8-bit universal shift register; 3-state Rev. 03 — 28 July 2008

Product data sheet

General description 1.

The 74HC299; 74HCT299 are high-speed Si-gate CMOS devices which are pin-compatible with Low-power Schottky TTL (LSTTL) devices. They are specified in compliance with JEDEC standard no. 7A.

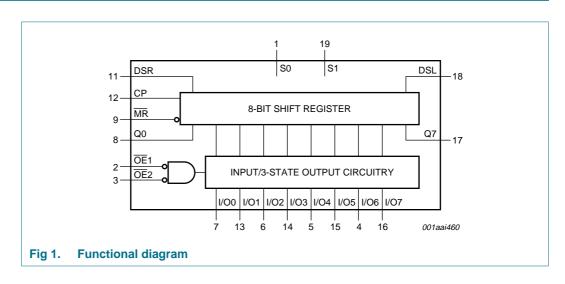
The 74HC299; 74HCT299 contain eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift-right, shift-left, parallel load and hold operations. An operation is determined by the mode select inputs S0 and S1, as shown in Table 3.

Pins I/O0 to I/O7 are flip-flop 3-state buffer outputs which allow them to operate as data inputs in parallel load mode. The serial outputs Q0 and Q7 are used for expansion in serial shifting of longer words.

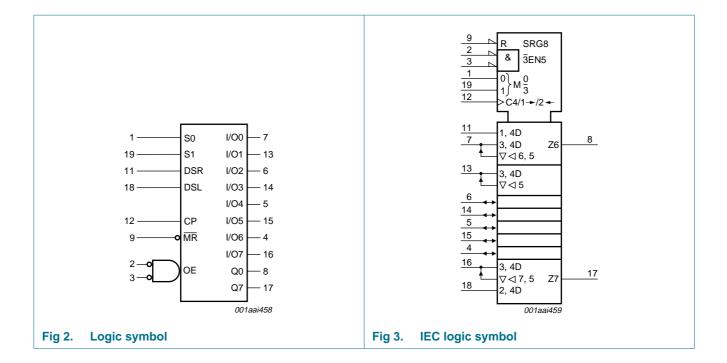
A LOW signal on the asynchronous master reset input MR overrides the Sn and clock CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock pulse. Inputs can change when the clock is in either state, provided that the recommended set-up and hold times are observed.

A HIGH signal on the 3-state output enable inputs $\overline{OE}1$ or $\overline{OE}2$ disables the 3-state buffers and the I/On outputs are set to the high-impedance OFF-state. In this condition, the shift, hold, load and reset operations still occur when preparing for a parallel load operation. The 3-state buffers are also disabled by HIGH signals on both S0 and S1.

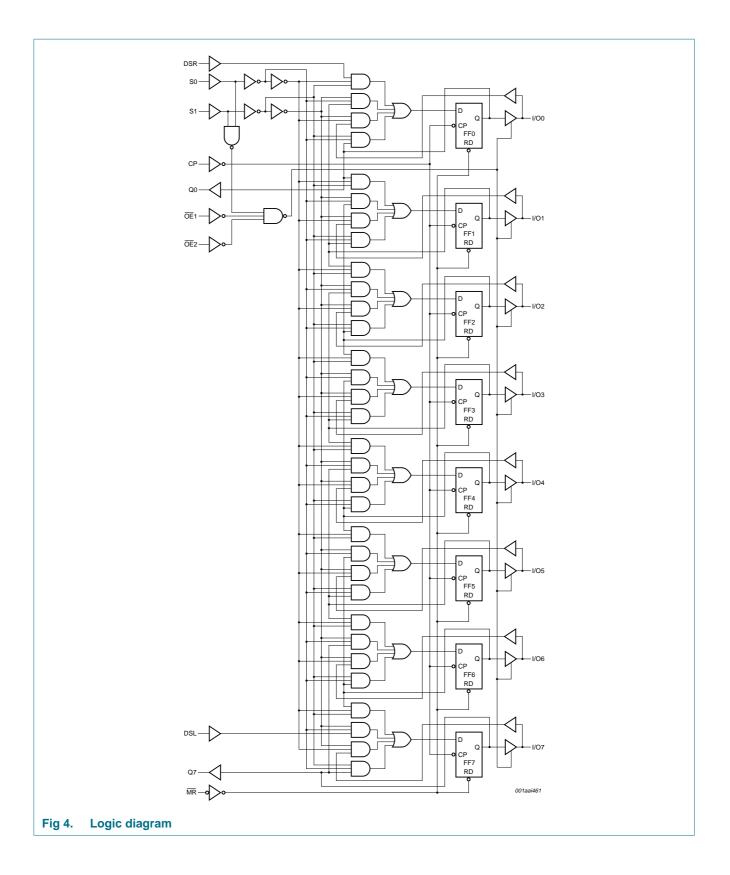
2. **Features**


- Multiplexed inputs/outputs provide improved bit density
- Four operating modes:
 - Shift left
 - Shift right
 - Hold (store)
 - Load data
- Operates with output enable or at high-impedance OFF-state (Z)
- 3-state outputs drive bus lines directly
- Cascadable for n-bit word lengths
- **ESD** protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C

