

. reescale Semiconductor Technical Data

Document Number: MMZ09332B Rev. 0, 8/2015

√RoHS

Heterojunction Bipolar Transistor Technology (InGaP HBT)

High Efficiency/Linearity Amplifier

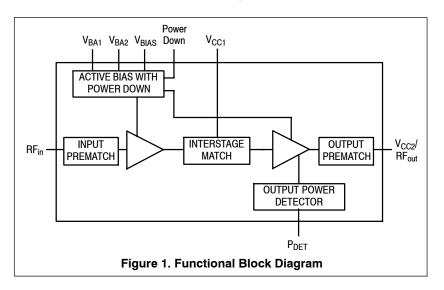
The MMZ09332B is a 2-stage, high linearity InGaP HBT broadband amplifier designed for femtocell, picocell, smart grid, W-CDMA, TD-SCDMA and LTE wireless broadband applications. It provides exceptional linearity for LTE and W-CDMA air interfaces with an ACPR of -50 dBc at an output power of up to 23 dBm, covering frequencies from 130 to 1000 MHz. It operates from a supply voltage of 3 to 5 volts. The amplifier requires minimal external matching and offers state-of-the-art reliability, ruggedness, temperature stability and ESD performance.

Typical PA Performance: V_{CC1} = V_{CC2} = V_{BIAS} = 5 Vdc, I_{CQ} = 140 mA

Frequency	P _{out} (dBm)	G _{ps} (dB)	ACPR (dBc)	I _{CC} (mA)	Test Signal
748 MHz	23	30.9	-49.6	315	W-CDMA
942 MHz	22	27.1	-50.4	240	W-CDMA

Typical PA Performance: V_{CC1} = V_{CC2} = V_{BIAS} = 5 Vdc, I_{CQ} = 110 mA

Frequency	P _{out} (dBm)	G _{ps} (dB)	PAE (%)	Test Signal
450 MHz	32.3 30.3 @ 3.6 V	37.2 26.3 @ 3.6 V	45.5 @ 5 V 53.7 @ 3.6 V	CW
760 MHz	32.2	30.8	40.0 @ 5 V	CW


Features

Frequency: 130-1000 MHz

P1dB: 33 dBm, 450 to 1000 MHz

OIP3: up to 48 dBm @ 900 MHz

- **Excellent Linearity**
- Active Bias Control (adjustable externally)
- Single 3 to 5 V Supply
- Single-ended Power Detector
- Cost-effective 12-pin 3 mm QFN Surface Mount Plastic Package

MMZ09332BT1

130-1000 MHz, 30 dB, 33 dBm InGaP HBT LINEAR AMPLIFIER

QFN 3 × 3

Table 1. Maximum Ratings

Rating	Symbol	Value	Unit
Supply Voltage	V _{CC}	6	V
Total Supply Current	I _{CC}	1200	mA
RF Input Power	P _{in}	29	dBm
Storage Temperature Range	T _{stg}	−65 to +150	°C
Junction Temperature	TJ	175	°C

Table 2. Thermal Characteristics

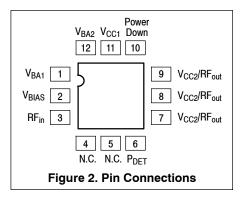
Characteristic		Symbol	Value ⁽¹⁾	Unit
Thermal Resistance, Junction to Case		$R_{\theta JC}$		°C/W
Case Temperature 93°C, V _{CC1} = V _{CC2} = V _{BIAS} = 5 Vdc	Stage 1		51	
	Stage 2		26	

Table 3. Electrical Characteristics ($V_{CC1} = V_{CC2} = V_{BIAS} = 5 \text{ Vdc}$, 760 MHz, $T_A = 25^{\circ}\text{C}$, 50 ohm system, in Freescale PA Driver Application Circuit)

Characteristic		Symbol	Min	Тур	Max	Unit
Small-Signal Gain (S21)		G _p	28.7	30.5	_	dB
Input Return Loss (S11)		IRL	_	-12	=	dB
Output Return Loss (S22)		ORL	_	-12	_	dB
Power Output @ 1dB Compression		P1dB	=	32.8	=	dBm
Intercept Point, Two-Tone CW		OIP3	=	43	=	dBm
Power Down Voltage	Bias "On" Bias "Off"		0 1.4	_ _	1.0 2.0	V
Power Down Current	Bias "On" Bias "Off"		0 0.018	_ _	0 1.38	mA
Supply Current		I _{CQ}	88	108	128	mA
Supply Voltage		V _{CC}	=	5	=	V

Table 4. ESD Protection Characteristics

Test Methodology	Class
Human Body Model (per JESD22-A114)	1C
Machine Model (per EIA/JESD22-A115)	A
Charge Device Model (per JESD22-C101)	IV


Table 5. Moisture Sensitivity Level

Test Methodology	Rating	Package Peak Temperature	Unit
Per JESD22-A113, IPC/JEDEC J-STD-020	1	260	°C

Table 6. Ordering Information

Device	Tape and Reel Information	Package
MMZ09332BT1	T1 Suffix = 1,000 Units, 12 mm Tape Width, 7-inch Reel	QFN 3 × 3

 $^{1. \ \} Refer to \ \underline{AN1955}, \textit{Thermal Measurement Methodology of RF Power Amplifiers}. \ Go \ to \ \underline{\text{http://www.freescale.com/rf}} \ and \ search \ for \ AN1955.$

