High Ruggedness N-Channel Enhancement-Mode Lateral MOSFET

This high ruggedness device is designed for use in high VSWR industrial. medical, broadcast, aerospace and mobile radio applications. Its unmatched input and output design allows for wide frequency range use from 1.8 to 470 MHz.

Typical Performance

Frequency (MHz)	Signal Type	V _{DD} (V)	P _{out} (W)	G _{ps} (dB)	η _D (%)
27 (1)	CW	50	1200 CW	26.0	82.3
		57.5	1520 CW	27.0	80.1
		65	1800 CW	27.8	75.6
87.5–108 ^(2,3)	CW	60	1550 CW	21.9	82.2
144	CW	65	1800 CW	23.5	77.5
230 (4)	Pulse (100 μsec, 20% Duty Cycle)	65	1800 Peak	24.0	74.0

Load Mismatch/Ruggedness

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage	Result
230	Pulse (100 μsec, 20% Duty Cycle)	> 65:1 at all Phase Angles	14 W Peak (3 dB Overdrive)	65	No Device Degradation

1. Data from 27 MHz narrowband reference circuit (page 4).

- 2. Data from 87.5-108 MHz broadband reference circuit (page 5).
- 3. The values shown are the center band performance numbers across the indicated frequency range.
- 4. Data from 230 MHz narrowband production test fixture (page 6).

Features

- ٠ Unmatched input and output allowing wide frequency range utilization
- Device can be used single-ended or in a push-pull configuration ٠
- ٠ Qualified up to a maximum of 65 V_{DD} operation
- Characterized from 30 to 65 V for extended power range
- High breakdown voltage for enhanced reliability
- Suitable for linear application with appropriate biasing
- Integrated ESD protection with greater negative gate-source voltage range for improved Class C operation
- Characterized with series equivalent large-signal impedance parameters
- Lower thermal resistance part available: MRFX1K80N
- Included in NXP product longevity program with assured supply for a minimum of 15 years after launch

Typical Applications

- Industrial, scientific, medical (ISM)
 - Laser generation
 - Plasma etching
 - Particle accelerators - MRI, RF ablation and skin treatment
 - Industrial heating, welding and drying systems
- Radio and VHF TV broadcast
 - VHF omnidirectional range (VOR)
- This document contains information on a preproduction product. Specifications and information herein are subject to change without notice.

Document Number: Order from RF Marketing Rev. 1.0, 04/2017

MRFX1K80H

PREPRODUCTION

1.8-470 MHz, 1800 W CW, 65 V **WIDEBAND RF POWER LDMOS TRANSISTOR**

Note: The backside of the package is the source terminal for the transistor.

Figure 1. Pin Connections

© 2017 NXP B.V.

- HF communications - Weather radar

- Aerospace

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	-0.5, +182	Vdc
Gate-Source Voltage	V _{GS}	-6.0, +10	Vdc
Storage Temperature Range	T _{stg}	-65 to +150	°C
Case Operating Temperature Range	T _C	-40 to +150	°C
Operating Junction Temperature Range ⁽¹⁾	TJ	-40 to +225	°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	2222 (2) 11.11 (2)	W W/°C

Table 2. Thermal Characteristics

Characteristic	Symbol	Value ⁽³⁾	Unit
Thermal Resistance, Junction to Case	$R_{\theta JC}$	0.09 (2)	°C/W
CW: Case Temperature 95°C, 1800 W CW, 65 Vdc, I _{DQ(A+B)} = 150 mA, 98 MHz			

