; -Ciss input capacitance -Figure 11 Coss output capacitance -339 -C_{rss} reverse transfer capacitance 239 -- $V_{DS} = 10 \text{ V}; \text{ R}_{L} = 10 \Omega; \text{ V}_{GS} = 4.5 \text{ V};$ 14 turn-on delay time -t_{d(on)} $R_G = 6 \Omega$ tr rise time 22 -turn-off delay time 56 -t_{d(off)} fall time tf -33 -Source-drain diode source-drain (diode forward) voltage $I_S = 4 A$; $V_{GS} = 0 V$; Figure 12 V_{SD} -0.67 1.2 $I_{S} = 4 \text{ A}; dI_{S}/dt = -100 \text{ A}/\mu\text{s}; V_{GS} = 0 \text{ V};$ t_{rr} reverse recovery time -45 - $V_{R} = 20 V$

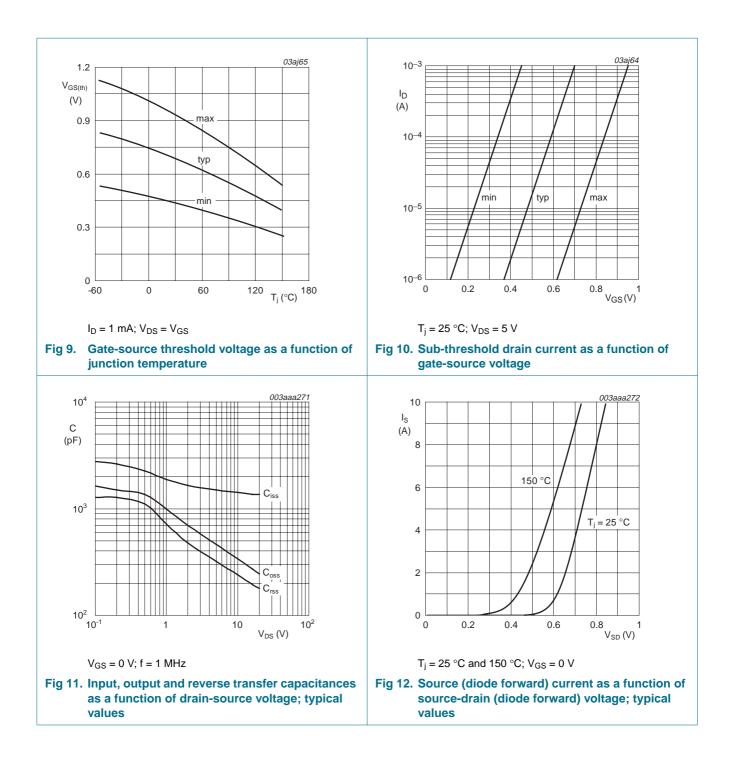
33

-

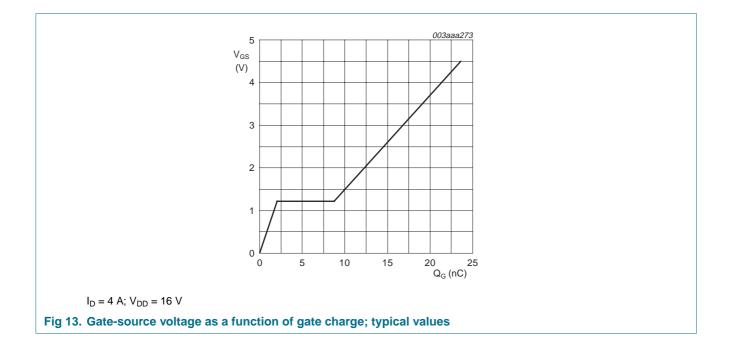

-

Qr

recovered charge

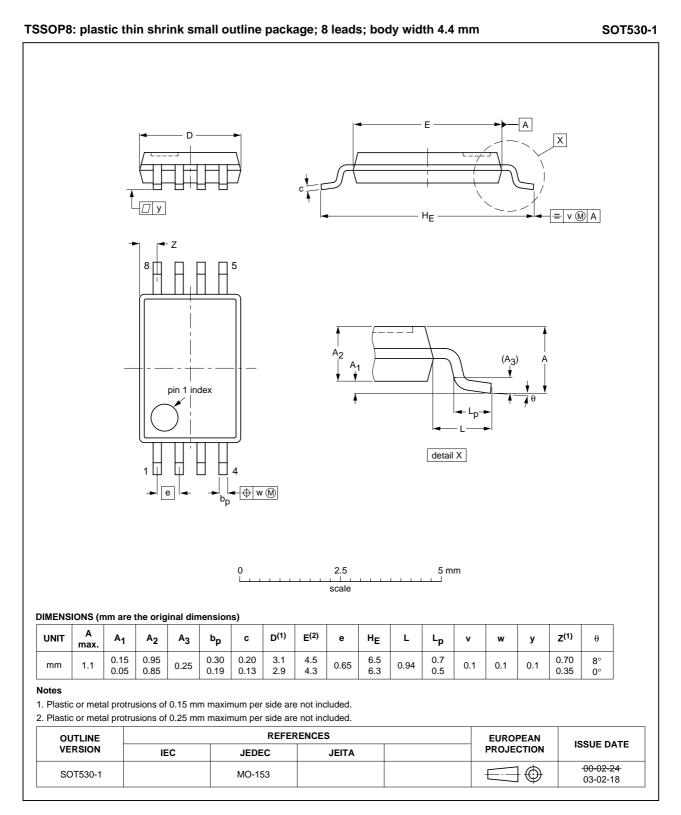

PMWD16UN

Dual N-channel μTrenchMOS™ ultra low level FET


PMWD16UN

Dual N-channel μTrenchMOS™ ultra low level FET

PMWD16UN


Dual N-channel μTrenchMOS™ ultra low level FET

PMWD16UN

Dual N-channel µTrenchMOS™ ultra low level FET

7. Package outline

Fig 14. Package outline SOT530-1 (TSSOP8)

9397 750 14724 Product data sheet

Dual N-channel μTrenchMOS™ ultra low level FET

8. Revision history

Table 6: Revision	history					
Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes	
PMWD16UN_2	20050324	Product data sheet	-	9397 750 14724	PMWD16UN-01	
Modifications:	 The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors. 					
	 I_D and P_{tot} 	data revised in Section	1.4 "Quick referen	nce data".		