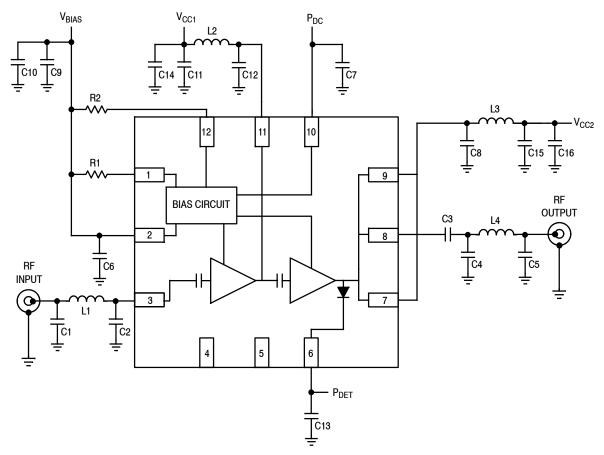
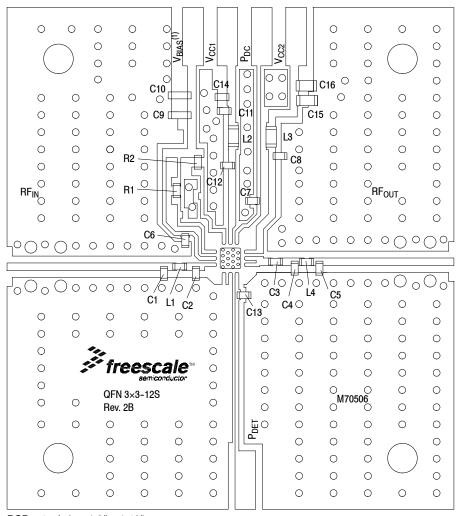



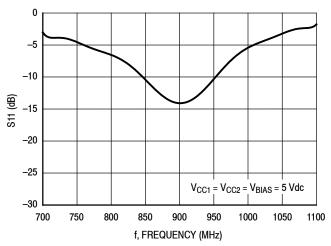
Figure 3. MMZ09332BT1 Test Circuit Schematic

Table 7. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	6.8 pF Chip Capacitor	GJM1555C1H6R8DB01ND	Murata
C2	2.4 pF Chip Capacitor	GJM1555C1H2R4DB01ND	Murata
C3	220 pF Chip Capacitor	GRM1555C1H221GA01ND	Murata
C4	4.7 pF Chip Capacitor	GJM1555C1H4R7DB01ND	Murata
C5	8.2 pF Chip Capacitor	GJM1555C1H8R2DB01ND	Murata
C6, C7, C13	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C8	2.2 pF Chip Capacitor	GJM1555C1H2R2DB01ND	Murata
C9, C11, C15	1000 pF Chip Capacitors	GRM1555C1H102JA01ND	Murata
C10, C14	1 μF Chip Capacitors	GRM188R61A105KE15ND	Murata
C12	3.9 pF Chip Capacitor	GJM1555C1H3R9DB01ND	Murata
C16	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
L1	3.3 nH Chip Inductor	0402CS-3N3XJLU	Coilcraft
L2, L3	22 nH Chip Inductors	LL1608-FH22NK	Toko
L4	1.8 nH Chip Inductor	0402CS-1N8XJLW	Coilcraft
R1	1.1 KΩ, 1/16 W Chip Resistor	RC0402JR-071K1P	Yageo
R2	2.0 KΩ, 1/16 W Chip Resistor	RC0402JR-072KP	Yageo
PCB	Rogers RO4350B, 0.010", ε _r = 3.66	M70506	MTL

PCB actual size: $1.3" \times 1.46"$.

Figure 4. MMZ09332BT1 Test Circuit Component Layout


Table 7. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	6.8 pF Chip Capacitor	GJM1555C1H6R8DB01ND	Murata
C2	2.4 pF Chip Capacitor	GJM1555C1H2R4DB01ND	Murata
C3	220 pF Chip Capacitor	GRM1555C1H221GA01ND	Murata
C4	4.7 pF Chip Capacitor	GJM1555C1H4R7DB01ND	Murata
C5	8.2 pF Chip Capacitor	GJM1555C1H8R2DB01ND	Murata
C6, C7, C13	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C8	2.2 pF Chip Capacitor	GJM1555C1H2R2DB01ND	Murata
C9, C11, C15	1000 pF Chip Capacitors	GRM1555C1H102JA01ND	Murata
C10, C14	1 μF Chip Capacitors	GRM188R61A105KE15ND	Murata
C12	3.9 pF Chip Capacitor	GJM1555C1H3R9DB01ND	Murata
C16	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
L1	3.3 nH Chip Inductor	0402CS-3N3XJLU	Coilcraft
L2, L3	22 nH Chip Inductors	LL1608-FH22NK	Toko
L4	1.8 nH Chip Inductor	0402CS-1N8XJLW	Coilcraft
R1	1.1 KΩ, 1/16 W Chip Resistor	RC0402JR-071K1P	Yageo
R2	2.0 KΩ, 1/16 W Chip Resistor	RC0402JR-072KP	Yageo
PCB	Rogers RO4350B, 0.010", ε _r = 3.66	M70506	MTL

(Test Circuit Component Designations and Values table repeated for reference.)

⁽¹⁾ V_{BIAS} [Board] supplies $V_{BA1},\,V_{BA2}$ and V_{BIAS} [Device].