3. Ordering information

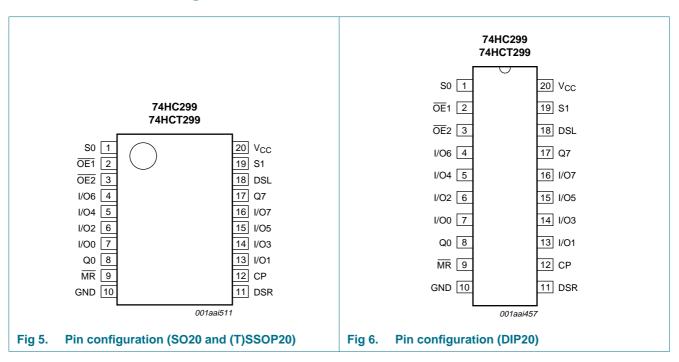

Table 1. Order	ing information			
Type number	Package			
	Temperature range	Name	Description	Version
74HC299				
74HC299D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74HC299DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1
74HC299N	–40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
74HC299PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1
74HCT299				
74HCT299D	–40 °C to +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1
74HCT299DB	–40 °C to +125 °C	SSOP20	plastic shrink small outline package; 20 leads; body width 5.3 mm	SOT339-1
74HCT299N	–40 °C to +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1
74HCT299PW	–40 °C to +125 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1

4. Functional diagram


74HC299; 74HCT299

8-bit universal shift register; 3-state

74HC299; 74HCT299


8-bit universal shift register; 3-state

Product data sheet

8-bit universal shift register; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.Pin description

Symbol	Pin	Description
SO	1	mode select input
OE1	2	3-state output enable input (active LOW)
OE2	3	3-state output enable input (active LOW)
I/O6	4	parallel data input or 3-state parallel output (bus driver)
I/O4	5	parallel data input or 3-state parallel output (bus driver)
I/O2	6	parallel data input or 3-state parallel output (bus driver)
I/O0	7	parallel data input or 3-state parallel output (bus driver)
Q0	8	serial output (standard output)
MR	9	asynchronous master reset input (active LOW)
GND	10	ground (0 V)
DSR	11	serial data shift-right input
CP	12	clock input (LOW to HIGH, edge-triggered)
I/O1	13	parallel data input or 3-state parallel output (bus driver)
I/O3	14	parallel data input or 3-state parallel output (bus driver)
I/O5	15	parallel data input or 3-state parallel output (bus driver)
1/07	16	parallel data input or 3-state parallel output (bus driver)
Q7	17	serial output (standard output)

74HC_HCT299_3

Product data sheet

8-bit universal shift register; 3-state

Table 2.	Pin description continued		
Symbol		Pin	Description
DSL		18	serial data shift-left input
S1		19	mode select input
V _{CC}		20	positive supply voltage

6. Functional description

Table 3.	Function table ^[1]			
Input				Response
MR	S1	S0	СР	
L	Х	Х	Х	asynchronous reset; Q0 to Q7 = LOW
Н	Н	Н	\uparrow	parallel load; l/On \rightarrow Qn
Н	L	Н	\uparrow	shift right; DSR \rightarrow Q0, Q0 \rightarrow Q1, etc.
Н	Н	L	\uparrow	shift left; DSL \rightarrow Q7, Q7 \rightarrow Q6, etc.
Н	L	L	Х	hold

[1] H = HIGH voltage level;

L = LOW voltage level;

 \uparrow = LOW to HIGH CP transition;

X = don't care.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input clamping current	$V_{I} < -0.5$ V or $V_{I} > V_{CC}$ + 0.5 V	<u>[1]</u> -	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or $V_{\rm O}$ > $V_{\rm CC}$ + 0.5 V	<u>[1]</u> -	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$			
	standard outputs		-	±25	mA
	bus driver outputs		-	±35	mA
I _{CC}	supply current				
	standard outputs		-	50	mA
	bus driver outputs		-	70	mA
I _{GND}	ground current				
	standard outputs		-50	-	mA
	bus driver outputs		-70	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$			
		DIP20 package	[2] _	750	mW
		SO20 package	<u>[3]</u> _	500	mW
		(T)SSOP20 package	<u>[4]</u> _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

74HC_HCT299_3

Product data sheet

- [2] P_{tot} derates linearly at 12 mW/K above 70 °C.
- [3] P_{tot} derates linearly at 8 mW/K above 70 °C.
- [4] P_{tot} derates linearly at 5.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	74HC	299		74HC	T299		Unit
			Min	Тур	Max	Min	Тур	Max	
V _{CC}	supply voltage		2.0	5.0	6.0	4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	-	+125	-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate								
		$V_{CC} = 2.0 V$	-	-	625	-	-	-	ns/V
		$V_{CC} = 4.5 V$	-	1.67	139	-	1.67	1.39	ns/V
		$V_{CC} = 6.0 V$	-	-	83	-	-	-	ns/V

