BF2030...

Silicon N-Channel MOSFET Tetrode

- For low noise, high gain controlled input stages up to 1 GHz
- Operating voltage 5V
- Pb-free (RoHS compliant) package ${ }^{1)}$
- Qualified according AEC Q101

RoHS

ESD (Electrostatic discharge) sensitive device, observe handling precaution!
Class 2 (2000V-4000V) pin to pin Human Body Model

Type	Package	Pin Configuration						Marking
BF2030	SOT143	1= S	$2=\mathrm{D}$	$3=\mathrm{G} 2$	$4=\mathrm{G} 1$	-	-	NDs
BF2030R	SOT143R	1= D	2=S	$3=\mathrm{G} 1$	$4=\mathrm{G} 2$	-	-	NDs
BF2030W	SOT343	1=	2=S	$3=\mathrm{G} 1$	$4=\mathrm{G} 2$	-	-	NDs

Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-source voltage	V_{DS}	8	V
Continuous drain current	I_{D}	40	mA
Gate 1/ gate 2-source current	$\pm I_{\mathrm{G} 1 / 2 \mathrm{SM}}$	10	
Gate 1 (external biasing)	$+V_{\mathrm{G} 1 \mathrm{SE}}$	6	V
Total power dissipation	$P_{\text {tot }}$		mW
$T_{\mathrm{S}} \leq 76^{\circ} \mathrm{C}, \mathrm{BF} 2030, \mathrm{BF2030R}$		200	
$T_{\mathrm{S}} \leq 94^{\circ} \mathrm{C}, \mathrm{BF} 2030 \mathrm{~W}$		200	
Storage temperature		$T_{\text {stg }}$	$-55 \ldots 150$
Channel temperature	T_{ch}	${ }^{\circ} \mathrm{C}$	

[^0]BF2030...

Thermal Resistance

Parameter	Symbol	Value	Unit
Channel - soldering point ${ }^{1)}$	$R_{\text {thchs }}$		K/W
BF2030/ BF2030R		≤ 370	
BF2030W		≤ 280	

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Drain-source breakdown voltage $I_{\mathrm{D}}=20 \mu \mathrm{~A}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{G} 2 \mathrm{~S}}=0$	$V_{(\mathrm{BR}) \mathrm{DS}}$	10	-	-	V
Gate1-source breakdown voltage $+l_{\mathrm{G} 1 \mathrm{~S}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=0, V_{\mathrm{DS}}=0$	$+V_{(B R) G 1 S S}$	6	-	15	
Gate2-source breakdown voltage $+I_{\mathrm{G} 2 \mathrm{~S}}=10 \mathrm{~mA}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{DS}}=0$	$+V_{(B R) G 2 S S}$	6	-	15	
Gate1-source leakage current $V_{\mathrm{G} 1 \mathrm{~S}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=0, V_{\mathrm{DS}}=0$	$+l_{\text {G1SS }}$	-	-	50	nA
Gate2-source leakage current $V_{\mathrm{G} 2 \mathrm{~S}}=5 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{DS}}=0$	$+I_{\text {G2S }}$	-	-	50	
Drain current $V_{\mathrm{DS}}=5 \mathrm{~V}, V_{\mathrm{G} 1 \mathrm{~S}}=0, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$	IDSS	-	-	50	$\mu \mathrm{A}$
Drain-source current $V_{\mathrm{DS}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, R_{\mathrm{G} 1}=100 \mathrm{k} \Omega$	IDSX	-	12	-	mA
Gate1-source pinch-off voltage $V_{\mathrm{DS}}=5 \mathrm{~V}, V_{\mathrm{G} 2 S}=4 \mathrm{~V}, I_{\mathrm{D}}=20 \mu \mathrm{~A}$	$V_{\mathrm{G1S}(\mathrm{p})}$	0.3	0.5	-	V
Gate2-source pinch-off voltage $V_{D S}=5 \mathrm{~V}, I_{D}=20 \mu \mathrm{~A}$	$V_{\mathrm{G} 2 \mathrm{~S}(\mathrm{p})}$	0.3	0.6	-	

[^1]BF2030...

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics (verified by random sampling)					
Forward transconductance $V_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$	$g_{\text {fs }}$	27	31	-	mS
Gate1 input capacitance $\begin{aligned} & V_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, \\ & f=10 \mathrm{MHz} \end{aligned}$	$C_{\text {g1ss }}$	-	2.4	2.8	pF
Output capacitance $\begin{aligned} & V_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, \\ & f=10 \mathrm{MHz} \end{aligned}$	$C_{\text {dss }}$	-	1.3	-	
Power gain $\begin{aligned} & V_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, \\ & f=800 \mathrm{MHz} \end{aligned}$	G_{p}	20	23	-	dB
Noise figure $\begin{aligned} & V_{\mathrm{DS}}=5 \mathrm{~V}, I_{\mathrm{D}}=10 \mathrm{~mA}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, \\ & f=800 \mathrm{MHz} \end{aligned}$	F	-	1.5	2.2	dB
Gain control range $V_{\mathrm{DS}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \ldots 0 \mathrm{~V}, f=800 \mathrm{MHz}$	ΔG_{p}	40	50	-	

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BF2030, BF2030R

Drain current $I_{\mathrm{D}}=f\left(I_{\mathrm{G} 1}\right)$
$V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ BF2030W

Output characteristics $\mathbf{I}_{\mathrm{D}}=f\left(V_{\mathrm{DS}}\right)$
$V_{G 2 S}=4 \mathrm{~V}$
$V_{\mathrm{G} 1 \mathrm{~S}}=$ Parameter

BF2030...

Gate 1 current $I_{\mathrm{G} 1}=f\left(\mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}\right)$
$V_{D S}=5 \mathrm{~V}$
$V_{\mathrm{G} 2 \mathrm{~S}}=$ Parameter

Drain current $/ \mathrm{D}=f\left(V_{\mathrm{G} 1 \mathrm{~S}}\right)$
$V_{\mathrm{DS}}=5 \mathrm{~V}$
$V_{\mathrm{G} 2 \mathrm{~S}}=$ Parameter

Gate 1 forward transconductance
$g_{\mathrm{fs}}=f\left(l_{\mathrm{D}}\right)$
$V_{\mathrm{DS}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=$ Parameter

Drain current $/ \mathrm{D}=f\left(V_{G G}\right)$
$V_{\mathrm{DS}}=5 \mathrm{~V}, V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}, R_{\mathrm{G} 1}=100 \mathrm{k} \Omega$ (connected to $V_{\mathrm{GG}}, V_{\mathrm{GG}}=$ gate1 supply voltage)

Drain current $l_{\mathrm{D}}=f\left(V_{G G}\right)$
$V_{\mathrm{G} 2 \mathrm{~S}}=4 \mathrm{~V}$
$R_{\mathrm{G} 1}=$ Parameter in $\mathrm{k} \Omega$

Crossmodulation $V_{\text {unw }}=(A G C)$
$V_{D S}=5 \mathrm{~V}$

Cossmodulation test circuit

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing
Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Package Outline

Foot Print

Marking Layout (Example)

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel

Edition 2006-02-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2007.
All Rights Reserved.

Attention please!

The information given in this dokument shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system.
Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1} \mathrm{~Pb}$-containing package may be available upon special request

[^1]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note Thermal Resistance