	• I _D , I _{DM} , P _{tot}	, I_{S} and I_{SM} data revise	d in <u>Table 3 "Limiti</u>	ng values".		
	• Figure 3 re	vised in Section 4 "Lim	iting values".			
	 R_{th(j-sp)} dat 	a revised in <u>Table 4 "Th</u>	ermal characterist	ics".		
	• Figure 4 re	vised in <u>Section 5 "The</u>	rmal characteristic	<u>s"</u>		
	• Figure 5, 7	and 12 revised in Sect	ion 6 "Characterist	tics"		
PMWD16UN-01	20021220	Product data	-	9397 750 10831	-	

Dual N-channel μTrenchMOS™ ultra low level FET

9. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
111	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

10. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

11. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors

13. Contact information

customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

12. Trademarks

TrenchMOS — is a trademark of Koninklijke Philips Electronics N.V.

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

PMWD16UN

Dual N-channel µTrenchMOS™ ultra low level FET

14. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 1
3	Ordering information 2
4	Limiting values 2
5	Thermal characteristics 4
6	Characteristics 5
7	Package outline 9
8	Revision history 10
9	Data sheet status
10	Definitions 11
11	Disclaimers 11
12	Trademarks 11
13	Contact information 11

Downloaded from Arrow.com.

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 24 March 2005 Document number: 9397 750 14724

Published in The Netherlands