9. Static characteristics

Table 6.Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-	°C to 5 °C	–40 ° +12	°C to 5 °C	Unit
			Min	Тур	Max	Min	Мах	Min	Max	
74HC299										
V _{IH}	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V

8-bit universal shift register; 3-state

Symbol	Parameter	Conditions		25 °C			°C to 5 °C		°C to 25 °C	Uni
			Min	Тур	Max	Min	Max	Min	Max	
/ _{ОН}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	all outputs								
		$I_{O} = -20 \ \mu A; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; \ V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	5.9	6.0	-	5.9	-	5.9	-	V
		standard outputs								
		$I_{O} = -4.0 \text{ mA};$ $V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_{O} = -5.2 \text{ mA};$ $V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
		bus driver outputs								
		$I_{O} = -6.0 \text{ mA};$ $V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		I _O = -7.8 mA; V _{CC} = 6.0 V	5.48	5.81	-	5.34	-	5.2	-	V
OL	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	LOW-level output voltage	all outputs								
		$I_0 = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu\text{A}; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_{O} = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		standard outputs								
		I_{O} = 4.0 mA; V_{CC} = 4.5 V	-	0.15	0.26	-	0.33	-	0.4	V
		$I_{O} = 5.2 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
		bus driver outputs								
		$I_0 = 6.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		I_{O} = 7.8 mA; V_{CC} = 6.0 V	-	0.16	0.26	-	0.33	-	0.4	V
l	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
OZ	OFF-state output current	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{O} = V_{CC} \text{ or}$ GND; $V_{CC} = 6.0 \text{ V}$	-	-	±0.5	-	±5.0	-	±10.0	μA
CC	supply current		-	-	8.0	-	80	-	160	μA
2	input capacitance		-	3.5	-	-	-	-	-	pF
21/0	input/output capacitance		-	10	-	-	-	-	-	pF
PD	power dissipation capacitance	per package	[1] -	120	-	-	-	-	-	pF
4HCT29	99									
Ин	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	2.0	-	2.0	-	V

Table 6. Static characteristics ...continued

74HC_HCT299_3

Product data sheet

8-bit universal shift register; 3-state

Symbol	Parameter	Conditions		25 °C			°C to 5 °C		°C to 5 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
/ _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	-	0.8	-	0.8	V
/ _{ОН}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	all outputs								
		I _O = -20 μA	4.4	4.5	-	4.4	-	4.4	-	V
		standard outputs								
		I _O = -4.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
		bus driver outputs								
		I _O = -6.0 mA	3.98	4.32	-	3.84	-	3.7	-	V
/ _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$								
	output voltage	all outputs								
		I _O = 20 μA	-	0	0.1	-	0.1	-	0.1	V
		standard outputs								
		I _O = 4.0 mA	-	0.15	0.26	-	0.33	-	0.4	V
		bus driver outputs								
		I _O = 6.0 mA	-	0.16	0.26	-	0.33	-	0.4	V
I	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
OZ	OFF-state output current	$\label{eq:VI} \begin{split} V_{I} &= V_{IH} \text{ or } V_{IL}; \ V_{O} = V_{CC} \text{ or } \\ \text{GND per input pin; other} \\ \text{inputs at } V_{CC} \text{ or } \text{GND;} \\ I_{O} &= 0 \text{ A}; \ V_{CC} &= 5.5 \text{ V} \end{split}$	-	-	±0.5	-	±5.0	-	±10.0	μΑ
CC	supply current		-	-	8.0	-	80	-	160	μA
VI _{CC}	additional supply current	per input pin; $V_I = V_{CC} - 2.1 V$; other inputs at V_{CC} or GND; $I_O = 0 A$; $V_{CC} = 4.5 V$ to 5.5 V								
		I/On, DSR, DSL, MR and S1	-	25	90	-	112.5	-	122.5	μA
		CP, S0	-	60	216	-	270	-	294	μΑ
		OEn	-	30	108	-	135	-	147	μΑ
à	input capacitance		-	3.5	-	-	-	-	-	pF
CI/O	input/output capacitance		-	10	-	-	-	-	-	pF
PD	power dissipation capacitance	per package	<u>[1]</u> -	125	-	-	-	-	-	pF

Table 6. Static characteristics ... continued

010 .

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 P_{D} = $C_{PD} \times V_{CC}{}^2 \times f_i$ + $\Sigma (C_L \times V_{CC}{}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

74HC_HCT299_3

Product data sheet

$$\begin{split} &\Sigma(C_L \times V_{CC}{}^2 \times f_o) = \text{sum of outputs.} \\ &C_L = \text{output load capacitance in pF}; \\ &V_{CC} = \text{supply voltage in V}; \\ &V_I = GND \text{ to } V_{CC} \text{ for 74HC299}; \\ &V_I = GND \text{ to } (V_{CC} - 1.5 \text{ V}) \text{ for 74HCT299}. \end{split}$$

10. Dynamic characteristics

Table 7.Dynamic characteristics

GND (ground = 0 V); for test circuit, see Figure 11.

