Product data sheet

1. General description

The 74HC258 is a high-speed Si-gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). The 74HC258 is specified in compliance with JEDEC standard no. 7A.

The 74HC258 has four identical 2-input multiplexers with 3-state outputs, which select 4 bits of data from two sources and is controlled by a common data select input (S).

The data inputs from source 0 (110 to 410) are selected when input S is LOW and the data inputs from source 1 (111 to 411) are selected when S is HIGH.

Data appears at the outputs $(1\overline{Y} \text{ to } 4\overline{Y})$ in inverted form from the select inputs.

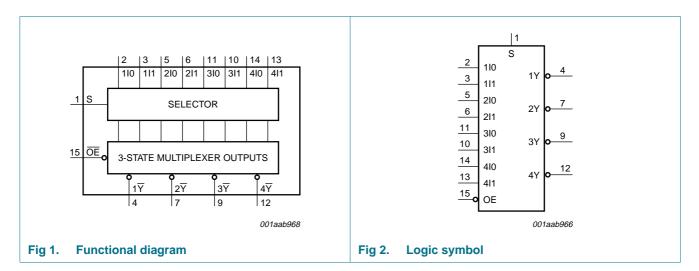
The 74HC258 is the logic implementation of a 4-pole, 2-position switch, where the position of the switch is determined by the logic levels applied to S. The outputs are forced to a high-impedance OFF-state when \overline{OE} is HIGH.

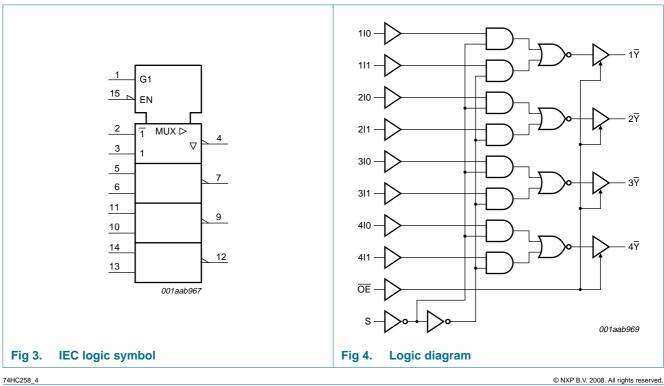
The logic equations for the outputs are:

- $I\overline{Y} = \overline{OE} \times (1I1 \times S + 1I0 \times \overline{S})$
- $2\overline{Y} = \overline{OE} \times (2I1 \times S + 2I0 \times \overline{S})$
- $3\overline{Y} = \overline{\overline{OE}} \times (3I1 \times S + 3I0 \times \overline{S})$
- $4\overline{Y} = \overline{\overline{OE} \times (4I1 \times S + 4I0 \times \overline{S})}$

The 74HC258 is identical to the 74HC257 but has inverting outputs.

2. Features

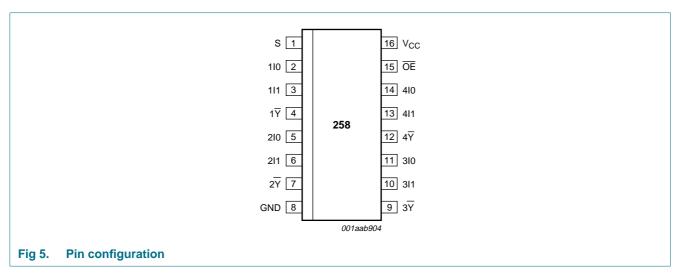

- 3-state outputs interface directly with system bus
- Low-power dissipation
- Inverting data path
- Complies with JEDEC standard no. 7A
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
- Multiple package options
- Specified from –40 °C to +85 °C and from –40 °C to +125 °C.



3. Ordering information

Table 1. Ordering information								
Type number	Package							
	Temperature range	Name	Description	Version				
74HC258N	–40 °C to +125 °C	DIP16	plastic dual in-line package; 16 leads (300 mil)	SOT38-4				
74HC258D	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1				
74HC258DB	–40 °C to +125 °C	SSOP16	plastic shrink small outline package; 16 leads; body width 5.3 mm	SOT338-1				

4. Functional diagram



Product data sheet

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
S	1	common data select input
110	2	data input 1 from source 0
111	3	data input 1 from source 1
1¥	4	3-state multiplexer output 1; inverted
210	5	data input 2 from source 0
211	6	data input 2 from source 1
2¥	7	3-state multiplexer output 2; inverted
GND	8	ground (0 V)
3¥	9	3-state multiplexer output 3; inverted
311	10	data input 3 from source 1
310	11	data input 3 from source 0
4¥	12	3-state multiplexer output 4; inverted
411	13	data input 4 from source 1
410	14	data input 4 from source 0
OE	15	output enable input (active LOW)
V _{CC}	16	positive supply voltage

6. Functional description

Table 3. Function table ^[1]					
Control		Input		Output	
OE	S	nl0	nl1	nŦ	
Н	Х	Х	Х	Z	
L	L	L	Х	Н	
L	L	Н	Х	L	
L	Н	Х	L	Н	
L	Н	Х	Н	L	

[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

Z = high-impedance OFF-state.