Table 3. Electrical Characteristics (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Off Characteristics ⁽⁴⁾				~	
Gate-Source Leakage Current (V _{GS} = 5 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-		1	μAdc
Drain-Source Breakdown Voltage (V _{GS} = 0 Vdc, I _D = 100 mAdc)	V _{(BR)DSS}	182	-	_	Vdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	10	μAdc
Zero Gate Voltage Drain Leakage Current (V _{DS} = 182 Vdc, V _{GS} = 0 Vdc)	I _{DSS}		_	100	mAdc
On Characteristics					
Gate Threshold Voltage ⁽⁴⁾ ($V_{DS} = 10$ Vdc, $I_D = 740 \ \mu Adc$)	V _{GS(th)}	1.7	2.4	2.7	Vdc
Gate Quiescent Voltage $(V_{DD} = 65 \text{ Vdc}, I_{D(A+B)} = 100 \text{ mAdc}, \text{Measured in Functional Test})$	V _{GS(Q)}	2.3	2.8	3.3	Vdc
Drain-Source On-Voltage ⁽⁴⁾ (V _{GS} = 10 Vdc, I _D = 2.76 Adc)	V _{DS(on)}	_	0.15		Vdc
Forward Transconductance ⁽⁴⁾ (V _{DS} = 10 Vdc, I _D = 43 Adc)	9fs	_	44.7	_	S

1. Continuous use at maximum temperature will affect MTTF.

2. Data is based on preliminary results and is subject to change.

3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.nxp.com/RF and search for AN1955.

4. Each side of device measured separately.

(continued)

Table 3. Electrical Characteristics (T_A = 25° C unless otherwise noted) (continued)

Characteristic	Symbol	Min	Тур	Max	Unit
Dynamic Characteristics ⁽¹⁾					
Reverse Transfer Capacitance (V _{DS} = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{rss}	—	2.8	_	pF
Output Capacitance (V _{DS} = 65 Vdc ± 30 mV(rms)ac @ 1 MHz, V _{GS} = 0 Vdc)	C _{oss}	_	201		pF
Input Capacitance (V _{DS} = 65 Vdc, V _{GS} = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)	C _{iss}	_	762	_	pF

Functional Tests (In NXP Production Test Fixture, 50 ohm system) V_{DD} = 65 Vdc, $I_{DQ(A+B)}$ = 100 mA, P_{out} = 1800 W Peak (360 W Avg.), f = 230 MHz, 100 μ sec Pulse Width, 20% Duty Cycle

Power Gain	G _{ps}	23.0	24.0	—	dB
Drain Efficiency	η _D	69.0	74.0	-	%
Input Return Loss	IRL	—	-15	-9	dB

Table 4. Load Mismatch/Ruggedness (In NXP Production Test Fixture, 50 ohm system) I_{DQ(A+B)} = 100 mA

Frequency (MHz)	Signal Type	VSWR	P _{in} (W)	Test Voltage, V _{DD}	Result
230	Pulse (100 μsec, 20% Duty Cycle)	> 65:1 at all Phase Angles	14 W Peak (3 dB Overdrive)	65	No Device Degradation

1. Each side of device measured separately.

27 MHz NARROWBAND REFERENCE CIRCUIT - 2.88" x 6.91" (73 mm x 176 mm)

Table 5. 27 MHz Narrowband Performance (In NXP Reference Circuit, 50 ohm system)

 $I_{DQ(A+B)} = 200 \text{ mA}, P_{in} = 3 \text{ W}, \text{ CW}$

Frequency (MHz)	V _{DD} (V)	P _{out} (W)	G _{ps} (dB)	η _D (%)
27	50	1200	26.0	82.3
	57.5	1520	27.0	80.1
	65	1800	27.8	75.6

TYPICAL CHARACTERISTICS

Figure 2. CW Output Power versus Input Power and Drain-Source Voltage

1150

1900

65

87.5-108 MHz BROADBAND REFERENCE CIRCUIT - 2.88" x 5.12" (73 mm x 130 mm)

$I_{DQ(A+B)} = 150 \text{ mA}, P_{in} = 10 \text{ W}, \text{ CW}$						
Frequency (MHz)	V _{DD} (V)	P _{out} (W)	G _{ps} (dB)	η _D (%)		
87.5	60	1502	21.8	83.2		
98	60	1556	21.9	82.2		
108	60	1488	21.7	79.4		

Table 6. 87.5–108 MHz Broadband Performance (In NXP Reference Circuit, 50 ohm system)

TYPICAL CHARACTERISTICS

versus CW Output Power and Frequency

230 MHz NARROWBAND PRODUCTION TEST FIXTURE - 6.0" × 4.0" (152 mm × 102 mm)

*C4, C17, C18, C19, C20, C21, C22 and C23 are mounted vertically.