Symbol	Parameter	Conditions			25 °C		-	°C to 5 °C		°C to 5 °C	Unit
				Min	Тур	Max	Min	Max	Min	Max	1
74HC299											
t _{pd}	propagation	CP to Q0, Q7; see Figure 7	[1]								
	delay	$V_{CC} = 2.0 V$		-	66	200	-	250	-	300	ns
		$V_{CC} = 4.5 V$		-	24	40	-	50	-	60	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	20	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$		-	19	34	-	43	-	51	ns
		CP to I/On; see Figure 7									
		$V_{CC} = 2.0 V$		-	66	200	-	250	-	300	ns
		$V_{CC} = 4.5 V$		-	24	40	-	50	-	60	ns
		$V_{CC} = 5.0 \text{ V}; C_{L} = 15 \text{ pF}$		-	20	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$		-	19	34	-	43	-	51	ns
		MR to Q0, Q7 or I/On; see <u>Figure 8</u>	[2]								
		$V_{CC} = 2.0 V$		-	66	200	-	250	-	300	ns
		$V_{CC} = 4.5 V$		-	24	40	-	50	-	60	ns
		V _{CC} = 5.0 V; C _L = 15 pF		-	20	-	-	-	-	-	ns
		$V_{CC} = 6.0 V$		-	19	34	-	43	-	51	ns
t _t	transition time	bus driver (I/On); see Figure 7	[3]								
		$V_{CC} = 2.0 V$		-	14	60	-	75	-	90	ns
		V _{CC} = 4.5 V		-	5	12	-	15	-	18	ns
		$V_{CC} = 6.0 V$		-	4	10	-	13	-	15	ns
		standard (Q0, Q7); see Figure 7									
		V _{CC} = 2.0 V		-	19	75	-	95	-	110	ns
		$V_{CC} = 4.5 V$		-	7	15	-	19	-	22	ns
		$V_{CC} = 6.0 V$		-	6	13	-	16	-	19	ns

8-bit universal shift register; 3-state

Symbol	Parameter	Conditions			25 °C		–40 ° +85	°C to i °C		°C to 5 °C	Unit
			М	lin	Тур	Max	Min	Max	Min	Max	1
t _W	pulse width	CP HIGH or LOW; see Figure 7									
		$V_{CC} = 2.0 V$	8	30	17	-	100	-	120	-	ns
		$V_{CC} = 4.5 V$	1	6	6	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	1	4	5	-	17	-	20	-	ns
		MR LOW; see Figure 8									
		$V_{CC} = 2.0 V$	8	30	19	-	100	-	120	-	ns
		$V_{CC} = 4.5 V$	1	6	7	-	20	-	24	-	ns
		$V_{CC} = 6.0 V$	1	4	6	-	17	-	20	-	ns
t _{PZH}	OFF-state to	OEn to I/On; see Figure 10	[4]								
	HIGH	$V_{CC} = 2.0 V$		-	50	155	-	195	-	235	ns
	propagation delay	$V_{CC} = 4.5 V$		-	18	31	-	39	-	47	ns
	uolay	$V_{CC} = 6.0 V$		-	14	26	-	33	-	40	ns
t _{PZL}	L OFF-state to LOW propagation	OEn to I/On; see Figure 10									
		$V_{CC} = 2.0 V$		-	41	130	-	165	-	195	ns
	propagation delay	V _{CC} = 4.5 V		-	15	26	-	33	-	39	ns
	uolay	$V_{CC} = 6.0 V$		-	12	22	-	28	-	33	ns
t _{PHZ}	HIGH to	OEn to I/On; see Figure 10	[5]								
	OFF-state	$V_{CC} = 2.0 V$		-	66	185	-	230	-	280	ns
	propagation delay	V _{CC} = 4.5 V		-	24	37	-	46	-	56	ns
	uolay	$V_{CC} = 6.0 V$		-	19	31	-	39	-	48	ns
t _{PLZ}	LOW to	OEn to I/On; see Figure 10									
	OFF-state	V _{CC} = 2.0 V		-	55	155	-	195	-	235	ns
	propagation delav	V _{CC} = 4.5 V		-	20	31	-	39	-	47	ns
	delay	$V_{CC} = 6.0 V$		-	16	26	-	33	-	40	ns
t _{rec}	recovery time	MR to CP; see Figure 8									
		V _{CC} = 2.0 V	į	5	-14	-	5	-	5	-	ns
		V _{CC} = 4.5 V	ę	5	-5	-	5	-	5	-	ns
		$V_{CC} = 6.0 V$:	5	-4	-	5	-	5	-	ns

Table 7. Dynamic characteristics ... continued GND (ground = 0 V); for test circuit, see Figure 11.

