DISCRETE SEMICONDUCTORS

DATA SHEET

J111; J112; J113 N-channel silicon field-effect transistors

Product specification File under Discrete Semiconductors, SC07 July 1993

N-channel silicon field-effect transistors

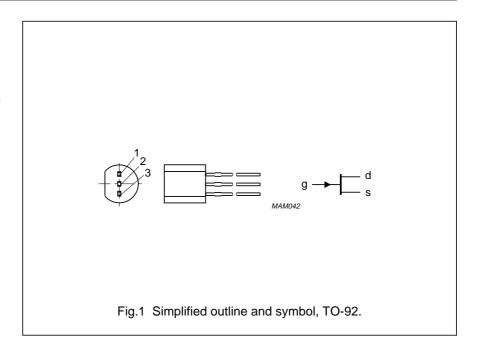
J111; J112; J113

DESCRIPTION

Symmetrical silicon n-channel junction FETs in plastic TO-92 envelopes. They are intended for applications such as analog switches, choppers, commutators etc.

FEATURES

- · High speed switching
- Interchangeability of drain and source connections
- Low R_{DS on} at zero gate voltage


PINNING

1 = gate

2 = source

3 = drain

Note: Drain and source are interchangeable.

QUICK REFERENCE DATA

			J111	J112	J113	
Drain-source voltage	$\pm V_{DS}$	max.	40	40	40	
Drain current						
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I_{DSS}	min.	20	5	2	mA
Total power dissipation						
up to $T_{amb} = 50 ^{\circ}C$	P_{tot}	max.	400	400	400	mW
Gate-source cut-off voltage					0.5	
$V_{DS} = 5 \text{ V}; I_D = 1 \mu A$	$-V_{GS off}$	min.	3	1	0.5	V
103 0 1, 10 1 part	- 63 011	max.	10	5	3	V
Drain-source on-state resistance						
$V_{DS} = 0.1 \text{ V}; V_{GS} = 0$	$R_{DS on}$	max.	30	50	100	Ω

N-channel silicon field-effect transistors

J111; J112; J113

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Drain-source voltage	$\pm V_{DS}$	max.	40	V
Gate-source voltage	$-V_{GSO}$	max.	40	V
Gate-drain voltage	$-V_{GDO}$	max.	40	V
Gate forward current (DC)	I_{G}	max.	50	mA
Total power dissipation				
up to $T_{amb} = 50 ^{\circ}C$	P_{tot}	max.	400	mW
Storage temperature range	T_{stg}		-65 to + 150	°C
Junction temperature	Tj	max.	150	°C

THERMAL RESISTANCE

From junction to ambient in free air $R_{th j-a} = 250 \text{ K/W}$

STATIC CHARACTERISTICS

 $T_i = 25$ °C unless otherwise specified

			J111	J112	J113	
Gate reverse current						_
$-V_{GS} = 15 \text{ V}; V_{DS} = 0$	-I _{GSS}	max.	1	1	1	nA
Drain cut-off current						
$V_{DS} = 5 \text{ V}; -V_{GS} = 10 \text{ V}$	$-I_{DSX}$	max.	1	1	1	nA
Drain saturation current						
$V_{DS} = 15 \text{ V}; V_{GS} = 0$	I_{DSS}	min.	20	5	2	mΑ
Gate-source breakdown voltage						
$-I_G = 1 \mu A; V_{DS} = 0$	$-V_{(BR)GSS}$	min.	40	40	40	V
Gate-source cut-off voltage						
$V_{DS} = 5 \text{ V}; I_{D} = 1 \mu A$	$-V_{GS off}$	min.	3	1	0.5	V
$VDS = 3V$, $ID = 1 \mu A$	−vGS off	max.	10	5	3	V
Drain-source on-state resistance						
$V_{DS} = 0.1 \text{ V}; V_{GS} = 0$	R_{DSon}	max.	30	50	100	Ω