7. Limiting values

Table 4.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5$ V or $V_{I} > V_{CC} + 0.5$ V	<u>[1]</u> _	±20	mA
I _{OK}	output clamping current	$V_{\rm O}$ < –0.5 V or V_{\rm O} > V _{CC} + 0.5 V	<u>[1]</u> _	±20	mA
lo	output current	$V_{O} = -0.5 \text{ V}$ to $V_{CC} + 0.5 \text{ V}$	-	±35	mA
I _{CC}	supply current		-	70	mA
I _{GND}	ground current		-70	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C$ to +125 $^{\circ}C$			
		DIP16 package	[2] _	750	mW
		SO16 package	[3] _	500	mW
		SSOP16 package	[4] _	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] P_{tot} derates linearly with 12 mW/K above 70 °C.

[3] P_{tot} derates linearly with 8 mW/K above 70 °C.

[4] P_{tot} derates linearly with 5.5 mW/K above 60 °C.

8. Recommended operating conditions

Table 5.	Recommended operating condition	ns				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		2.0	5.0	6.0	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 2.0 V$	-	-	625	ns
		$V_{CC} = 4.5 V$	-	1.67	139	ns
		$V_{CC} = 6.0 V$	-	-	83	ns

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol Parameter		Conditions		25 °C		−40 °C to +85 °C		–40 °C to +125 °C		Uni
			Min	Тур	Max	Min	Max	Min	Max	
V _{IH}	HIGH-level	$V_{CC} = 2.0 V$	1.5	1.2	-	1.5	-	1.5	-	V
	input voltage	$V_{CC} = 4.5 V$	3.15	2.4	-	3.15	-	3.15	-	V
		$V_{CC} = 6.0 V$	4.2	3.2	-	4.2	-	4.2	-	V
V _{IL}	LOW-level	$V_{CC} = 2.0 V$	-	0.8	0.5	-	0.5	-	0.5	V
	input voltage	$V_{CC} = 4.5 V$	-	2.1	1.35	-	1.35	-	1.35	V
		$V_{CC} = 6.0 V$	-	2.8	1.8	-	1.8	-	1.8	V
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = -20 \ \mu\text{A}; \ V_{CC} = 2.0 \ V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_{O} = -20 \ \mu A; V_{CC} = 4.5 \ V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_0 = -20 \ \mu\text{A}; \ V_{CC} = 6.0 \ \text{V}$	5.9	6.0	-	5.9	-	5.9	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.98	4.32	-	3.84	-	3.7	-	V
		$I_0 = -7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	5.48	5.81	-	5.34	-	5.2	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$								
	output voltage	$I_0 = 20 \ \mu A; \ V_{CC} = 2.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 4.5 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 20 \ \mu A; \ V_{CC} = 6.0 \ V$	-	0	0.1	-	0.1	-	0.1	V
		$I_0 = 6 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	0.15	0.26	-	0.33	-	0.4	V
		$I_0 = 7.8 \text{ mA}; V_{CC} = 6.0 \text{ V}$	-	0.16	0.26	-	0.33	-	0.4	V
I _I	input leakage current	$V_I = V_{CC}$ or GND; $V_{CC} = 6.0 V$	-	-	±0.1	-	±1.0	-	±1.0	μA
I _{OZ}	OFF-state output current		-	-	±0.5	-	±5.0	-	±10	μA
I _{CC}	supply current		-	-	8	-	80	-	160	μA
Cı	input capacitance		-	3.5	-	-	-	-	-	pF

74HC258_4

Product data sheet

Quad 2-input multiplexer; 3-state; inverting

10. Dynamic characteristics

Table 7. Dynamic characteristics

GND = 0 V; for test circuit see Figure 8.