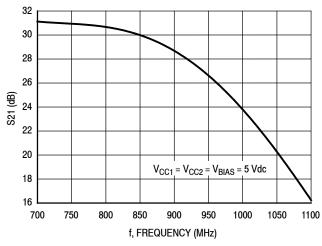


Figure 5. S11 versus Frequency

Figure 6. S21 versus Frequency

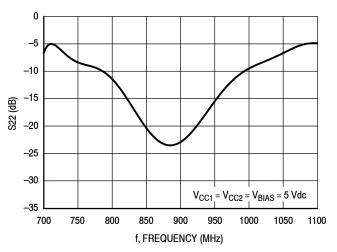


Figure 7. S22 versus Frequency

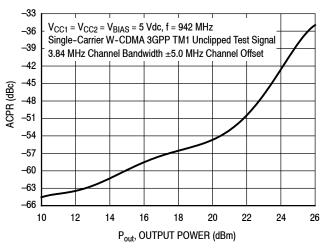


Figure 8. ACPR versus Output Power

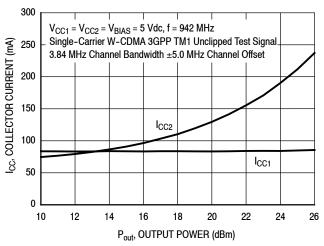


Figure 9. Stage Collector Current versus
Output Power

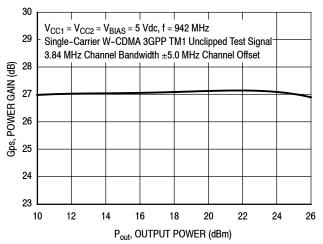


Figure 10. Power Gain versus Output Power

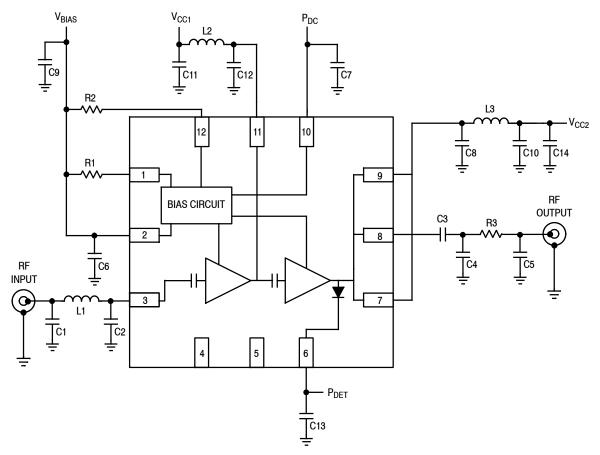
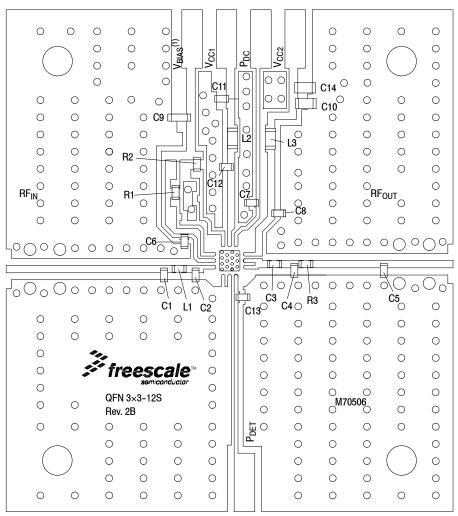



Figure 11. MMZ09332BT1 Test Circuit Schematic

Table 8. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C12	7.5 pF Chip Capacitors	04023J7R5BBS	AVX
C2	2.4 pF Chip Capacitor	04023J2R4BBS	AVX
C3	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata
C4	4.7 pF Chip Capacitor	04023J4R7BBS	AVX
C5	12 pF Chip Capacitor	04025A120JAT2A	AVX
C6, C7, C13	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C8	6.8 pF Chip Capacitor	06033J6R8BBS	Murata
C9, C11	1 μF Chip Capacitors	GRM155R61A105KE15ND	Murata
C10	1000 pF Chip Capacitor	GRM155R71H102KA01ND	Murata
C14	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
L1	5.6 nH Chip Inductor	LL1005-FHL5N6S	Toko
L2	22 nH Chip Inductor	LL1608-FH22N0K	Toko
L3	18 nH Chip Inductor	0603HC-18NXJLW	Coilcraft
R1	1.1 KΩ Chip Resistor	RC0402JR-071K1P	Yageo
R2	2.0 KΩ Chip Resistor	RC0402JR-072KP	Yageo
R3	0 Ω Chip Resistor	RC0402JR-070RP	Yageo
PCB	Rogers RO4350B, 0.010", $\epsilon_r = 3.66$	M70506	MTL

PCB actual size: $1.3" \times 1.46"$.

(1) V_{BIAS} [Board] supplies $V_{BA1},\,V_{BA2}$ and V_{BIAS} [Device].

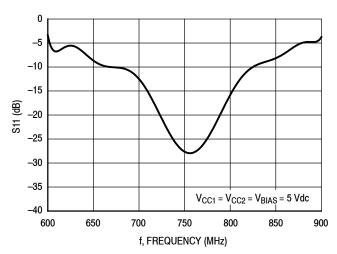

Figure 12. MMZ09332BT1 Test Circuit Component Layout

Table 8. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1, C12	7.5 pF Chip Capacitors	04023J7R5BBS	AVX
C2	2.4 pF Chip Capacitor	04023J2R4BBS	AVX
C3	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata
C4	4.7 pF Chip Capacitor	04023J4R7BBS	AVX
C5	12 pF Chip Capacitor	04025A120JAT2A	AVX
C6, C7, C13	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C8	6.8 pF Chip Capacitor	06033J6R8BBS	Murata
C9, C11	1 μF Chip Capacitors	GRM155R61A105KE15ND	Murata
C10	1000 pF Chip Capacitor	GRM155R71H102KA01ND	Murata
C14	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
L1	5.6 nH Chip Inductor	LL1005-FHL5N6S	Toko
L2	22 nH Chip Inductor	LL1608-FH22N0K	Toko
L3	18 nH Chip Inductor	0603HC-18NXJLW	Coilcraft
R1	1.1 KΩ Chip Resistor	RC0402JR-071K1P	Yageo
R2	2.0 KΩ Chip Resistor	RC0402JR-072KP	Yageo
R3	0 Ω Chip Resistor	RC0402JR-070RP	Yageo
PCB	Rogers RO4350B, 0.010", ε _r = 3.66	M70506	MTL

(Test Circuit Component Designations and Values table repeated for reference.)

