1 General description

The NX20P0407 is a single-chip USB Type-C port protection device that provides 28V short-to-VBUS overvoltage protection to CC1/CC2 and SBU1/SBU2 pins.

USB Type-C allows VBUS voltage to increase up to 20V through Power delivery protocol. CC1/2 and SBU1/2 pins can be shorted to VBUS due to mechanical twisting and sliding of the connector since Type-C connector contact pins are 25% closer to each other than a micro USB connector. Moisture or fine dust may also cause the 20V VBUS pin to be shorted to adjacent pins.

NX20P0407 enables CC and SBU pins to be more robust in even abnormal conditions. NX20P0407 is 28V DC tolerant on CON_CC1, CON_CC2, CON_SBU1 and CON_SBU2 pins in connector side and quickly disconnects switches if the voltage is above overvoltage threshold, protecting CC1, CC2, SBU1 and SBU2 in system side from high voltage.

NX20P0407 integrates IEC 61000-4-2 ESD protection on CON_CC1 and CON_CC2, +15KV air discharge and +8KV contact discharge, which helps to reduce external BOM cost. NX20P0407 CON_CC1/2 pins are designed to be protected from surges up to +/-35V.

2 Features and benefits

- USB Type C CC1/2 and SBU1/2 short protection to VBUS
 - CON_CC1 / CON_CC2 : 28V_{DC}
 - CON_SBU1 / CON_SBU2 : 28VDC
- Rd circuit in CON_CC1/CON_CC2 in dead battery
- Low R_{DSon} switch
 - CC switch : 160mΩ
 - SBU switch : 3.6Ω
- Robust ESD immunity for CON_CC1/2
 - IEC 61000-4-2 Contact discharge: 8KV
 - IEC 61000-4-2 Air discharge: 15KV
- +/- 35V surge protection on CON_CC1/2
- Low SYS leakage current : 32µA
- CC1/2 leakage current : < 1µA
- Fast OVP turn off time : 60ns

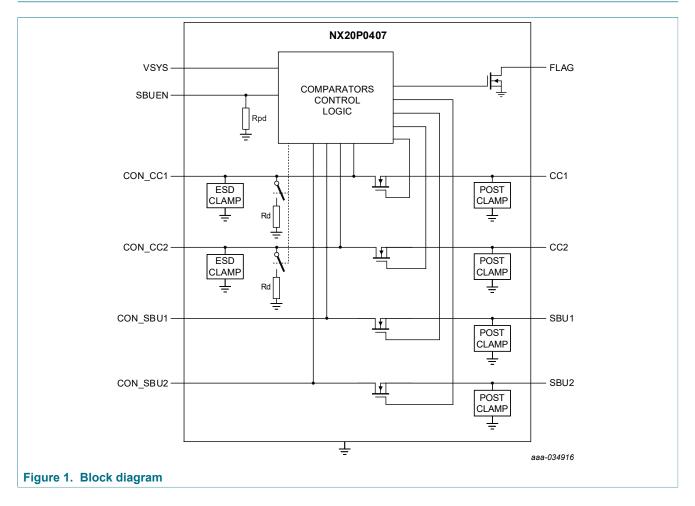
Applications 3

- Smartphone
- Tablet
- Laptop

Ordering information 4

Table 1. Ordering	information			
Type number	Topside	Package		
	marking	Name	Description	Version
NX20P0407UK	N07	WLCSP12	Wafer level chip-scale package, 12 bumps; 1.67 mm x 1.27 mm x 0.525 mm body (backside coating included)	SOT1390-7