Symbol	Parameter	Conditions			25 °C		–40 °C to	o +125 °C	Unit
				Min	Тур	Мах	Max (85 °C)	Max (125 °C)	
t _{pd}	propagation delay	nl0, nl1to n \overline{Y} ; see Figure 6	<u>[1]</u>						
		$V_{CC} = 2.0 V$		-	30	95	120	145	ns
		$V_{CC} = 4.5 V$		-	11	19	24	29	ns
		$V_{CC} = 6.0 V$		-	9	16	20	25	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	9	-	-	-	ns
		S to $n\overline{Y}$; see Figure 6							
		$V_{CC} = 2.0 V$		-	47	140	175	210	ns
		$V_{CC} = 4.5 V$		-	17	28	35	42	ns
		$V_{CC} = 6.0 V$		-	14	24	30	36	ns
		$V_{CC} = 5.0 \text{ V}; \text{ C}_{L} = 15 \text{ pF}$		-	14	-	-	-	ns
t _{en}	enable time	\overline{OE} to n \overline{Y} ; see Figure 7	[2]						
		$V_{CC} = 2.0 V$		-	39	140	175	210	ns
		$V_{CC} = 4.5 V$		-	14	28	35	42	ns
		$V_{CC} = 6.0 V$		-	11	24	30	36	ns
t _{dis}	disable time	\overline{OE} to n \overline{Y} ; see Figure 7	[3]						
		$V_{CC} = 2.0 V$		-	55	150	190	225	ns
		$V_{CC} = 4.5 V$		-	20	30	38	45	ns
		$V_{CC} = 6.0 V$		-	16	26	33	38	ns
t _t	transition time	see Figure 6	[4]						
		$V_{CC} = 2.0 V$		-	14	60	75	90	ns
		$V_{CC} = 4.5 V$		-	5	12	15	18	ns
		$V_{CC} = 6.0 V$		-	4	10	13	15	ns
C _{PD}	power dissipation capacitance	per multiplexer; V _I = GND to V _{CC}	<u>[5]</u>	-	55	-	-	-	pF

[1] t_{pd} is the same as t_{PHL} and t_{PLH} .

[2] t_{en} is the same as t_{PZH} and t_{PZL} .

[3] t_{dis} is the same as t_{PHZ} and t_{PLZ} .

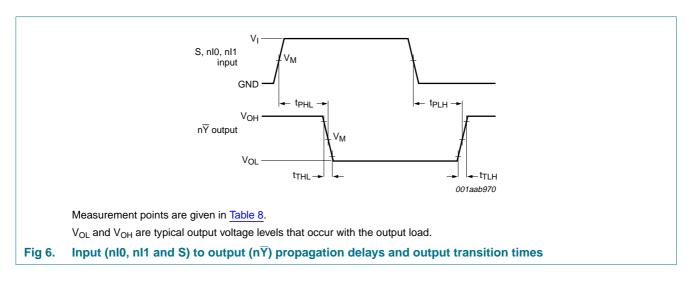
[4] t_t is the same as t_{THL} and t_{TLH} .

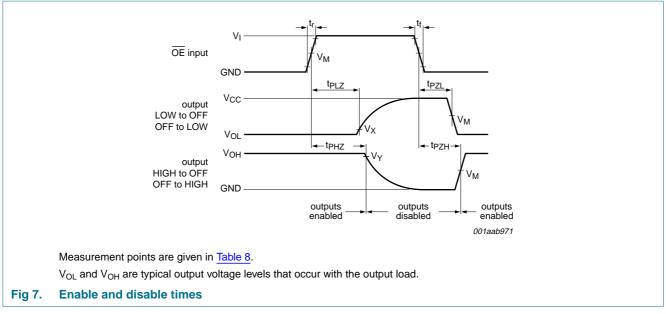
 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

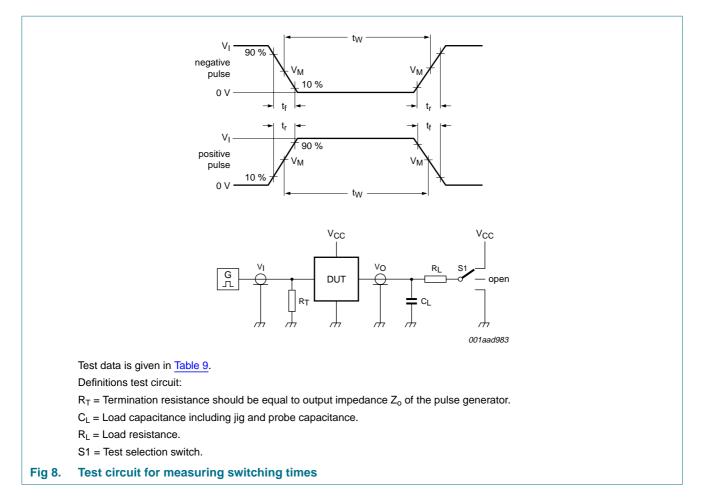

N = number of inputs switching;