34 32 30 S21 (dB) 28 24 22 $V_{CC1} = V_{CC2} = V_{BIAS} = 5 \; Vdc$ 20 600 650 700 800 850 900 750 f, FREQUENCY (MHz)

Figure 13. S11 versus Frequency

Figure 14. S21 versus Frequency

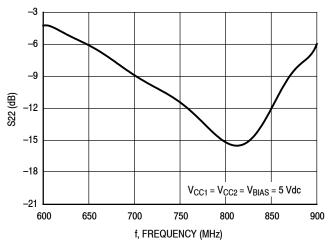


Figure 15. S22 versus Frequency

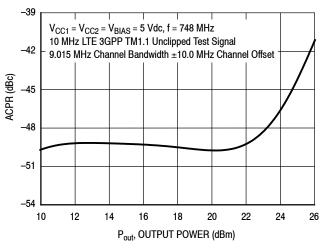


Figure 16. ACPR versus Output Power

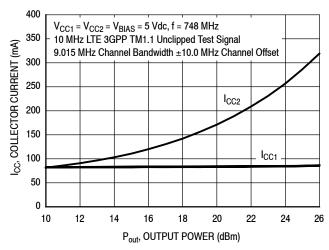


Figure 17. Stage Collector Current versus
Output Power

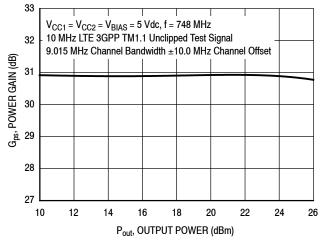


Figure 18. Power Gain versus Output Power

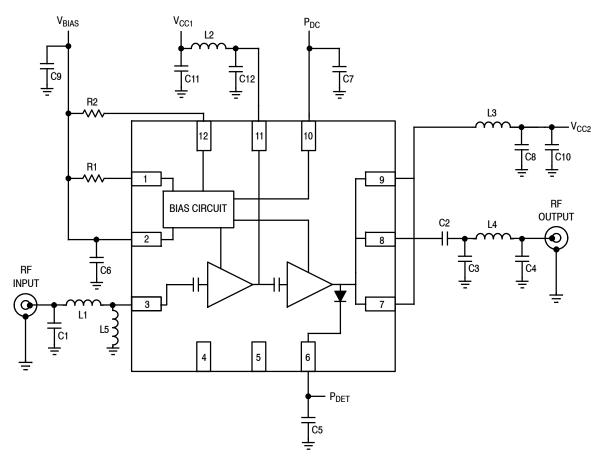
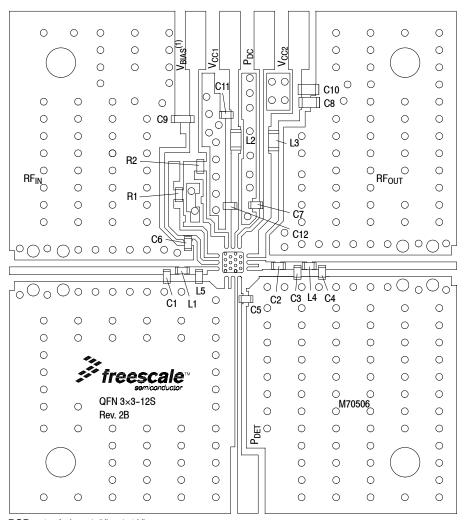



Figure 19. MMZ09332BT1 Test Circuit Schematic

Table 9. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer	
C1	5.6 pF Chip Capacitor	GJM1555C1H5R6JB01ND	Murata	
C2	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata	
C3	4.7 pF Chip Capacitor	GJM1555C1H4R7DB01ND	Murata	
C4	10 pF Chip Capacitor	GJM1555C1H100JB01ND	Murata	
C5, C6, C7	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata	
C8	1000 pF Chip Capacitor	GRM155R71H102KA01ND	Murata	
C9, C11	1 μF Chip Capacitors	GRM188R61A105KA61ND	Murata	
C10	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata	
C12	3.3 pF Chip Capacitor	GJM1555C1H3R3CB01ND	Murata	
L1	4.7 nH Chip Inductor	LL1005-FHL4N7S	Toko	
L2	12 nH Chip Inductor	LL1608-FH12N0K	Toko	
L3	22 nH Chip Inductor	0603HC-22NXJLW	Coilcraft	
L4	2.2 nH Chip Inductor	LL1608-FH2N2K	Toko	
L5	5.6 nH Chip Inductor	LL1005-FHL5N6S	Toko	
R1	1.8 KΩ, 1/16 W Chip Resistor	RC0402JR-071K8P	Yageo	
R2	2.0 KΩ, 1/16 W Chip Resistor	RC0402JR-072KP	Yageo	
PCB	Rogers RO4350B, 0.010″, ε _r = 3.66	M70506	MTL	

PCB actual size: $1.3" \times 1.46"$.

(1) V_{BIAS} [Board] supplies $V_{BA1},\,_{BA2}$ and V_{BIAS} [Device].