Part	Description	Part Number	Manufacturer
C1, C2, C3	22 pF Chip Capacitor	ATC100B220JT500XT	ATC
C4	27 pF Chip Capacitor	ATC100B270JT500XT	ATC
C5, C6	22 µF, 35 V Tantalum Capacitor	T491X226K035AT	Kemet
C7, C9	0.1 µF Chip Capacitor	CDR33BX104AKWS	AVX
C8, C10	220 nF Chip Capacitor	C1812C224K5RACTU	Kemet
C11, C12, C24, C25	1000 pF Chip Capacitor	ATC100B102JT50XT	ATC
C13	24 pF Chip Capacitor	ATC800R240JT500XT	ATC
C14, C15, C16	20 pF Chip Capacitor	ATC800R200JT500XT	ATC
C17, C18, C19, C20, C21, C22	240 pF Chip Capacitor	ATC100B241JT200XT	ATC
C23	7.5 pF Chip Capacitor	ATC100B7R5CT500XT	ATC
C26, C27, C28, C29, C30, C31	470 μF, 63 V Electrolytic Capacitor	MCGPR63V477M13X26-RH	Multicomp
Coax1, 2, 3, 4	25 Ω Semi Rigid Coax Cable, 2.2" Shield Length	UT-141C-25	Micro-Coax
L1, L2	5 nH Inductor	A02TKLC	Coilcraft
L3, L4	6.6 nH Inductor	GA3093-ALC	Coilcraft
R1, R2	10 Ω, 1/4 W Chip Resistor	CRCW120610R0JNEA	Vishay
PCB	Arlon AD255A 0.030", $\varepsilon_r = 2.55$	D93270	MTL

Table 7. MRFX1K80H Narrowband Test Circui	it Componen	t Designations and	Values — 230 MH

MRFX1K80H

6

TYPICAL CHARACTERISTICS

f	Z _{source}	Z _{load}		
MHz	Ω	Ω		
230	1.1 + j2.7	2.2 + j2.9		

 Z_{source} = Test circuit impedance as measured from gate to gate, balanced configuration.

MRFX1K80H

PACKAGE DIMENSIONS

C NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED	MECHANICAL OUTLINE		PRINT VERSION NO	DT TO SCALE	
TITLE:		DOCUMEN	NT NO: 98ASB16977C	REV: G	
NI-1230-4H		STANDARD: NON-JEDEC			
		SOT1787	-1	03 MAR 2016	

8

NOTES:

- 1. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14. 5M-1994.
- 2. CONTROLLING DIMENSION: INCH
- 3. DIMENSION H IS MEASURED . 030 INCH (0. 762 MM) AWAY FROM PACKAGE BODY.

4. RECOMMENDED BOLT CENTER DIMENSION OF 1.52 INCH (38.61 MM) BASED ON M3 SCREW.

	INCH		MILLIMETER			INCH		MILLIMETER		
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX	
AA	1.615	1.625	41.02	41.28	Ν	1.218	1.242	30.94	31.55	
BB	.395	.405	10.03	10.29	Q	.120	.130	3.05	3.30	
cc	.170	.190	4.32	4.83	R	.355	.365	9.02	9.27	
D	.455	.465	11.56	11.81	S	.365	.375	9.27	9.53	
Е	.062	.066	1.57	1.68						
F	.004	.007	0.10	0.18						
G	G 1.400 BSC		35	35.56 BSC a			.013	0.33		
н	.082	.090	2.08	2.29	bbb		.010	0.	0.25	
к	.117	.137	2.97	3.48	ccc		.020 0.5		.51	
L	L .540 BSC		13	13.72 BSC						
м	1.219	1.241	30.96	31.52						
© NXP SEMICONDUCTORS N.V. ALL RIGHTS RESERVED MECHANICAL OL			L 0U1	TLINE PRINT VERSION NOT TO SCALE						
TITLE:					DOCUMENT NO: 98ASB16977C REV: G					
NI-1230-4H				STANDARD: NON-JEDEC						
				S0T1787-1 03 MAR 2016						

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: <u>nxp.com/SalesTermsandConditions</u>.

NXP and the NXP logo are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2017 NXP B.V.