 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

74HC258_4

Quad 2-input multiplexer; 3-state; inverting

11. Waveforms


Table 8.Measurement points

Input	Output		
V _M	V _M	V _X	V _Y
$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	$0.1\times V_{CC}$	$0.9 imes V_{CC}$

NXP Semiconductors

74HC258

Quad 2-input multiplexer; 3-state; inverting

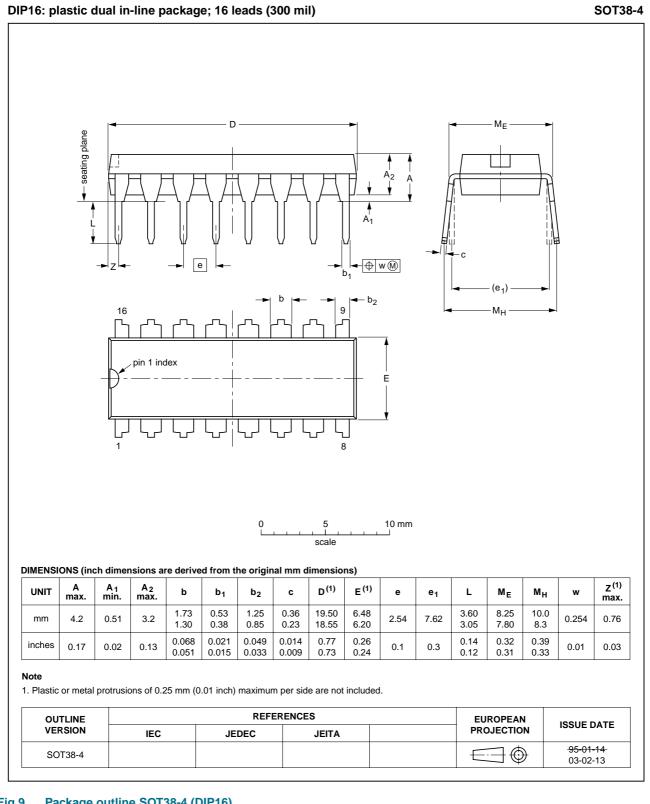


Table 9. Test data

Supply voltage	Input		Load		S1		
V _{cc}	VI	$t_r = t_f$	CL	RL	t _{PZL} , t _{PLZ}	t _{PZH} , t _{PHZ}	t _{PHL} , t _{PLH}
2.0 V	V _{CC}	6 ns	50 pF	1 kΩ	V _{CC}	GND	open
4.5 V	V _{CC}	6 ns	50 pF	1 kΩ	V _{CC}	GND	open
6.0 V	V _{CC}	6 ns	50 pF	1 kΩ	V _{CC}	GND	open
5.0 V	V _{CC}	6 ns	15 pF	1 kΩ	V _{CC}	GND	open

Quad 2-input multiplexer; 3-state; inverting

12. Package outline

Fig 9. Package outline SOT38-4 (DIP16)