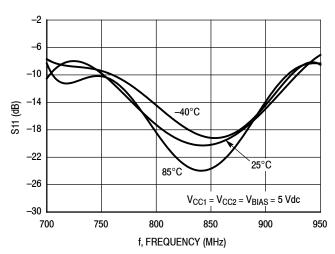

Figure 20. MMZ09332BT1 Test Circuit Component Layout

Table 9. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer	
C1	5.6 pF Chip Capacitor	GJM1555C1H5R6JB01ND	Murata	
C2	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata	
C3	4.7 pF Chip Capacitor	GJM1555C1H4R7DB01ND	Murata	
C4	10 pF Chip Capacitor	GJM1555C1H100JB01ND	Murata	
C5, C6, C7	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata	
C8	1000 pF Chip Capacitor	GRM155R71H102KA01ND	Murata	
C9, C11	1 μF Chip Capacitors	GRM188R61A105KA61ND	Murata	
C10	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata	
C12	3.3 pF Chip Capacitor	GJM1555C1H3R3CB01ND	Murata	
L1	4.7 nH Chip Inductor	LL1005-FHL4N7S	Toko	
L2	12 nH Chip Inductor	LL1608-FH12N0K	Toko	
L3	22 nH Chip Inductor	0603HC-22NXJLW	Coilcraft	
L4	2.2 nH Chip Inductor	LL1608-FH2N2K	Toko	
L5	5.6 nH Chip Inductor	LL1005-FHL5N6S	Toko	
R1	1.8 KΩ, 1/16 W Chip Resistor	RC0402JR-071K8P	Yageo	
R2	2.0 KΩ, 1/16 W Chip Resistor	RC0402JR-072KP	Yageo	
PCB	Rogers RO4350B, 0.010", $\varepsilon_r = 3.66$	M70506	MTL	

(Test Circuit Component Designations and Values table repeated for reference.)

36 34 –40°C 32 25°C **⊕** 30 85°C S 28 26 24 $V_{CC1} = V_{CC2} = V_{BIAS} = 5 \text{ Vdc}$ 22 700 750 900 950 800 850 f, FREQUENCY (MHz)

Figure 21. S11 versus Frequency versus Temperature

Figure 22. S21 versus Frequency versus Temperature

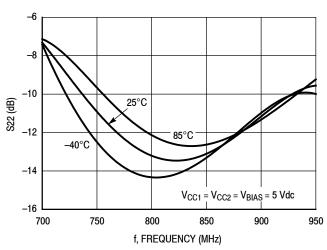


Figure 23. S22 versus Frequency versus Temperature

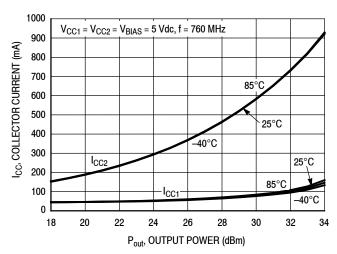


Figure 24. Stage Collector Current versus Output Power versus Temperature

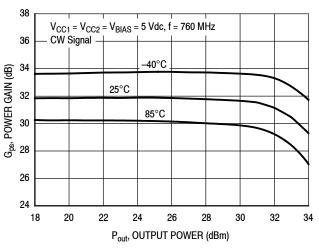


Figure 25. Power Gain versus Output Power versus Temperature

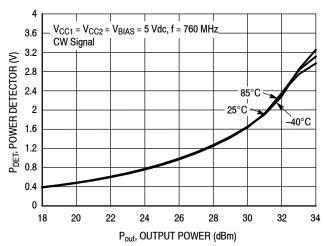


Figure 26. Power Detector versus Output Power versus Temperature

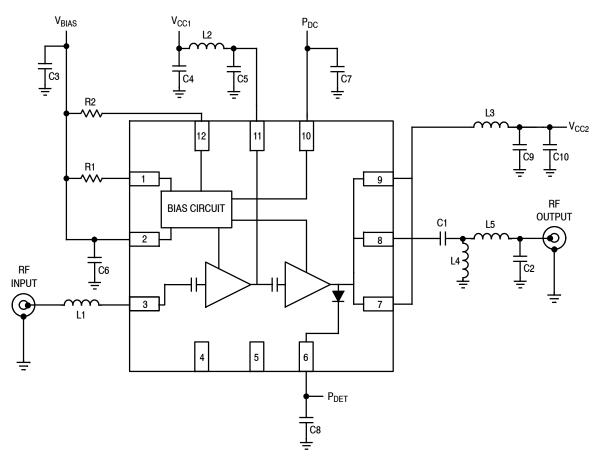
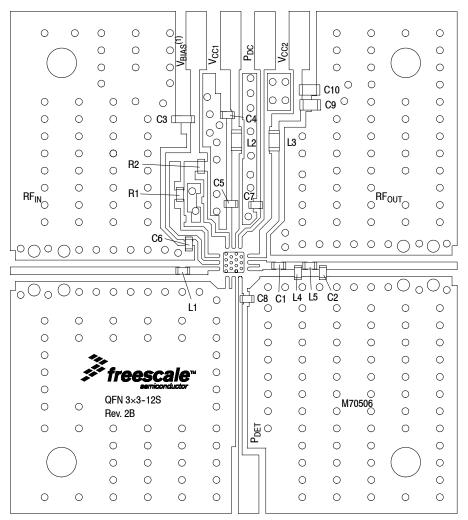



Figure 27. MMZ09332BT1 Test Circuit Schematic

Table 10. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata
C2	18 pF Chip Capacitor	06033J180GBT2A	AVX
C3, C4	1 uF Chip Capacitors	GRM188R61A105KE15ND	Murata
C5	2.4 pF Chip Capacitor	04023J2R4BBS	AVX
C6, C7, C8	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C9	1000 pF Chip Capacitor	GRM1555C1H102JA01ND	Murata
C10	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
L1	3.9 nH Chip Inductor	LL1608-FH3N9K	Toko
L2	5.6 nH Chip Inductor	LL1608-FH5N6K	Toko
L3	12 nH Chip Inductor	LL1608-FH12NK	Toko
L4	22 nH Chip Inductor	LL1608-FH22NK	Toko
L5	5.6 nH Chip Inductor	LL1608-FH5N6K	Toko
R1	1.8 KΩ, 1/16 W Chip Resistor	RC0402JR-071K8P	Yageo
R2	2.0 KΩ, 1/16 W Chip Resistor	RC0402JR-072KP	Yageo
PCB	Rogers RO4350B, 0.010″, ε _r = 3.66	M70506	MTL

PCB actual size: $1.3" \times 1.46"$.