8-bit universal shift register; 3-state

Symbol	Parameter	Conditions			25 °C			°C to 5 °C		°C to 5 °C	Uni
			Ν	/ lin	Тур	Max	Min	Max	Min	Max	1
t _{su}	set-up time	DSR, DSL to CP; see Figure 7									
04		V _{CC} = 2.0 V	1	00	33	-	125	-	150	-	ns
		V _{CC} = 4.5 V		20	12	-	25	-	30	-	ns
		$V_{CC} = 6.0 V$		17	10	-	21	-	26	-	ns
		S0, S1 to CP; see Figure 9									
		V _{CC} = 2.0 V	1	00	33	-	125	-	150	-	ns
		$V_{CC} = 4.5 V$:	20	12	-	25	-	30	-	ns
		$V_{CC} = 6.0 V$		17	10	-	21	-	26	-	ns
		I/On to CP; see Figure 7									
		V _{CC} = 2.0 V	1	25	39	-	155	-	190	-	ns
		$V_{CC} = 4.5 V$:	25	14	-	31	-	38	-	ns
		$V_{CC} = 6.0 V$:	21	11	-	26	-	32	-	ns
t _h	hold time	I/On, DSR, DSL to CP; see <u>Figure 7</u>									
		$V_{CC} = 2.0 V$		0	-14	-	0	-	0	-	ns
		$V_{CC} = 4.5 V$		0	-5	-	0	-	0	-	ns
		$V_{CC} = 6.0 V$		0	-4	-	0	-	0	-	ns
		S0, S1 to CP; see Figure 9									
		$V_{CC} = 2.0 V$		0	-28	-	0	-	0	-	ns
		$V_{CC} = 4.5 V$		0	-10	-	0	-	0	-	ns
		$V_{CC} = 6.0 V$		0	-8	-	0	-	0	-	ns
f _{max}	maximum	CP input; see Figure 7									
	frequency	$V_{CC} = 2.0 V$	5	5.0	15	-	4.0	-	3.4	-	Мŀ
		$V_{CC} = 4.5 V$:	25	45	-	20	-	17	-	Мŀ
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	50	-	-	-	-	-	Мŀ
		$V_{CC} = 6.0 V$:	29	54	-	24	-	20	-	МH
74HCT29	9										
t _{pd}	propagation	CP to Q0, Q7; see Figure 7	[1]								
	delay	$V_{CC} = 4.5 V$		-	22	37	-	46	-	56	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	19	-	-	-	-	-	ns
		CP to I/On; see Figure 7									
		$V_{CC} = 4.5 V$		-	22	37	-	46	-	56	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	19	-	-	-	-	-	ns
		MR to Q0, Q7 or I/On; see <u>Figure 8</u>	[2]								
		$V_{CC} = 4.5 V$		-	27	46	-	58	-	69	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	23	-	-	-	-	-	ns

Table 7.Dynamic characteristics ... continuedGND (around = 0 V): for test circuit, see Figure 11

74HC_HCT299_3

Product data sheet

8-bit universal shift register; 3-state

Symbol	Parameter	Conditions			25 °C		–40 °C to +85 °C		–40 °C to +125 °C		Unit
				Min	Тур	Max	Min	Max	Min	Max	
t _t	transition time	bus driver (I/On); see Figure 7 [3]									
		$V_{CC} = 4.5 V$		-	5	12	-	15	-	18	ns
		standard (Q0, Q7); see Figure 7									
		$V_{CC} = 4.5 V$		-	7	15	-	19	-	22	ns
tw	pulse width	clock HIGH or LOW; see Figure 7									
		$V_{CC} = 4.5 V$		20	10	-	25	-	30	-	ns
		master reset LOW; see Figure 8									
		$V_{CC} = 4.5 V$		20	11	-	25	-	30	-	ns
t _{en}	enable time	OEn to I/On; see Figure 10	[4]								
		$V_{CC} = 4.5 V$		-	19	30	-	38	-	45	ns
t _{PHZ} HIGH to OFF-state propagation delay	HIGH to	OEn to I/On; see Figure 10	[5]								
	$V_{CC} = 4.5 V$		-	24	37	-	46	-	56	ns	
t _{PLZ} LOW to OFF-state propagation delay		OEn to I/On; see Figure 10									
	propagation	V_{CC} = 4.5 V		-	20	32	-	40	-	48	ns
t _{rec}	recovery time	MR to CP; see Figure 8									
		$V_{CC} = 4.5 V$		10	2	-	9	-	11	-	ns
t _{su}	set-up time	I/On, DSR, DSL to CP; see <u>Figure 7</u>									
		$V_{CC} = 4.5 V$		25	14	-	31	-	38	-	ns
		S0, S1 to CP; see Figure 9									
		$V_{CC} = 4.5 V$		32	18	-	40	-	48	-	ns
t _h	hold time	I/On, DSR, DSL to CP; see <u>Figure 7</u>									
		$V_{CC} = 4.5 V$		0	-11	-	0	-	0	-	ns
		S0, S1 to CP; see Figure 9									
		$V_{CC} = 4.5 V$		0	-17	-	0	-	0	-	ns
max	maximum	CP input; see Figure 7									
	frequency	$V_{CC} = 4.5 V$		25	42	-	20	-	17	-	MH
		V _{CC} = 5.0 V; C _L = 15 pF		-	46	-	-	-	-	-	MH

Table 7.Dynamic characteristics ... continuedGND (ground = 0.1/2) for test circuit, see Figure 11

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] t_{pd} is the same as t_{PHL} .