4.1 Ordering options

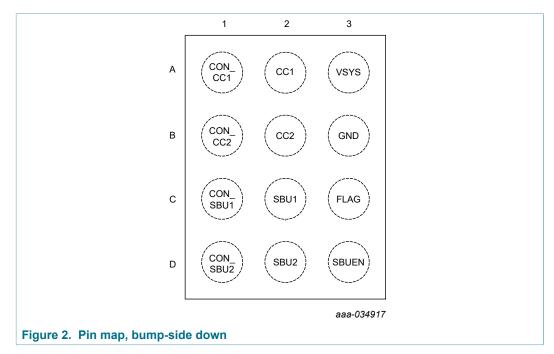

Table 2. Ordering options

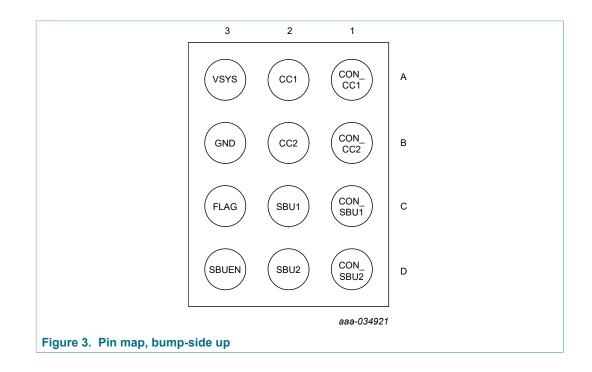
Type number	Orderable part number	Package	Packing method	Minimum order quantity	Temperature
NX20P0407UK	NX20P0407UKAZ	WLCSP12	REEL 7" Q1/T1 DP CHIPS	4000	T_{amb} = -40 °C to +85 °C
	NX20P0407UKZ	WLCSP12	REEL 13" Q1/T1 DP CHIPS	15000	T_{amb} = -40 °C to +85 °C

Product data sheet

USB Type-C CC and SBU Protection IC

5 Functional diagram


NX20P0407


Rev. 1.3 — 22 August 2019

USB Type-C CC and SBU Protection IC

6 **Pinning information**

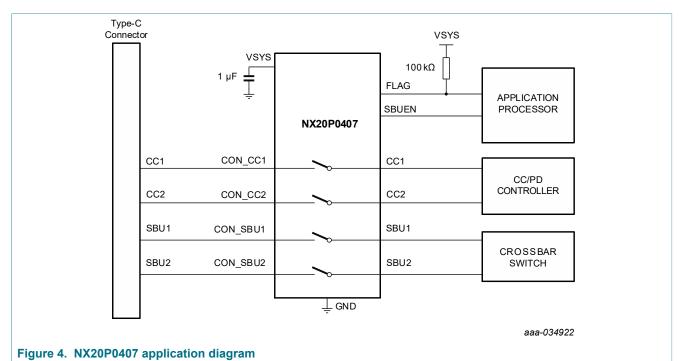
6.1 Pinning

USB Type-C CC and SBU Protection IC

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Туре	Description
CON_CC1	A1	P/AIO	Type-C connector side CC1. Connect CC1 of Type-C USB connector.
CON_CC2	B1	P/AIO	Type-C connector side CC2. Connect CC2 of Type-C USB connector.
CON_ SBU1	C1	DIO	Type-C connector side SBU1. Connect SBU1 of Type-C USB connector.
CON_ SBU2	D1	DIO	Type-C connector side SBU2. Connect SBU2 of Type-C USB connector.
CC1	A2	P/AIO	System side CC1. Connect CC1 of USB CC/PD controller.
CC2	B2	P/AIO	System side CC2. Connect CC2 of USB CC/PD controller.
SBU1	C2	DIO	System side SBU1.
SBU2	D2	DIO	System side SBU2.
SBUEN	D3	DI	SBU switch enable/disable control pin. SBUEN is driven high to enable SBU switch. There is a $460k\Omega$ Internal pull-down resistor.
VSYS	A3	Р	Power supply input; connect System voltage and bypass $1\mu\text{F}$ capacitor to GND.
FLAG	C3	DO	Open-drain output indicating fault condition. Low when Fault condition happens, external pull-up resistor is required.
GND	B3	Р	Ground


NX20P0407 Product data sheet

.....

7 Functional description

NX20P0407 is placed in front of Type-C connector and protects CC and SBU pins in System side from 20V VBUS short, ESD and surge.

NX20P0407 has Rd clamp circuit on both CON_CC1 and CON_CC2 when VSYS is below UVLO threshold, i.e., dead battery condition. It allows Type-C adapter to detect sink through CC and start providing 5V VBUS. Main charger regulates system voltage from the VBUS. Once VSYS comes up, NX20P0407 enables switches and disconnects the Rd clamp circuit from CON_CC1 and CON_CC2.