(1) V_{BIAS} [Board] supplies V_{BA1} , V_{BA2} and V_{BIAS} [Device].

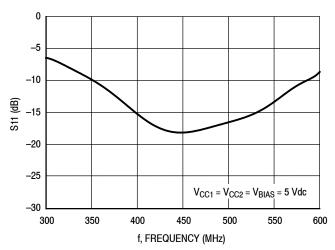

Figure 28. MMZ09332BT1 Test Circuit Component Layout

Table 10. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata
C2	18 pF Chip Capacitor	06033J180GBT2A	AVX
C3, C4	1 uF Chip Capacitors	GRM188R61A105KE15ND	Murata
C5	2.4 pF Chip Capacitor	04023J2R4BBS	AVX
C6, C7, C8	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C9	1000 pF Chip Capacitor	GRM1555C1H102JA01ND	Murata
C10	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
L1	3.9 nH Chip Inductor	LL1608-FH3N9K	Toko
L2	5.6 nH Chip Inductor	LL1608-FH5N6K	Toko
L3	12 nH Chip Inductor	LL1608-FH12NK	Toko
L4	22 nH Chip Inductor	LL1608-FH22NK	Toko
L5	5.6 nH Chip Inductor	LL1608-FH5N6K	Toko
R1	1.8 KΩ, 1/16 W Chip Resistor	RC0402JR-071K8P	Yageo
R2	2.0 KΩ, 1/16 W Chip Resistor	RC0402JR-072KP	Yageo
PCB	Rogers RO4350B, 0.010", ε _r = 3.66	M70506	MTL

(Test Circuit Component Designations and Values table repeated for reference.)



Figure 29. S11 versus Frequency

Figure 30. S21 versus Frequency

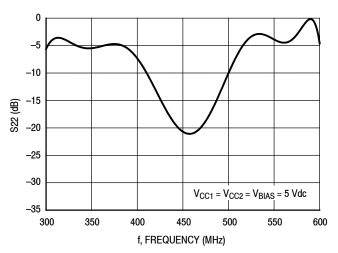
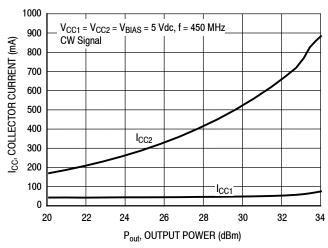



Figure 31. S22 versus Frequency

40

39

38 POWER GAIN (dB) 37 36 35 g, 34 33 32 20 22 26 28 32 34 Pout, OUTPUT POWER (dBm)

 $\begin{array}{c} V_{CC1} = V_{CC2} = V_{BIAS} = 5 \text{ Vdc, f} = 450 \text{ MHz} \\ \text{CW Signal} & & & & & & & & & & & \\ \hline \end{array}$

Figure 32. Stage Collector Current versus
Output Power

Figure 33. Power Gain versus Output Power

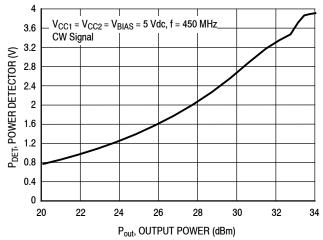


Figure 34. Power Detector versus Output Power

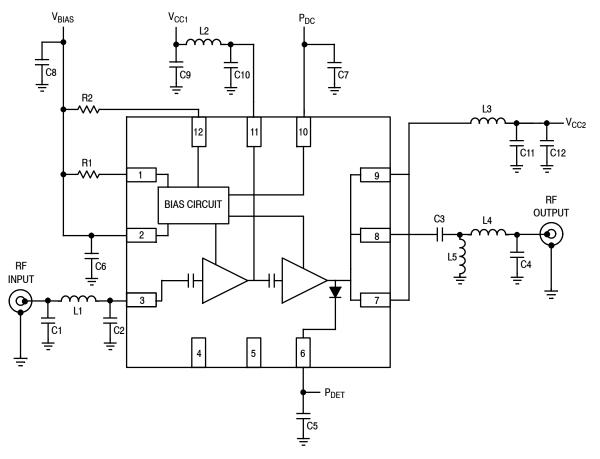
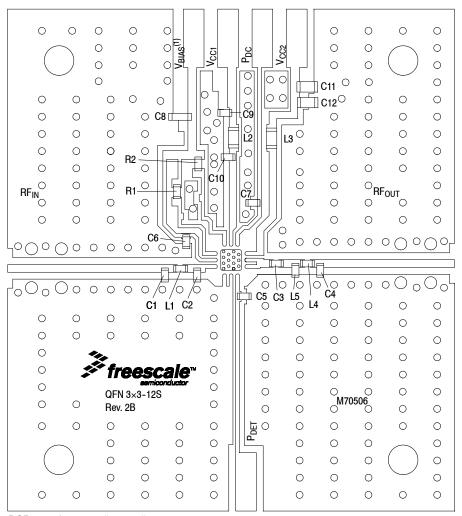



