5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

Rev. 03 — 18 October 2004

Product data sheet

1. General description

The 74HCT534 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). The 74HCT534 is specified in compliance with JEDEC standard no. 7A.

The 74HCT534 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and inverting 3-state outputs for bus oriented applications. A clock (CP) and an output enable (\overline{OE}) input are common to all flip-flops.

The 8 flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW-to-HIGH CP transition. When \overline{OE} is LOW, the contents of the 8 flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high-impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

The 74HCT534 is functionally identical to the 74HCT374, but has inverted outputs.

2. Features

- 3-state inverting outputs for bus oriented applications
- 8-bit positive-edge triggered register
- Common 3-state output enable input.

3. Quick reference data

Table 1: Quick reference data

 $GND = 0 V; T_{amb} = 25 \circ C; t_r = t_f = 6 ns.$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL} , t _{PLH}	propagation delay CP to $\overline{Q}n$	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	-	13	-	ns
f _{max}	maximum clock frequency	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	-	40	-	MHz
CI	input capacitance		-	3.5	-	pF
C _{PD}	power dissipation capacitance per flip-flop	$C_L = 50 \text{ pF}; V_{CC} = 4.5 \text{ V}$	[1][2] _	19	-	рF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

fo = output frequency in MHz;

 C_L = output load capacitance in pF;

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

$$\begin{split} V_{CC} &= \text{supply voltage in Volts;} \\ N &= \text{number of inputs switching;} \\ \Sigma(C_L \times V_{CC}{}^2 \times f_o) &= \text{sum of the outputs.} \end{split}$$

[2] The condition is $V_I = GND$ to $V_{CC} - 1.5$ V.

4. Ordering information

Table 2: Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74HCT534N	–40 °C t0 +125 °C	DIP20	plastic dual in-line package; 20 leads (300 mil)	SOT146-1				
74HCT534D	–40 °C t0 +125 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1				

5. Functional diagram

74HCT534

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3:Pin description

Tubic 0.	i in accomption	
Symbol	Pin	Description
ŌĒ	1	3-state output enable input (active LOW)
$\overline{Q}0$	2	3-state output
D0	3	data input
D1	4	data input
Q1	5	3-state output
Q2	6	3-state output
D2	7	data input
D3	8	data input
Q 3	9	3-state output
GND	10	ground (0 V)
CP	11	clock input (LOW-to-HIGH, edge-triggered)
Q4	12	3-state output
D4	13	data input
D5	14	data input
Q 5	15	3-state output
Q 6	16	3-state output
D6	17	data input
D7	18	data input
Q7	19	3-state output
V _{CC}	20	supply voltage

Product data sheet

7. Functional description

7.1 Function table

Table 4: Function table [1]

Operating mode	Input		Internal	Output Qn	
	OE	СР	Dn	flip-flops	
Load and read	L	\uparrow	I	L	Н
register	L	\uparrow	h	Н	L
Load register and	Н	\uparrow	I	L	Z
disable outputs	Н	\uparrow	h	Н	Z

[1] H = HIGH voltage level;

h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition;

- L = LOW voltage level;
- I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition;
- Z = high-impedance OFF-state;
- \uparrow = LOW-to-HIGH clock transition.

8. Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7	V
I _{IK}	input diode current	$V_{\rm I} < -0.5$ V or $V_{\rm I} > V_{\rm CC}$ + 0.5 V	-	±20	mA
I _{OK}	output diode current	$V_O < -0.5 V \text{ or}$ $V_O > V_{CC} + 0.5 V$	-	±20	mA
l _O	output source or sink current	$V_{\rm O}$ = –0.5 V to V_{CC} + 0.5 V	-	±35	mA
I_{CC},I_{GND}	V _{CC} or GND current		-	±70	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	power dissipation				
	DIP20 package		<u>[1]</u> _	750	mW
	SO20 package		[2] _	500	mW

[1] Above 70 °C: P_{tot} derates linearly with 12 mW/K.

[2] Above 70 °C: Ptot derates linearly with 8 mW/K.