 $[3] \quad t_t \text{ is the same as } t_{THL} \text{ and } t_{TLH}.$

[4] t_{en} is the same as t_{PZH} and t_{PZL} .

[5] t_{dis} is the same as t_{PHZ} and t_{PLZ} .

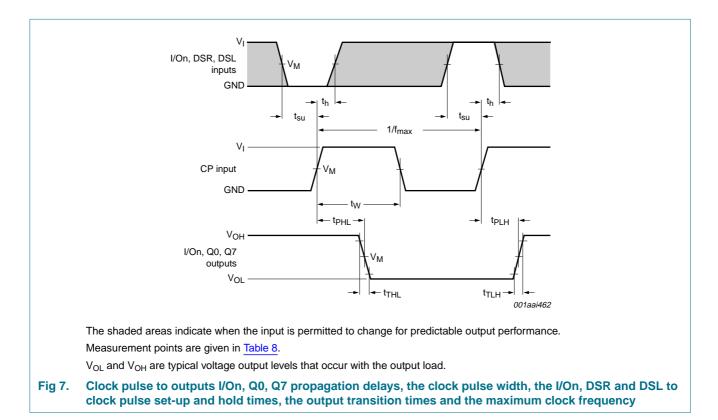
74HC_HCT299_3

74HC299; 74HCT299

8-bit universal shift register; 3-state

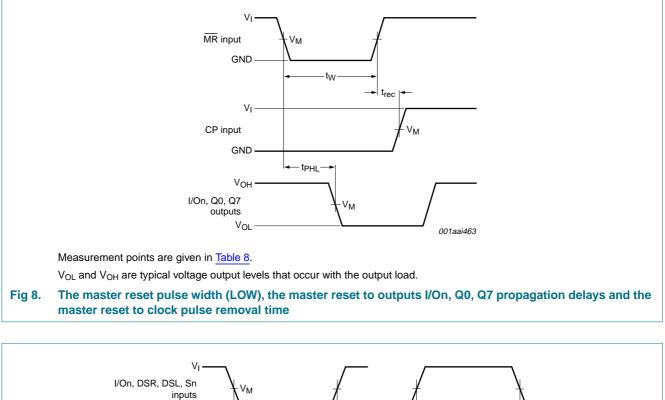
 f_i = input frequency in MHz;

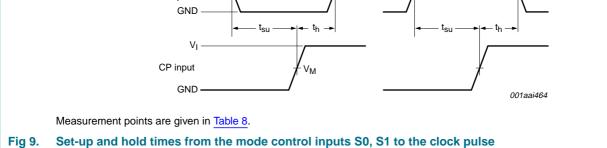
 $f_o = output frequency in MHz;$


 $\Sigma(C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs};$

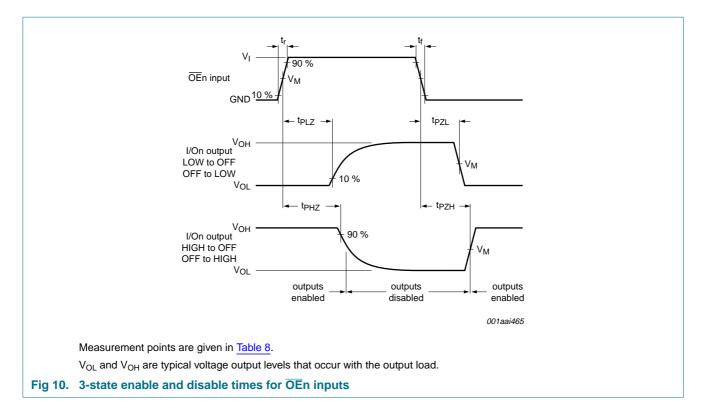
 C_L = output load capacitance in pF;

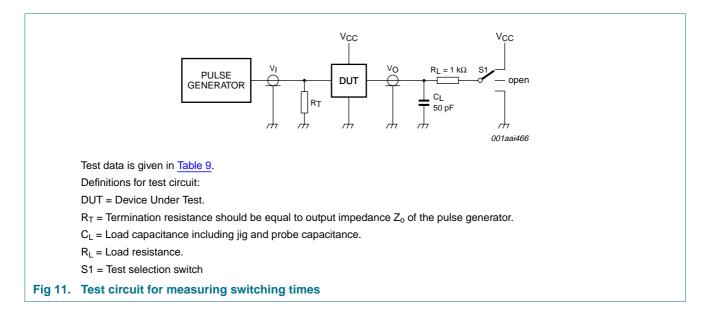
 V_{CC} = supply voltage in V;


N = number of inputs switching.


