DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4019B
 MSI
 Quadruple 2-input multiplexer

Product specification
File under Integrated Circuits, IC04

PHILIPS

DESCRIPTION

The HEF4019B provides four multiplexing circuits with common select inputs ($\mathrm{S}_{\mathrm{A}}, \mathrm{S}_{\mathrm{B}}$); each circuit contains two inputs (A_{n}, B_{n}) and one output $\left(O_{n}\right)$. It may be used to select four bits of information from one of two sources.

The A inputs are selected when S_{A} is HIGH, the B inputs when S_{B} is HIGH. When S_{A} and S_{B} are HIGH, output $\left(O_{n}\right)$ is the logical $O R$ of the A_{n} and B_{n} inputs $\left(O_{n}=A_{n}+B_{n}\right)$. When S_{A} and S_{B} are LOW, output $\left(O_{n}\right)$ is LOW independent of the multiplexer inputs.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

FAMILY DATA, IDD LIMITS category MSI
See Family Specifications

HEF4019BP(N): 16-lead DIL; plastic (SOT38-1)
HEF4019BD(F): 16-lead DIL; ceramic (cerdip) (SOT74)
HEF4019BT(D): 16-lead SO; plastic (SOT109-1)
(): Package Designator North America

PINNING
S_{A}, S_{B}
A_{0} to A_{3}
B_{0} to B_{3}
O_{0} to O_{3}
select inputs (active HIGH)
multiplexer inputs
multiplexer inputs
multiplexer outputs

Fig. 3 Logic diagram.

TRUTH TABLE

SELECT		INPUTS		OUTPUT
$\mathrm{S}_{\text {A }}$	$\mathrm{S}_{\text {B }}$	A_{n}	B_{n}	O_{n}
L	L	X	X	L
H	L	L	X	L
H	L	H	X	H
L	H	X	L	L
L	H	X	H	H
H	H	H	X	H
H	H	X	H	H
H	H	L	L	L

Notes

1. $\mathrm{H}=\mathrm{HIGH}$ state (the more positive voltage)

L = LOW state (the less positive voltage)
$\mathrm{X}=$ state is immaterial

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	V_{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays $\mathrm{A}_{\mathrm{n}}, \mathrm{~B}_{\mathrm{n}}, \mathrm{~S}_{\mathrm{A}}, \mathrm{~S}_{\mathrm{B}} \rightarrow \mathrm{O}_{\mathrm{n}}$ HIGH to LOW LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {PHL }}$	$\begin{aligned} & 70 \\ & 30 \\ & 25 \end{aligned}$	$\begin{array}{r} 145 \\ 60 \\ 50 \end{array}$	ns ns ns	$\begin{aligned} & 43 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 19 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 17 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {PLH }}$	$\begin{aligned} & 60 \\ & 25 \\ & 15 \end{aligned}$	$\begin{array}{r} \hline 130 \\ 50 \\ 35 \end{array}$	ns ns ns	$\begin{array}{r} \hline 33 \mathrm{~ns}+(0,55 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 14 \mathrm{~ns}+(0,23 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 7 \mathrm{~ns}+(0,16 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{array}$
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {HiL }}$	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) C_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {L }}$ LH	$\begin{aligned} & 60 \\ & 30 \\ & 20 \end{aligned}$	$\begin{array}{r} 120 \\ 60 \\ 40 \end{array}$	ns ns ns	$\begin{aligned} 10 \mathrm{~ns} & +(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 9 \mathrm{~ns} & +(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ 6 \mathrm{~ns} & +(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$

	$V_{D D}$ \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$1200 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$5100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$18700 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
		$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

APPLICATION INFORMATION

An example of an application for the HEF4019B is:

- True/complement selection.