7.1 Power status

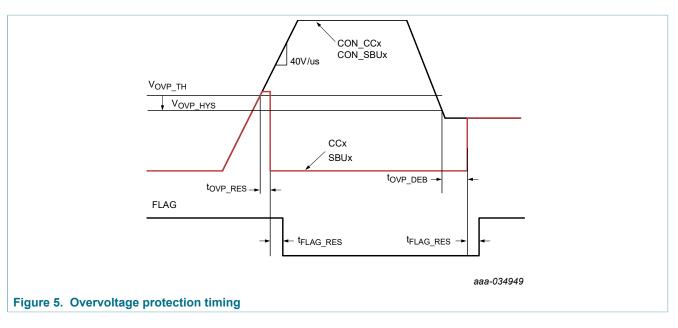
When VSYS is below $V_{SYSUVLO}$, NX20P0407 stays in shutdown mode. Bias circuit, switches and all comparators are disabled, but Rd clamp circuits on CON_CC1 and CON_CC2 are enabled. It allows the Type-C adapter to detect Rd and to supply 5V through VBUS pin in dead battery condition.

NX20P0407 enters standby mode when VSYS exceeds $V_{SYSUVLO}$. CC switch turns on automatically and SBU switch is controlled by SBUEN. After CC switch is fully turned ON, the Rd clamp circuit is disabled.

5V VCONN power supply on CC1 or CC2 should be supplied after VSYS is valid.

Table 4. Power state	S					
Power states	VSYS	Flag	SBUEN	Rd circuit	CC Switch	SBU Switch
Dead battery	< V _{SYSUVLO}	Hi-Z	x	ON	OFF	OFF
Power ON_A	> V _{SYSUVLO}	Hi-Z	Low	OFF	ON	OFF
Power ON_B	> V _{SYSUVLO}	Hi-Z	High	OFF	ON	ON

Table 4. Power states

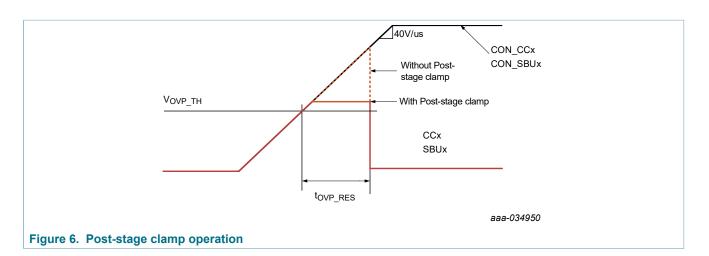

NX20P0407 Product data sheet © NXP B.V. 2019. All rights reserved.

7.2 Overvoltage protection

NX20P0407 has short circuit protection of CON_CC1/2 and CON_SBU1/2 up to 28V. CC switch overvoltage threshold is V_{OVPCC} to guarantee VCONN power supply passes to VCONN load, which is maximum 5.5V by USB Type-C spec. SBU switch overvoltage threshold is V_{OVPSBU} to securely turn the switch off and prevent high voltage to SBU in system side.

Once overvoltage on any channel is detected, the switch is quickly turned off within t_{OVP_RES} , to prevent overvoltage to system side. FLAG pin goes low in t_{FLAG_RES} to inform system of the fault condition. If the voltage of the channel triggered OVP comes down below overvoltage threshold for t_{OVP_DEB} , the switch is turned back on and FLAG pin gets Hi-Z.

Each of the four switches for CC1/2 and SBU1/2 has its own OVP comparator and is controlled by its comparator independently. If CC1 voltage exceeds OVP threshold, the CC1 switch is turned off, but the other switches stay ON.


7.3 Post-stage clamp circuit

NX20P0407 has a post-stage clamp circuit to clamp extra voltage on CC1, CC2, SBU1 and SBU2 in system side. When shorting with VBUS, the voltage on CON_CCx and SBU_CCx is rapidly increased. Even though NX20P0407 features super fast response time for overvoltage condition, the overvoltage may pass through to CCx / SBUx for the response time, t_{OVP_RES} . NX20P0407 post-stage clamp circuit provides secondary protection to clamp the voltage on CCx/ SBUx in system side, to prevent exceeding 7V Clamping voltage.

Product data sheet

NX20P0407

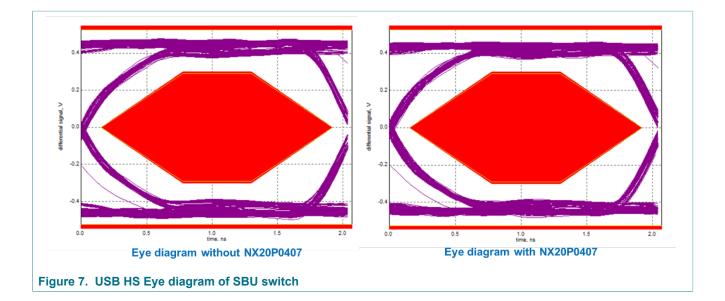
USB Type-C CC and SBU Protection IC

7.4 Flag

Flag pin is an open drain output to indicate device fault condition to application processor. If Fault condition is detected, Flag output is latched to low until the fault condition is cleared.

