
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

Philips Semiconductors

74HC/HCT377

FEATURES

- · Ideal for addressable register applications
- Data enable for address and data synchronization applications
- Eight positive-edge triggered D-type flip-flops
- See "273" for master reset version
- See "373" for transparent latch version
- See "374" for 3-state version
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT377 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT377 have eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. A common clock (CP) input loads all flip-flops simultaneously when the data enable (\overline{E}) is LOW. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Q_n) of the flip-flop.

The \overline{E} input must be stable only one set-up time prior to the LOW-to-HIGH transition for predictable operation.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \text{ °C}$; $t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWBOL	FARAMETER	CONDITIONS	НС	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	13	14	ns
f _{max}	maximum clock frequency		77	53	MHz
CI	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	20	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W): P_D = C_{PD} × V_{CC}² × f_i + Σ (C_L × V_{CC}² × f_o) where:

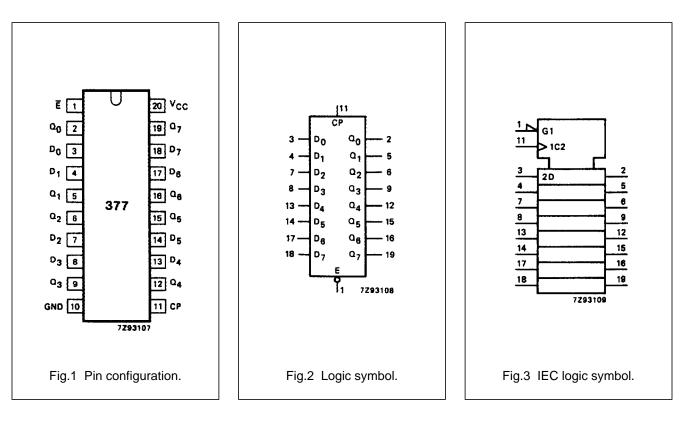
 $P_D = C_{PD} \times V_{CC} \times I_i + 2 (C_L \times V_{CC})$

 f_i = input frequency in MHz f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

 C_L = output load capacitance in pF

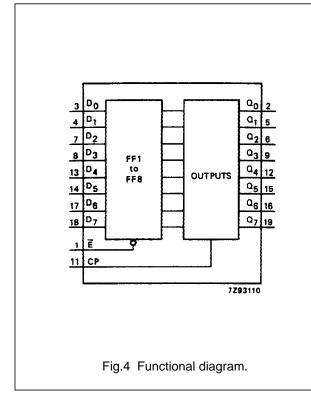
 V_{CC} = supply voltage in V


2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

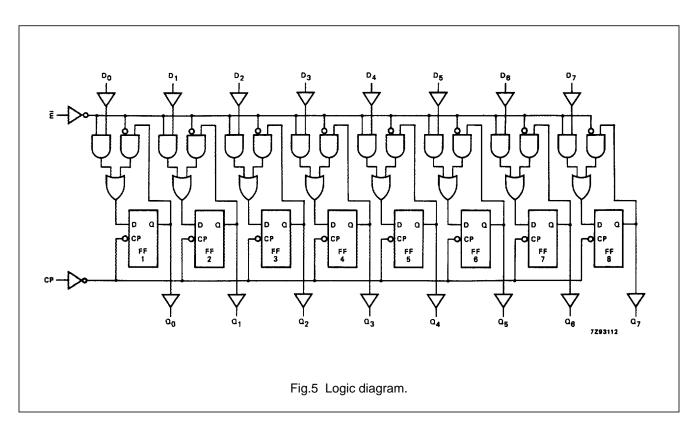
PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1	Ē	data enable input (active LOW)
2, 5, 6, 9, 12, 15, 16, 19	Q_0 to Q_7	flip-flop outputs
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	data inputs
10	GND	ground (0 V)
11	CP	clock input (LOW-to-HIGH, edge-triggered)
20	V _{CC}	positive supply voltage

74HC/HCT377

3

74HC/HCT377



FUNCTION TABLE

OPERATING		NPUT	OUTPUTS			
MODES	СР	Ē	D _n	Q _n		
load "1"	1	1	h	Н		
load "0"	1	I	I	L		
hold (do nothing)	1	h	Х	no change		
	X	H	X	no change		

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - \uparrow = LOW-to-HIGH CP transition
 - X = don't care

December 1990

74HC/HCT377

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

			T _{amb} (°C)							TEST CONDITIONS	
SYMBOL	PARAMETER		74HC								WAVEFORMS
			+25			-40 to +85		-40 to +125		V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		44 16 13	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _{su}	set-up time D _n to CP	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7
t _{su}	set-up time Ē to CP	60 12 10	6 2 2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7
t _h	hold time D _n to CP	3 3 3	8 3 2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Fig.7
t _h	hold time Ē to CP	4 4 4	-3 -1 -1		4 4 4		4 4 4		ns	2.0 4.5 6.0	Fig.7
f _{max}	maximum clock pulse frequency	6 30 35	23 70 83		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig.6

74HC/HCT377

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

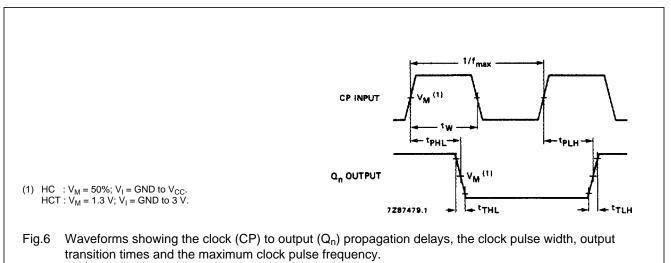
Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT							
Ē	1.50							
CP	0.50							
D _n	0.20							

AC CHARACTERISTICS FOR 74HCT


GND = 0 V; $t_r = t_f = 6 ns$; $C_L = 50 pF$

SYMBOL	PARAMETER		T _{amb} (°C)							TEST CONDITIONS		
			74HCT								MANEFORMO	
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		17	32		40		48	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	
t _W	clock pulse width HIGH or LOW	20	8		25		30		ns	4.5	Fig.6	
t _{su}	set-up time D _n to CP	12	4		15		18		ns	4.5	Fig.7	
t _{su}	set-up time Ē to CP	22	12		28		33		ns	4.5	Fig.7	
t _h	hold time D _n to CP	2	-4		2		2		ns	4.5	Fig.7	
t _h	hold time Ē to CP	3	-2		3		3		ns	4.5	Fig.7	
f _{max}	maximum clock pulse frequency	27	48		22		18		MHz	4.5	Fig.6	

December 1990

74HC/HCT377

AC WAVEFORMS

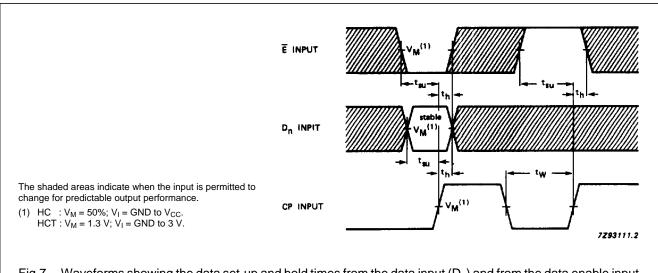


Fig.7 Waveforms showing the data set-up and hold times from the data input (D_n) and from the data enable input (\overline{E}) to the clock (CP).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".