Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4515B MSI 1-of-16 decoder/demultiplexer with input latches

Product specification
File under Integrated Circuits, IC04

PHILIPS

1-of-16 decoder/demultiplexer with input latches

DESCRIPTION

The HEF4515B is a 1 -of-16 decoder/demultiplexer, having four binary weighted address inputs (A_{0} to A_{3}), a latch enable input ($E L$), and an active LOW enable input ($\overline{\mathrm{E}}$). The 16 outputs (O_{0} to $\overline{\mathrm{O}}_{15}$) are mutually exclusive active LOW. When EL is HIGH, the selected output is determined by the data on A_{n}. When EL goes LOW, the last data
present at A_{n} are stored in the latches and the outputs remain stable. When $\overline{\mathrm{E}}$ is LOW, the selected output, determined by the contents of the latch, is LOW. At $\overline{\bar{E}}$ HIGH, all outputs are HIGH. The enable input ($\overline{\mathrm{E}}$) does not affect the state of the latch. When the HEF4515B is used as a demultiplexer, $\overline{\mathrm{E}}$ is the data input and A_{0} to A_{3} are the address inputs.

Fig. 1 Functional diagram.

Fig. 2 Pinning diagram.

PINNING

A_{0} to A_{3}	address inputs
$\overline{\mathrm{E}}$	enable input (active LOW)
EL	latch enable input
$\overline{\mathrm{O}}_{0}$ to $\overline{\mathrm{O}}_{15}$	outputs (active LOW)

Fig. 3 Logic diagram.

Fig. 4 Logic diagram (one latch).

MSI

TRUTH TABLE

INPUTS					OUTPUTS															
$\overline{\mathrm{E}}$	A_{0}	A_{1}	A_{2}	A_{3}	\bar{O}_{0}	\bar{O}_{1}	\bar{O}_{2}	\bar{O}_{3}	\bar{O}_{4}	\bar{O}_{5}	\bar{O}_{6}	\bar{O}_{7}	$\overline{\mathrm{O}}_{8}$	\bar{O}_{9}	\bar{O}_{10}	$\overline{\mathbf{O}}_{11}$	\bar{O}_{12}	\bar{O}_{13}	\bar{O}_{14}	\bar{O}_{15}
H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	L	L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	H	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	H	H	L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	H	L	H	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	H	H	H	L	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L

Notes

1. $E L=H I G H ; H=H I G H$ state (the more positive voltage)
$\mathrm{L}=\mathrm{LOW}$ state (the less positive voltage); $\mathrm{X}=$ state is immaterial

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$
$\left.\begin{array}{|c|r|l|rl|r|r|}\hline & \begin{array}{c}\mathbf{V}_{\mathbf{D D}} \\ \mathbf{V}\end{array} & \text { SYMBOL } & \text { TYP. } & \text { MAX. } & \text { TYPICAL EXTRAPOLATION } \\ \text { FORMULA }\end{array}\right]$

1-of-16 decoder/demultiplexer with input latches

AC CHARACTERISTICS

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$; input transition times $\leq 20 \mathrm{~ns}$

	$V_{D D}$ V	SYMBOL	MIN.	TYP.	MAX.		TYPICAL EXTRAPOLATION FORMULA
Output transition times HIGH to LOW	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {H }}$ L		$\begin{aligned} & 90 \\ & 35 \\ & 25 \end{aligned}$	$\begin{array}{r} 180 \\ 65 \\ 50 \end{array}$	ns ns ns	$\begin{aligned} & 40 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 14 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 11 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
LOW to HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	${ }_{\text {t }}^{\text {LiH }}$		$\begin{aligned} & 85 \\ & 35 \\ & 25 \end{aligned}$	170 70 50	ns ns ns	$\begin{aligned} & 35 \mathrm{~ns}+(1,0 \mathrm{~ns} / \mathrm{pf}) \mathrm{C}_{\mathrm{L}} \\ & 14 \mathrm{~ns}+(0,42 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \\ & 11 \mathrm{~ns}+(0,28 \mathrm{~ns} / \mathrm{pF}) \mathrm{C}_{\mathrm{L}} \end{aligned}$
Set-up time $\mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{EL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$\mathrm{t}_{\text {su }}$	$\begin{array}{r} 120 \\ 40 \\ 30 \end{array}$	$\begin{aligned} & 60 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	see also waveforms Fig. 5
Hold time $\mathrm{A}_{\mathrm{n}} \rightarrow \mathrm{EL}$	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {hold }}$	$\begin{aligned} & \hline 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 60 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	
Minimum EL pulse width; HIGH	$\begin{array}{r} 5 \\ 10 \\ 15 \end{array}$	$t_{\text {WELH }}$	$\begin{array}{r} 120 \\ 40 \\ 30 \end{array}$	$\begin{aligned} & 60 \\ & 20 \\ & 15 \end{aligned}$		ns ns ns	

	\mathbf{V}_{DD} \mathbf{V}	TYPICAL FORMULA FOR P $(\mu \mathrm{W})$	
Dynamic power	5	$1100 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	where
dissipation per	10	$5500 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{i}}=$ input freq. (MHz)
package (P)	15	$16000 \mathrm{f}_{\mathrm{i}}+\sum\left(\mathrm{f}_{0} \mathrm{C}_{\mathrm{L}}\right) \times \mathrm{V}_{\mathrm{DD}}{ }^{2}$	$\mathrm{f}_{\mathrm{o}}=$ output freq. (MHz)
		$\mathrm{C}_{\mathrm{L}}=$ load capacitance (pF)	
		$\sum\left(\mathrm{f}_{\mathrm{o}} \mathrm{C}_{\mathrm{L}}\right)=$ sum of outputs	
		$\mathrm{V}_{\mathrm{DD}}=$ supply voltage (V)	

Fig. 5 Waveforms showing minimum pulse width for EL, set-up and hold times for A_{n} to EL. Set-up and hold times are shown as positive values but may be specified as negative values.