11. Waveforms

74HC299; 74HCT299


8-bit universal shift register; 3-state


74HC299; 74HCT299

8-bit universal shift register; 3-state

Table 8. Measurement points

Туре	Input	Output		
	VI	V _M	V _M	
74HC299	V _{CC}	0.5V _{CC}	0.5V _{CC}	
74HCT299	3 V	1.3 V	1.3 V	

74HC_HCT299_3

74HC299; 74HCT299

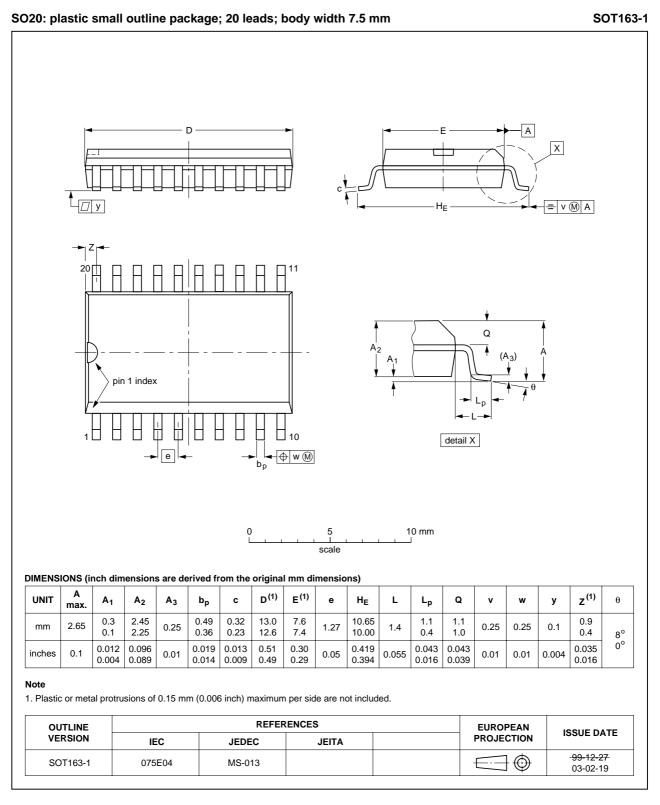

8-bit universal shift register; 3-state

Table 9. Test da	ta					
Туре	Input	Input		Load		
	VI	t _r , t _f	CL	RL	t _{PHL} , t _{PLH}	
74HC299	V _{CC}	6 ns	15 pF, 50 pF	1 kΩ	open	
74HCT299	3 V	6 ns	15 pF, 50 pF	1 kΩ	open	

74HC299; 74HCT299

8-bit universal shift register; 3-state

12. Package outline

Fig 12. Package outline SOT163-1 (SO20)

74HC_HCT299_3

Product data sheet

8-bit universal shift register; 3-state

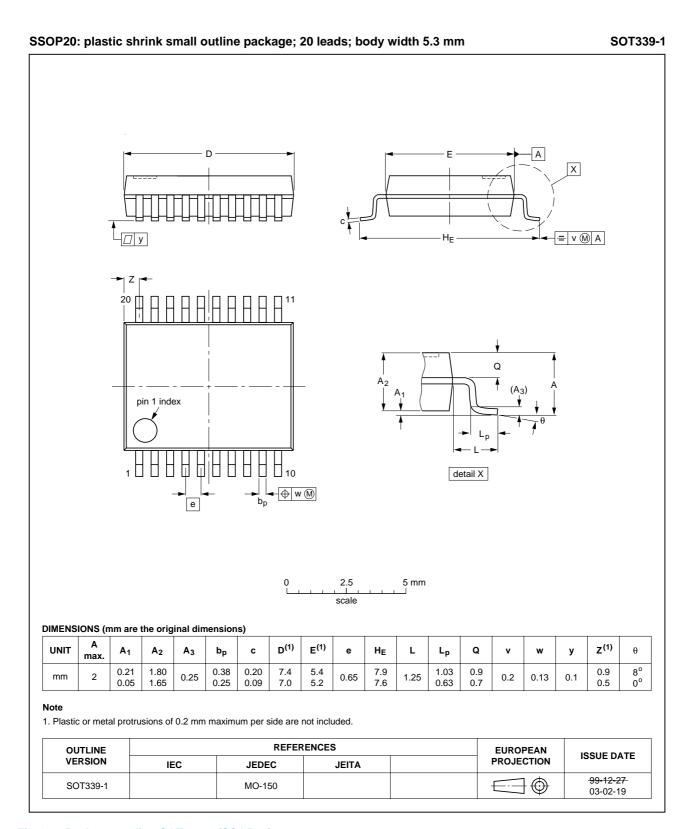


Fig 13. Package outline SOT339-1 (SSOP20)

