

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4515B MSI

1-of-16 decoder/demultiplexer with input latches

Product specification
File under Integrated Circuits, IC04

January 1995

1-of-16 decoder/demultiplexer with input latches

HEF4515B MSI

DESCRIPTION

The HEF4515B is a 1-of-16 decoder/demultiplexer, having four binary weighted address inputs (A_0 to A_3), a latch enable input (EL), and an active LOW enable input (\overline{E}). The 16 outputs (\overline{O}_0 to \overline{O}_{15}) are mutually exclusive active LOW. When EL is HIGH, the selected output is determined by the data on A_n . When EL goes LOW, the last data

present at A_n are stored in the latches and the outputs remain stable. When \overline{E} is LOW, the selected output, determined by the contents of the latch, is LOW. At \overline{E} HIGH, all outputs are HIGH. The enable input (\overline{E}) does not affect the state of the latch. When the HEF4515B is used as a demultiplexer, \overline{E} is the data input and A_0 to A_3 are the address inputs.

PINNING

A₀ to A₃ address inputs

E enable input (active LOW)

 HEF4515BP(N): 24-lead DIL; plastic

(SOT101-1)

HEF4515BD(F): 24-lead DIL; ceramic (cerdip)

(SOT94)

HEF4515BT(D): 24-lead SO; plastic

(SOT137-1)

(): Package Designator North America

APPLICATION INFORMATION

Some examples of applications for the HEF4515B are:

- · Digital multiplexing.
- · Address decoding.
- Hexadecimal/BCD decoding.

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

1-of-16 decoder/demultiplexer with input latches

HEF4515B MSI

January 1995

Philips Semiconductors Product specification

1-of-16 decoder/demultiplexer with input latches

HEF4515B MSI

TRUTH TABLE

INPUTS					OUTPUTS															
Ē	A ₀	A ₁	A ₂	A ₃	\overline{O}_0	\overline{O}_1	\overline{O}_2	O ₃	\overline{O}_4	\overline{O}_5	O ₆	\overline{O}_7	O ₈	O ₉	Ō ₁₀	Ō ₁₁	Ō ₁₂	Ō ₁₃	Ō ₁₄	Ō ₁₅
Н	Х	Х	Х	Χ	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
L	L	Н	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	н
L	Н	Н	L	L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	Н	L	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	Н	L	Н	L	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
L	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	н
L	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н
L	L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н	Н
L	Н	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н	Н
L	L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н	Н
L	Н	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н	Н
L	L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н	Н
L	Н	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н	Н
L	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Notes

EL = HIGH; H = HIGH state (the more positive voltage)
 L = LOW state (the less positive voltage); X = state is immaterial

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Propagation delays						
$A_n,EL\to\overline{O}_n$	5		260	520	ns	233 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	95	190	ns	84 ns + (0,23 ns/pF) C _L
	15		65	130	ns	57 ns + (0,16 ns/pF) C _L
	5		270	550	ns	243 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	95	190	ns	84 ns + (0,23 ns/pF) C _L
	15		65	130	ns	57 ns + (0,16 ns/pF) C _L
$\overline{E} \to \overline{O}_n$	5		175	350	ns	148 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}	65	130	ns	54 ns + (0,23 ns/pF) C _L
	15		45	90	ns	37 ns + (0,16 ns/pF) C _L
	5		200	400	ns	173 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}	70	140	ns	59 ns + (0,23 ns/pF) C _L
	15		50	100	ns	42 ns + (0,16 ns/pF) C _L

January 1995

Philips Semiconductors Product specification

1-of-16 decoder/demultiplexer with input latches

HEF4515B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition							
times	5			90	180	ns	40 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		35	65	ns	14 ns + (0,42 ns/pF) C _L
	15			25	50	ns	11 ns + (0,28 ns/pF) C _L
	5			85	170	ns	35 ns + (1,0 ns/pf) C _L
LOW to HIGH	10	t _{TLH}		35	70	ns	14 ns + (0,42 ns/pF) C _L
	15			25	50	ns	11 ns + (0,28 ns/pF) C _L
Set-up time	5		120	60		ns	
$A_n \rightarrow EL$	10	t _{su}	40	20		ns	
	15		30	15		ns	
Hold time	5		0	60		ns	
$A_n \rightarrow EL$	10	t _{hold}	0	20		ns	see also waveforms Fig.5
	15		0	15		ns	1 ig.5
Minimum EL pulse	5		120	60		ns	
width; HIGH	10	t _{WELH}	40	20		ns	
	15		30	15		ns	

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	1100 $f_i + \sum (f_o C_L) \times V_{DD}^2$	where
dissipation per	10	5500 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	16 000 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_oC_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

1-of-16 decoder/demultiplexer with input latches

HEF4515B MSI

Fig.5 Waveforms showing minimum pulse width for EL, set-up and hold times for A_n to EL. Set-up and hold times are shown as positive values but may be specified as negative values.