74HC258_4

Quad 2-input multiplexer; 3-state; inverting

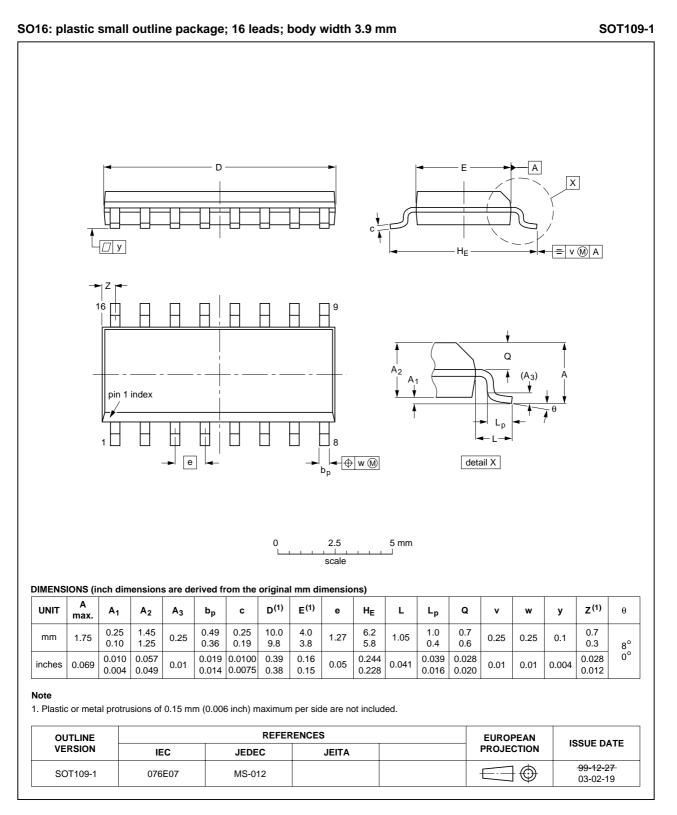
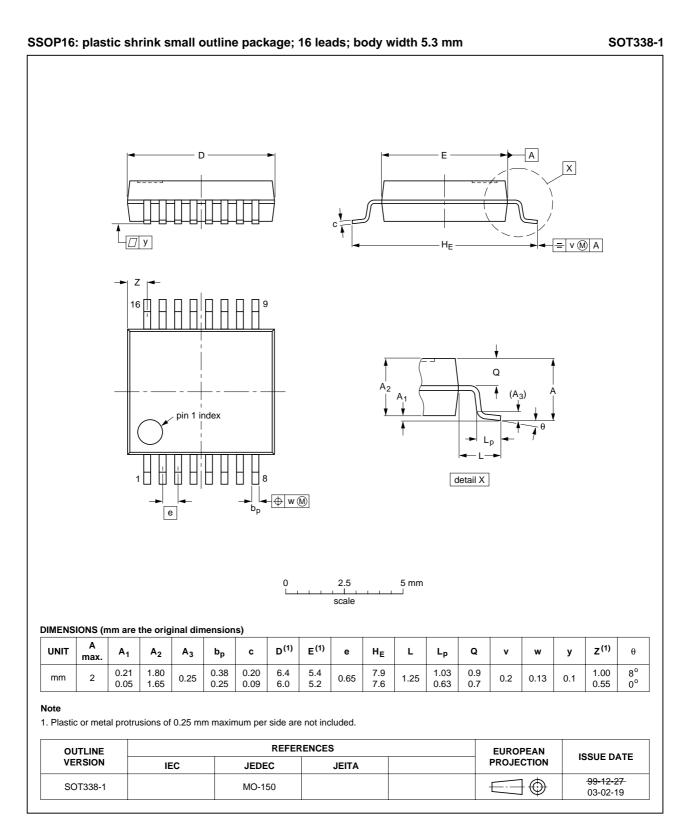



Fig 10. Package outline SOT109-1 (SO16)

74HC258_4

Product data sheet

Quad 2-input multiplexer; 3-state; inverting

Fig 11. Package outline SOT338-1 (SSOP16)

74HC258_4

Product data sheet

13. Abbreviations

Table 10. Abbreviations					
Acronym	Description				
CMOS	Complementary Metal Oxide Semiconductor				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
HBM	Human Body Model				
MM	Machine Model				
TTL	Transistor-Transistor Logic				

14. Revision history

Table 11. Revision history				
Document ID	Release date	Data sheet status	Change notice	Supersedes
74HC258_4	20080414	Product data sheet	-	74HC258_3
Modifications:		hat of this data sheet has be as of NXP Semiconductors.	•	mply with the new identity
	 Legal tex 	ts have been adapted to th	ne new company nam	ne where appropriate.
	 Pin assig <u>Table 2</u>. 	nment corrected for pins 1	0, 11, 13 and 14 in <u>F</u>	igure 1, Figure 2, Figure 5 and
74HC258_3	20041112	Product data sheet	-	74HC_HCT258_CNV_2
74HC_HCT258_CNV_2	19990902	Product specification	-	74HC_HCT258_1
74HC_HCT258_1	19901201	Product specification	-	-

15. Legal information

15.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74HC258_4

Quad 2-input multiplexer; 3-state; inverting

17. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 3
5.1	Pinning
5.2	Pin description 3
6	Functional description 4
7	Limiting values 4
8	Recommended operating conditions 5
9	Static characteristics 5
10	Dynamic characteristics 6
11	Waveforms 7
12	Package outline 9
13	Abbreviations 12
14	Revision history 12
15	Legal information 13
15.1	Data sheet status 13
15.2	Definitions 13
15.3	Disclaimers
15.4	Trademarks 13
16	Contact information 13
17	Contents 14

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2008.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 14 April 2008 Document identifier: 74HC258_4