Table 5 shows NX20P0407 fault conditions and its behavior.

Table 5. Fault condi		1			
Fault	Condition	SBUEN	Flag	CC Switch	SBU Switch
Thermal Protection	Tj > T _{OTP}	Low	Low	ON	OFF
Thermal Protection	Tj > T _{OTP}	High	Low	ON	ON
CC OVP	$V_{CON_{CCx}} > V_{OVPCC}$	Low	Low	OFF	OFF
CC OVP	$V_{CON_{CCx}} > V_{OVPCC}$	High	Low	OFF	ON
SBU OVP	V _{CON_SBUx} > V _{OVPSBU}	Low	Hi-Z	ON	OFF
SBU OVP	V _{CON_SBUx} > V _{OVPSBU}	High	Low	ON	OFF


Table 5. Fault conditions and behavior

7.5 CC and SBU Switch

NX20P0407 has two pairs of switches: CC switches and SBU switches. CC switches are always ON when SYS power is valid and there is no fault condition. The switches are capable of +/- 1.2A current with R_{ON_CC} switch resistance. SBU switches are controlled by SBUEN when SYS power is valid. The switch bandwidth is 1.5GHz so that it can be used to protect USB D+/D- from overvoltage if SBU is not used.

Product data sheet

USB Type-C CC and SBU Protection IC

Product data sheet

Downloaded from Arrow.com.

8 Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{IO}	input/output voltage	CON_CC1, CON_CC2, CON_ SBU1, CON_SBU2	-0.5	28	V
		CC1, CC2, SBU1, SBU2	-0.5	6	V
VI	input voltage	SBUEN, VSYS	-0.5	6	V
Vo	output voltage	FLAG	-0.5	6	V
		CON_CC1, CON_CC2, CC1, CC2; T _j < 105°C	-1.25	1.25	A
lo	output current	CON_SBU1, CON_SBU2, SBU1, SBU2	-100	100	mA
Tj	junction temperature		-40	135	°C
		IEC 61000-4-2 Contact discharge; CON_CC1, CON_CC2	-8	+8	kV
V _{ESD}	electrostatic discharge voltage	IEC 61000-4-2 Air discharge; CON_CC1, CON_CC2	+15	+15	kV
		HBM (JESD22-001); all other pins	-2	+2	kV
		CDM (JESD22-C101E); all other pins	-500	+500	V

9 Recommended operating conditions

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{IO} input	input/output voltage	CC1, CC2, CON_CC1, CON_CC	0	5.5	V
		SBU1, SBU2, CON_SBU1, CON_ SBU2	0	4.5	V
input voltage	input voltage	SBUEN	0	5.5	V
VI		VSYS	2.5	5.5	V
Vo	output voltage	FLAG	0	5.5	V
I _{IO(CC)}	CC input/output current	$\begin{array}{l} \text{CON_CC1, CON_CC2, CC1, CC2;} \\ \text{V}_{\text{CC}} - \text{V}_{\text{CON_CC}} \leq 300\text{mV} \end{array}$	-1.2	+1.2	A
T _{amb}	ambient temperature		-40	85	°C

NX20P0407 Product data sheet

10 Thermal characteristics

Table 8. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
R _{th(j-a)}	thermal resistance from junction to ambient		[1] [2]	110	°C/W

The overall Rth(j-a) can vary depending on the board layout. To minimize the effective Rth(j-a), all pins must have a solid connection to larger Cu layer areas e.g. to the power and ground layer. In multi-layer PCB applications, the second layer should be used to create a large heat spreader area right below the [1] device. If this layer is either ground or power, it should be connected with several vias to the top layer connecting to the device ground or supply. Try not to use any solder-stop varnish under the chip. This R_{th(j-a)} is calculated based on JEDEX2S2P board. The actual Rth(j-a) value may vary in applications using different layer stacks and layouts.