Philips Semiconductors Product specification

N-channel silicon field-effect transistors

J111; J112; J113

DYNAMIC CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Input capacitance

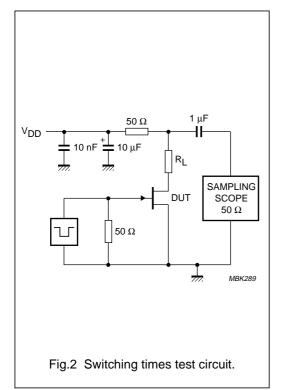
$V_{DS} = 0$; $-V_{GS} = 10 \text{ V}$; $t = 1 \text{ MHZ}$	C_{is}	typ.	6	рн
$V_{DS} = -V_{GS} = 0$; f = 1 MHz	C	typ.	22	pF
VDS VGS - 0, 1 - 1 WILL	σ_{is}	may	28	nΕ

Feedback capacitance

$$V_{DS} = 0$$
; $-V_{GS} = 10 \text{ V}$; $f = 1 \text{ MHz}$ C_{rs} typ. 3 pF

Switching times

test conditions


 $V_{DD} = 10 \text{ V}$; $V_{GS} = 0 \text{ to } V_{GSoff}$

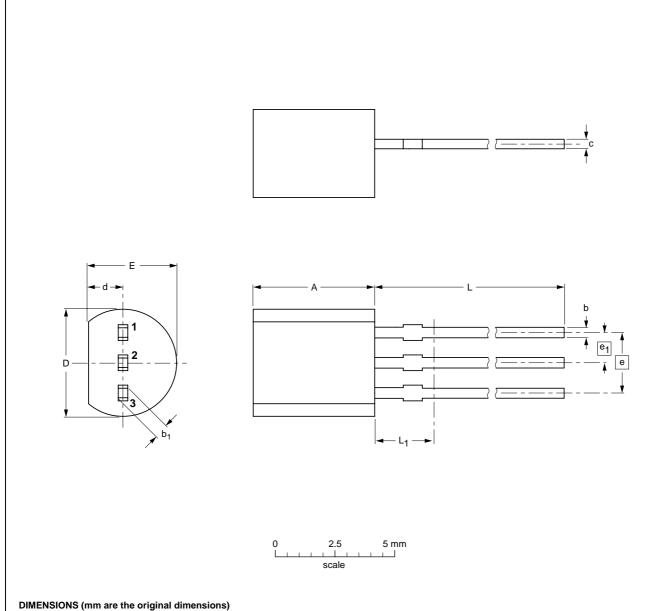
$$-V_{GS \text{ off}}$$
 = 12 V; R_L = 750 Ω for J111

$$-V_{GS \text{ off}} = 7 \text{ V}; R_L = 1550 \Omega \text{ for J112}$$

$$-V_{GS \text{ off}} = 5 \text{ V}; R_L = 3150 \Omega \text{ for J113}$$

Rise time	t _r	typ.	6 ns
Turn-on time	t _{on}	typ.	13 ns
Fall time	t _f	typ.	15 ns
Turn-off time	t_{off}	typ.	35 ns

Philips Semiconductors Product specification


N-channel silicon field-effect transistors

J111; J112; J113

PACKAGE OUTLINE

Plastic single-ended leaded (through hole) package; 3 leads

SOT54

UNIT	Α	b	b ₁	С	D	d	E	е	e ₁	L	L ₁ ⁽¹⁾
mm	5.2 5.0	0.48 0.40	0.66 0.56	0.45 0.40	4.8 4.4	1.7 1.4	4.2 3.6	2.54	1.27	14.5 12.7	2.5

Note

1. Terminal dimensions within this zone are uncontrolled to allow for flow of plastic and terminal irregularities.

OUTLINE		REFER	ENCES	EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ	PROJECTION	ISSUE DATE	
SOT54		TO-92	SC-43		97-02-28	

Philips Semiconductors Product specification

N-channel silicon field-effect transistors

J111; J112; J113

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Short-form specification	The data in this specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.