9. Recommended operating conditions

Table 6:	Recommended operating conditions					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{CC}	supply voltage		4.5	5.0	5.5	V
VI	input voltage		0	-	V_{CC}	V

9397 750 13817 Product data sheet

Philips Semiconductors

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

Table 0.	Recommended operating conditionscommed					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vo	output voltage		0	-	V_{CC}	V
t _r , t _f	input rise and fall times	V _{CC} = 4.5 V	-	6.0	500	ns
T _{amb}	ambient temperature	see Section 10 and 11	-40	-	+125	°C

 Table 6:
 Recommended operating conditions ...continued

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 25	°C					
VIH	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	1.6	-	V
VIL	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	1.2	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		$I_{O} = -20 \ \mu A$	4.4	4.5	-	V
		$I_0 = -6 \text{ mA}$	3.98	4.32	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		I _O = 20 μA	-	0	0.1	V
		I _O = 6.0 mA	-	0.16	0.26	V
ILI	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	±0.1	μA
I _{OZ}	3-state OFF current	$V_I = V_{IH} \text{ or } V_{IL}$; other inputs $V_{CC} \text{ or } GND$; $V_O = V_{CC} \text{ or } GND$; $I_O = 0 \text{ A}$	-	-	±0.5	μA
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	8.0	μΑ
ΔI_{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 2.1 \text{ V}; \text{ other inputs}$ $V_{I} = V_{CC} \text{ or GND};$ $V_{CC} = 4.5 \text{ V to 5.5 V}; I_{O} = 0 \text{ A}$				
		pin OE	-	125	450	μA
		pin CP	-	90	325	μA
		pins Dn	-	35	125	μΑ
CI	input capacitance		-	3.5	-	pF
T _{amb} = -40) °C to +85 °C					
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		I _O = -20 μA	4.4	-	-	V
		$I_{O} = -6 \text{ mA}$	3.84	-	-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		I _O = 20 μA	-	-	0.1	V
		I _O = 6.0 mA	-	-	0.33	V
ILI	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	±1.0	μA
397 750 13817			© Koninklijke Pr	nilips Electronic	cs N.V. 2004. A	Il rights rese
	n nhaat	Dev. 00 40.0-1-10004				0 - (

74HCT534

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

Table 7: Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{OZ}	3-state OFF current	$V_I = V_{IH}$ or V_{IL} ; other inputs V_{CC} or GND; $V_O = V_{CC}$ or GND; $I_O = 0$ A	-	-	±5	μΑ
lcc	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	80	μA
∆I _{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 2.1 \text{ V}; \text{ other inputs}$ $V_{I} = V_{CC} \text{ or GND};$ $V_{CC} = 4.5 \text{ V to 5.5 V}; I_{O} = 0 \text{ A}$				
		pin OE	-	-	560	μΑ
		pin CP	-	-	405	μΑ
		pins Dn	-	-	155	μΑ
T _{amb} = -40	°C to +125 °C					
V _{IH}	HIGH-level input voltage	V_{CC} = 4.5 V to 5.5 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V_{CC} = 4.5 V to 5.5 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		$I_{O} = -20 \ \mu A$	4.4	-	-	V
		$I_{O} = -6 \text{ mA}$	3.7	-	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}; V_{CC} = 4.5 \text{ V}$				
		I _O = 20 μA	-	-	0.1	V
		I _O = 6.0 mA	-	-	0.4	V
ILI	input leakage current	$V_{I} = V_{CC}$ or GND; $V_{CC} = 5.5$ V	-	-	±1.0	μΑ
I _{OZ}	3-state OFF current	$V_I = V_{IH}$ or V_{IL} ; other inputs V_{CC} or GND; $V_O = V_{CC}$ or GND; $I_O = 0$ A	-	-	±10	μΑ
I _{CC}	quiescent supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5$ V	-	-	160	μA
ΔI _{CC}	additional quiescent supply current per input pin	$V_{I} = V_{CC} - 2.1 \text{ V}; \text{ other inputs}$ $V_{I} = V_{CC} \text{ or GND};$ $V_{CC} = 4.5 \text{ V to 5.5 V}; I_{O} = 0 \text{ A}$				
		pin OE	-	-	610	μΑ
		pin CP	-	-	440	μΑ
		pins Dn	-	-	170	μA

11. Dynamic characteristics

Table 8: Dynamic characteristics

 $GND = 0 V; V_{CC} = 4.5 V; t_r = t_f = 6 ns; C_L = 50 pF; see Figure 9$

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T_{amb} = 25 °	С					
t _{PHL} , t _{PLH}	propagation delay CP to $\overline{Q}n$	see Figure 6				
		$C_L = 50 \text{ pF}; V_{CC} = 4.5 \text{ V}$	-	16	30	ns
		$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$	-	13	-	
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to $\overline{Q}n$	see Figure 7	-	16	30	ns
9397 750 13817			© Koninklijke Philip	s Electronics	N.V. 2004. All	rights reser
Product data	a sheet Rev	. 03 — 18 October 2004				7 of