[2]

11 Electrical characteristics

11.1 Static characteristics

Table 9. Static characteristics

At recommended input voltages and T_{amb} = -40 °C to +85 °C; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
Supply current	/ Leakage current					,
V _{SYSUVLO}	VSYS Under Voltage Lockout	Falling, 100mV hysteresis	2.14	2.27	2.40	V
I _{SYS}	Other allow assessed	V _{SYS} = 3.6V, SBUEN = 0V CCx = 5.1kΩ		32	55.5	μA
	Standby current	V _{SYS} = 3.6V, SBUEN = 3.6V CCx = 5.1kΩ		107	170	μA
I _{CC_Leak}	Leakage current for CC pins	V _{SYS} = 3.6V, V _{CCx} = 3.0V, CON_CCx floating, V _{SYS} > V _{CCx} + 0.6V			1	μA
	Leakage current for CC pins	V _{SYS} = 3.6V, V _{CCx} = 3.6V, CON_CCx floating, V _{SYS} < V _{CCx} + 0.6V			5	μA
I _{SBU_Leak}	Leakage current for SBU pins	V_{SYS} = 3.6V, V_{SBUx} = 3.6V, CON_SBUx floating			1	μA
CC switcher				1		
R _{on_CC}	On resistance	V _{SYS} = 3.6V, V _{CCx} = 5.5V	-	160	250	mΩ
R _{on_CC_Flat}	On resistance flatness	Sweep CCx voltage between 0V and 3.6V		2	10	mΩ
V _{CLAMPH}	CON_CCx clamping voltage	External 330µA	0.9		2.13	V
V _{CLAMPM}	CON_CCx clamping voltage	External 180µA	0.5		1.2	V
V _{CLAMPD}	CON_CCx clamping voltage	External 80µA	0.3		1.2	V
V _{OVPCC}	OVP threshold on CON_CCx	V _{SYS} = 3.6V, rising	5.6	5.8	6.0	V

NX20P0407 **Product data sheet**

NX20P0407

USB Type-C CC and SBU Protection IC

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OVPCC_hys}	OVP threshold hysteresis			100		mV
C _{on_cc}	Equivalent on capacitance	Capacitance between CCx/ CON_CCx and GND when Powered up. $V_{CCx} = 0V$ to 1.2V, f = 240MHz		25		pF
BW _{CC}	3dB Bandwidth	Single ended, 50Ω termination, $V_{CCx} = 0.1V$ to $1.2V$		250		MHz
V _{CLAMP}	Clamp voltage on system side	Hot plug voltage CON_CCx = $22V$. load 150nF cap and 40Ω in series to GND on CCx $40V/us$		7		V
SBU switcher		I		I	I]
R _{on_SBU}	On resistance	V _{SYS} = 3.6V, SBUEN = High, SBUx = 3.6V	-	3.6	5.4	Ω
R _{on_SBU_Flat}	On resistance flatness	Sweep SBUx voltage between 0V and 3.6V		30	150	mΩ
V _{OVPSBU}	OVP threshold on CON_SBUx	V_{SYS} = 3.6V, SBUEN = High, rising	4.6	4.8	5.0	V
V_{OVPSBU_hys}	OVP threshold hysteresis			100		mV
Con_SBU	Equivalent on capacitance	Capacitance between SBUx/ CON_SBUx and GND when Powered up. V _{SBUx} = 0V to 1.2V, f = 240MHz		4.5		pF
BW _{SBU}	3dB Bandwidth	Single ended, 50Ω termination, $V_{SBUx} = 0.1V$ to $1.2V$		1500		MHz
XTALK	Crosstalk	Swing 1Vpp at 10MHz, measure the other channels with $50m\Omega$ termination		-84		dB
V _{CLAMP}	Clamp voltage on system side	Hot plug voltage CON_SBUx = $22V$. load 150nF cap and 40Ω in series to GND on SBUx		7		V
FLAG						
V _{OL}	Output low voltage	I _{OL} = 5mA			0.3	V
I _{ОН}	High level leakage current	V _{FLAG} = 5.5V			1	μΑ
SBUEN						
V _{IH}	Valid input high		1.5			V
V _{IL}	Valid input low				0.4	V
R _{PD}	Pull down resistor		350	450	600	kΩ
Over Temperatu	ire flag					
T _{OTP}	Over temperature Flag			125		°C

NX20P0407

© NXP B.V. 2019. All rights reserved.