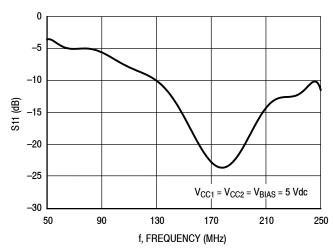
Figure 35. MMZ09332BT1 Test Circuit Schematic

Table 11. MMZ09332BT1 Test Circuit Component Designations and Values

Part	Description	Part Number	Manufacturer
C1	15 pF Chip Capacitor	GJM1555C1H150JB01ND	Murata
C2	27 pF Chip Capacitor	GJM1555C1H270JB01ND	Murata
C3	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata
C4	33 pF Chip Capacitor	GJM1555C1H330JB01ND	Murata
C5, C6, C7	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C8, C9	1 μF Chip Capacitors	GRM188R61A105KA61ND	Murata
C10	3.3 pF Chip Capacitor	GJM1555C1H3R3CB01ND	Murata
C11	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
C12	1000 pF Chip Capacitor	GRM155R71H102KA01ND	Murata
L1	22 nH Chip Inductor	LL1005-FH22NK	Toko
L2, L3	33 nH Chip Inductors	LL1608-FH33NK	Toko
L4	33 nH Chip Inductor	LL1608-FSL33NJ	Toko
L5	33 nH Chip Inductor	LL1005-FH33NK	Toko
R1	2.2 KΩ, 1/16 W Chip Resistor	RC0402JR-072K2P	Yageo
R2	1.8 KΩ, 1/16 W Chip Resistor	RC0402JR-071K8P	Yageo
PCB	Rogers RO4350B, 0.010″, ε _r = 3.66	M70506	MTL

PCB actual size: $1.3" \times 1.46"$.

Figure 36. MMZ09332BT1 Test Circuit Component Layout


Table 11. MMZ09332BT1 Test Circuit Component Designations and Values

Part Description		Part Number	Manufacturer
C1	15 pF Chip Capacitor	GJM1555C1H150JB01ND	Murata
C2	27 pF Chip Capacitor	GJM1555C1H270JB01ND	Murata
C3	220 pF Chip Capacitor	GRM1555C1H221JA01ND	Murata
C4	33 pF Chip Capacitor	GJM1555C1H330JB01ND	Murata
C5, C6, C7	100 pF Chip Capacitors	GRM1555C1H101JA01ND	Murata
C8, C9	1 μF Chip Capacitors	GRM188R61A105KA61ND	Murata
C10	3.3 pF Chip Capacitor	GJM1555C1H3R3CB01ND	Murata
C11	4.7 μF Chip Capacitor	GRM188R60J475KE19ND	Murata
C12	1000 pF Chip Capacitor	GRM155R71H102KA01ND	Murata
L1	22 nH Chip Inductor	LL1005-FH22NK	Toko
L2, L3	33 nH Chip Inductors	LL1608-FH33NK	Toko
L4	33 nH Chip Inductor	LL1608-FSL33NJ	Toko
L5	33 nH Chip Inductor	LL1005-FH33NK	Toko
R1	2.2 KΩ, 1/16 W Chip Resistor	RC0402JR-072K2P	Yageo
R2	1.8 KΩ, 1/16 W Chip Resistor	RC0402JR-071K8P	Yageo
PCB	Rogers RO4350B, 0.010", ε _r = 3.66	M70506	MTL

(Test Circuit Component Designations and Values table repeated for reference.)

⁽¹⁾ V_{BIAS} [Board] supplies V_{BA1} , V_{BA2} and V_{BIAS} [Device].

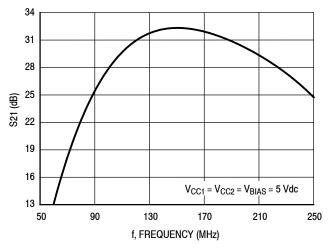


Figure 37. S11 versus Frequency

Figure 38. S21 versus Frequency

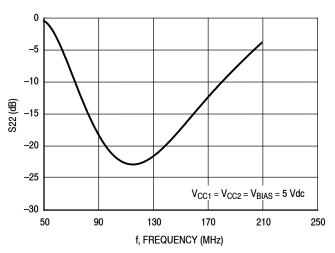


Figure 39. S22 versus Frequency

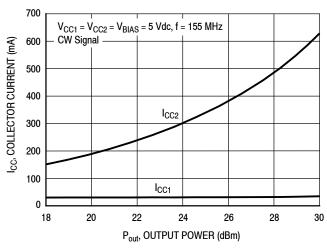


Figure 40. Stage Collector Current versus Output Power

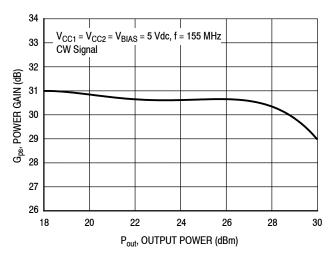
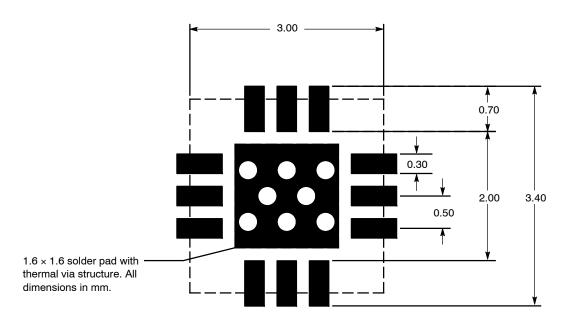