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

74HCT534

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to $\overline{Q}n$	see Figure 7		-	18	30	ns
t _{THL} , t _{TLH}	output transition time	see Figure 6		-	5	12	ns
t _W	clock pulse width HIGH or LOW	see Figure 6		23	14	-	ns
t _{su}	set-up time Dn to CP	see Figure 8		12	4	-	ns
t _h	hold time Dn to CP	see Figure 8		5	-1	-	ns
f _{max}	maximum clock pulse frequency	see Figure 6					
		$C_L = 50 \text{ pF}; V_{CC} = 4.5 \text{ V}$		22	36	-	MHz
		$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$		-	40	-	MHz
C _{PD}	power dissipation capacitance per flip-flop		<u>[1][2]</u>	-	19	-	pF
T _{amb} = -40	°C to +85 °C						
t _{PHL} , t _{PLH}	propagation delay CP to $\overline{Q}n$	see Figure 6		-	-	38	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to $\overline{Q}n$	see Figure 7		-	-	38	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to $\overline{Q}n$	see Figure 7		-	-	38	ns
t _{THL} , t _{TLH}	output transition time	see Figure 6		-	-	15	ns
t _W	clock pulse width HIGH or LOW	see Figure 6		29	-	-	ns
t _{su}	set-up time Dn to CP	see Figure 8		15	-	-	ns
t _h	hold time Dn to CP	see Figure 8		5	-	-	ns
f _{max}	maximum clock pulse frequency	see Figure 6		18	-	-	MHz
T _{amb} = -40	°C to +125 °C						
t _{PHL} , t _{PLH}	propagation delay CP to $\overline{Q}n$	see Figure 6		-	-	45	ns
t _{PZH} , t _{PZL}	3-state output enable time \overline{OE} to $\overline{Q}n$	see Figure 7		-	-	45	ns
t _{PHZ} , t _{PLZ}	3-state output disable time \overline{OE} to $\overline{Q}n$	see Figure 7		-	-	45	ns
t _{THL} , t _{TLH}	output transition time	see Figure 6		-	-	18	ns
tw	clock pulse width HIGH or LOW	see Figure 6		35	-	-	ns
t _{su}	set-up time Dn to CP	see Figure 8		18	-	-	ns
t _h	hold time Dn to CP	see Figure 8		5	-	-	ns
f _{max}	maximum clock pulse frequency	see Figure 6		15	-	-	MHz

Table 8: Dynamic characteristics ...continued

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in Volts;

N = number of inputs switching;

 $\Sigma(C_L~\times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

[2] The condition is V_I = GND to V_{CC} – 1.5 V.

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

12. Waveforms

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

13. Package outline

Fig 10. Package outline SOT146 (DIP20).

9397 750 13817

74HCT534

74HCT534

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

Fig 11. Package outline SOT163 (SO20).

9397 750 13817

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

14. Revision history

Table 9: Revisi	ion history						
Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes		
74HCT534_3	20041018	Product data sheet	-	9397 750 13817	74HC_HCT534_ CNV_2		
Modifications:		 The format of this data sheet has been redesigned to comply with the new presentation and information standard of Philips Semiconductors 					
	 Information related to 74HC534 type is deleted 						
	 Reference to family specifications is replaced by the actual information. 						
74HC_HCT534_ CNV_2	19980410	Product specification	-	-	74HC_HCT534_1		

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

74HCT534

5 V octal D-type flip-flop; positive-edge trigger; inverting; 3-state

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 1
4	Ordering information 2
5	Functional diagram 2
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 5
7.1	Function table 5
8	Limiting values 5
9	Recommended operating conditions 5
10	Static characteristics 6
11	Dynamic characteristics7
12	Waveforms 9
13	Package outline 11
14	Revision history 13
15	Data sheet status 14
16	Definitions 14
17	Disclaimers 14
18	Contact information 14

Downloaded from Arrow.com.

© Koninklijke Philips Electronics N.V. 2004

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 18 October 2004 Document number: 9397 750 13817

Published in The Netherlands