Product data sheet

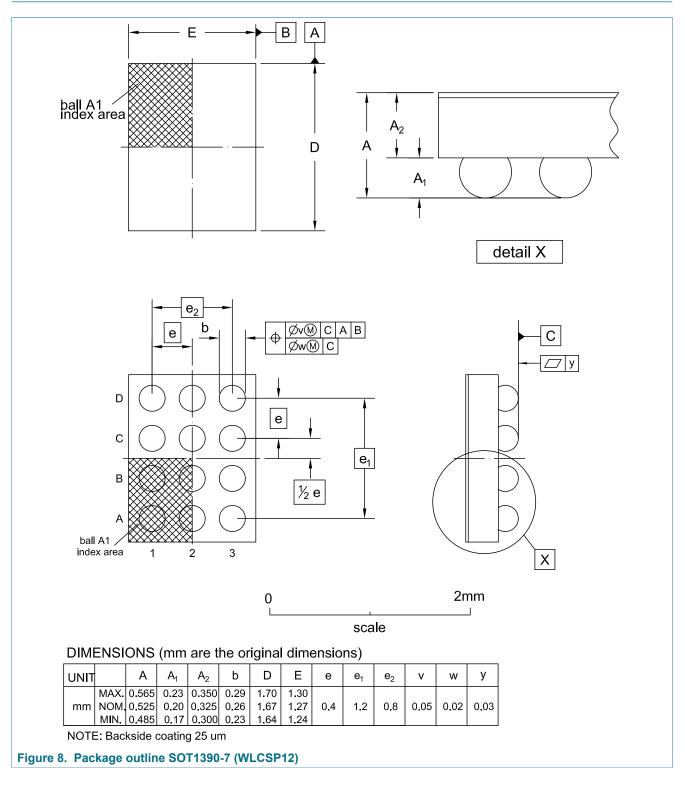
NX20P0407

USB Type-C CC and SBU Protection IC

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{OTP_hys}	Over temperature Flag hysteresis		-	10	-	°C

11.2 Dynamic characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Switch Dynami	c Characteristics	1				
t _{pwrup}	Power up time from Valid power source of VSYS			2.5	5	ms
t _{OVP_res_CC}	OVP response time	Time from OVP trip voltage asserted to OVP FET turn-off	-	60		ns
t _{OVP_res_SBU}	OVP response time	Time from OVP trip voltage asserted to OVP FET turn-off	-	60		ns
t _{OVP_deb}	Minimum time to exit OVP shutdown, CON_CCx or CON_ SBUx voltage should be lower than OVP voltage for this time		-	20		ms
t _{SBU_ON}	SBU switch enable time from SBUEN to high			40	80	us
t _{OTP_deb}	Minimum time to exit over temperature flag	[1]	-	20		ms
t _{FLAG_RES}	Time to FLAG assertion from OVP detected.			5		us
t _{OTP_flag}	Time to Flag from over temperature	[1]		20		us


[1] Guaranteed by Design

NX20P0407 Product data sheet

Rev. 1.3 — 22 August 2019

USB Type-C CC and SBU Protection IC

12 Package outline

NX20P0407 Product data sheet

Downloaded from Arrow.com.

13 Revision history

Table 11. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
NX20P0407 v.1.3	20190822	Product data sheet	-	NX20P0407 v.1.2

NX20P0407 Product data sheet

14 Legal information

14.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

Please consult the most recently issued document before initiating or completing a design. [1]

[2] [3] The term 'short data sheet' is explained in section "Definitions".

The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory. Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of NXP Semiconductors

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without

notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

 $\ensuremath{\mathsf{Applications}}$ — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification. Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products. NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect

Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

NX20P0407

© NXP B.V. 2019. All rights reserved

NX20P0407

USB Type-C CC and SBU Protection IC

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

Product data sheet

NX20P0407

USB Type-C CC and SBU Protection IC

Contents

1	General description	1
2	Features and benefits	1
3	Applications	2
4	Ordering information	2
4.1	Ordering options	2
5	Functional diagram	3
6	Pinning information	4
6.1	Pinning	4
6.2	Pin description	
7	Functional description	6
7.1	Power status	6
7.2	Overvoltage protection	7
7.3	Post-stage clamp circuit	7
7.4	Flag	
7.5	CC and SBU Switch	8
8	Limiting values	10
9	Recommended operating conditions	10
10	Thermal characteristics	11
11	Electrical characteristics	11
11.1	Static characteristics	11
11.2	Dynamic characteristics	13
12	Package outline	14
13	Revision history	
14	Legal information	16

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2019.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 22 August 2019 Document identifier: NX20P0407