Figure 41. Power Gain versus Output Power



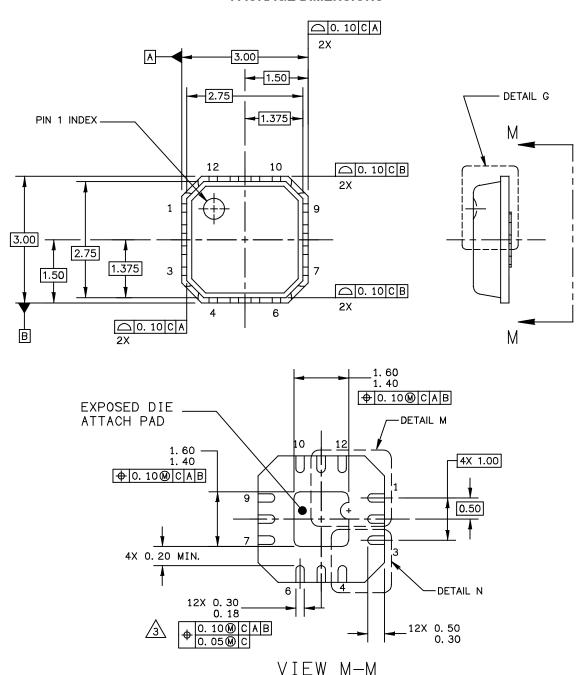

Figure 42. PCB Pad Layout for QFN 3 x 3

Figure 43. Product Marking

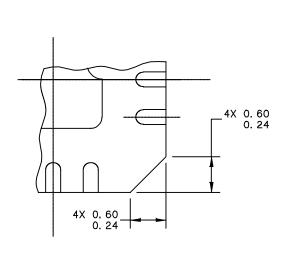
PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC.

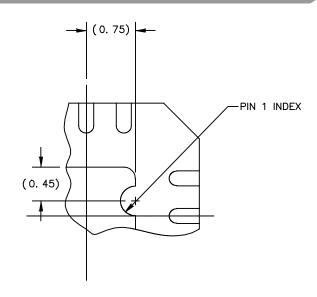
MECHANICAL OUTLINE

PRINT VERSION NOT TO SCALE

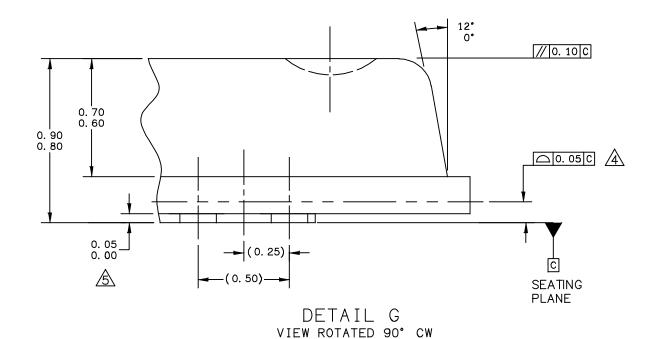
DOCUMENT NO: 98ASA00227D


FLAT NON-LEADED PACKAGE (QFN)
12 TERMINAL, 0.5 PITCH (3X3X0.85)

THERMALLY ENHANCED QUAD
FLAT NON-JEDEC


CASE NUMBER: 2131-01

STANDARD: NON-JEDEC



DETAIL N
CORNER CONFIGURATION

DETAIL M
PIN 1 BACKSIDE INDEX

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE: THERMALLY ENHANCED QUAD FLAT NON-LEADED PACKAGE (QFN) 12 TERMINAL, 0.5 PITCH (3X3X0.85)		DOCUMENT NO): 98ASA00227D	REV: 0
		CASE NUMBER	R: 2131–01	14 MAY 2010
		STANDARD: NO	N-JEDEC	

NOTE:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING & TOLERANCING PER ASME Y14.5 2009.

THIS DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 MM FROM TERMINAL TIP.

BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

THIS DIMENSION APPLIED ONLY FOR TERMINALS.

1				
© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE		PRINT VERSION NOT TO SCALE	
TITLE: THERMALLY ENHANCED QUAD FLAT NON-LEADED PACKAGE (QFN) 12 TERMINAL, 0.5 PITCH (3X3X0.85)		DOCUMENT NO): 98ASA00227D	REV: 0
		CASE NUMBER	2: 2131–01	14 MAY 2010
		STANDARD: NO	N-JEDEC	

PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS

Refer to the following resources to aid your design process.

Application Notes

· AN1955: Thermal Measurement Methodology of RF Power Amplifiers

Software

.s2p File

Development Tools

· Printed Circuit Boards

To Download Resources Specific to a Given Part Number:

- 1. Go to http://www.freescale.com/rf
- 2. Search by part number
- 3. Click part number link
- 4. Choose the desired resource from the drop down menu

FAILURE ANALYSIS

At this time, because of the physical characteristics of the part, failure analysis is limited to electrical signature analysis. In cases where Freescale is contractually obligated to perform failure analysis (FA) services, full FA may be performed by third party vendors with moderate success. For updates contact your local Freescale Sales Office.

REVISION HISTORY

The following table summarizes revisions to this document.

Revision	Date	Description
0	Aug. 2015	Initial Release of Data Sheet

How to Reach Us:

Home Page: freescale.com

Web Support: freescale.com/support

Information in this document is provided solely to enable system and software implementers to use Freescale products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document.

Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty representation or guarantee regarding the suitability of its products for any particular purpose nor does Freescale assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters including "typicals," must be validated for each customer application by customer's technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale which can be found at the following address: freescale.com/SalesTermsandConditions.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor Inc. Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© 2015 Freescale Semiconductor Inc.

Document Number: MMZ09332B

Rev. 0, 8/2015