74HC_HCT299_3

Product data sheet

8-bit universal shift register; 3-state

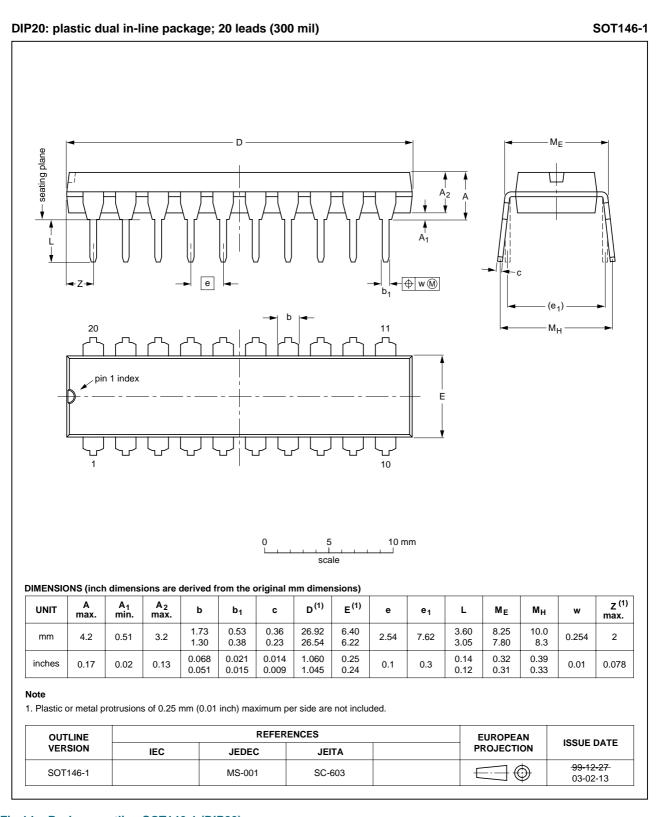
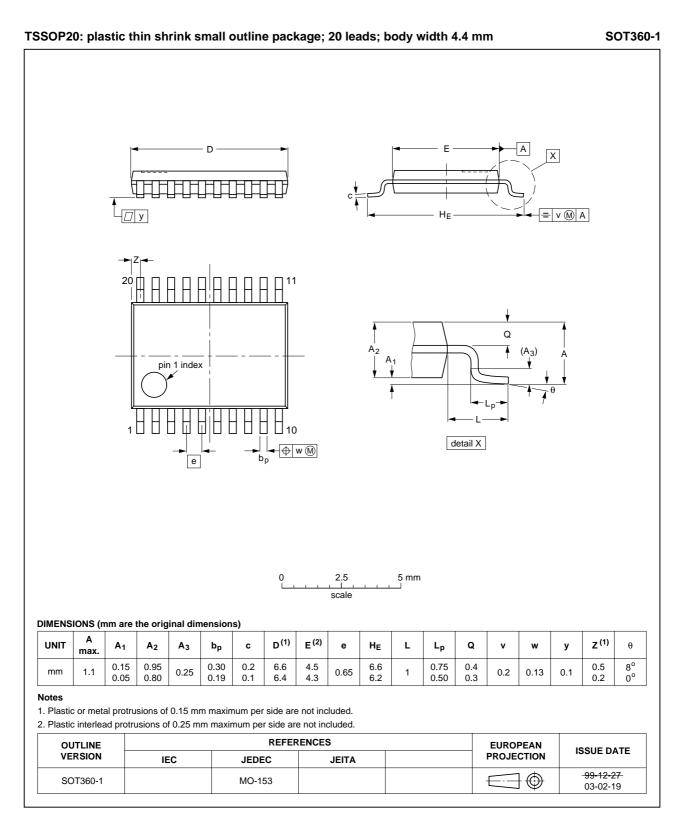



Fig 14. Package outline SOT146-1 (DIP20)

74HC_HCT299_3

Product data sheet

8-bit universal shift register; 3-state

Fig 15. Package outline SOT360-1 (TSSOP20)

74HC_HCT299_3

Product data sheet

13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74HC_HCT299_3	20080728	Product data sheet	-	74HC_HCT299_CNV_2		
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 <u>Section 3</u>: Ordering information added 					
	<u>Section 12</u> : Package outline drawings added					
	 Section 9 "Static characteristics": Family data added 					
	Section 11 "	Waveforms": Test circuit add	led			
74HC HCT299 CNV 2	19970828	Product specification	-	-		

14. Legal information

14.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

14.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74HC_HCT299_3

8-bit universal shift register; 3-state

16. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 5
5.1	Pinning 5
5.2	Pin description 5
6	Functional description 6
7	Limiting values 6
8	Recommended operating conditions 7
9	Static characteristics 7
10	Dynamic characteristics 10
11	Waveforms 14
12	Package outline 18
13	Revision history 22
14	Legal information 23
14.1	Data sheet status 23
14.2	Definitions
14.3	Disclaimers 23
14.4	Trademarks 23
15	Contact information 23
16	Contents 24

founded by
PHILIPS

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 28 July 2008 Document identifier: 74HC_HCT299_3