NXP Semiconductors

Data Sheet: Advance Information

MWCT101XS Data Sheet

Key Features

- Operating characteristics
 - Voltage range: 2.7 V to 5.5 V
 - Ambient temperature range: -40 °C to 105 °C for HSRUN mode, -40 °C to 125 °C for RUN mode
- ArmTM Cortex-M4F core, 32-bit CPU
 - Supports up to 112 MHz frequency (HSRUN) with 1.25 Dhrystone MIPS per MHz
 - Arm Core based on the Armv7 Architecture and Thumb®-2 ISA
 - Integrated Digital Signal Processor (DSP)
 - Configurable Nested Vectored Interrupt Controller (NVIC)
 - Single Precision Floating Point Unit (FPU)
- · Clock interfaces
 - 4 40 MHz fast external oscillator (SOSC)
 - 48 MHz Fast Internal RC oscillator (FIRC)
 - 8 MHz Slow Internal RC oscillator (SIRC)
 - 128 kHz Low Power Oscillator (LPO)
 - Up to 112 MHz (HSRUN) System Phased Lock Loop (SPLL)
 - Up to 50 MHz DC external square wave input clock
 - Real Time Counter (RTC)
- Power management
 - Low-power Arm Cortex-M4F core with excellent energy efficiency
 - Power Management Controller (PMC) with multiple power modes: HSRUN, RUN, STOP, VLPR, and VLPS. Note: CSEc (Security) or EEPROM writes/ erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 Mhz) to execute CSEc (Security) or EEPROM writes/erase.
 - Clock gating and low power operation supported on specific peripherals.

MWCT101XSF

- Memory and memory interfaces
 - Up to 2 MB program flash memory with ECC
 - 64 KB FlexNVM for data flash memory with ECC and EEPROM emulation. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
 - Up to 256 KB SRAM with ECC
 - Up to 4 KB of FlexRAM for use as SRAM or EEPROM emulation
 - Up to 4 KB Code cache to minimize performance impact of memory access latencies
 - QuadSPI with HyperBusTM support
- Mixed-signal analog
 - Up to two 12-bit Analog-to-Digital Converter (ADC) with up to 32 channel analog inputs per module
 - One Analog Comparator (CMP) with internal 8-bit Digital to Analog Converter (DAC)
- · Debug functionality
 - Serial Wire JTAG Debug Port (SWJ-DP) combines
 - Debug Watchpoint and Trace (DWT)
 - Instrumentation Trace Macrocell (ITM)
 - Test Port Interface Unit (TPIU)
 - Flash Patch and Breakpoint (FPB) Unit
- Human-machine interface (HMI)
 - Up to 89 GPIO pins with interrupt functionality
 - Non-Maskable Interrupt (NMI)

This document contains information on a pre-production product. Specifications and pre-production information herein are subject to change without notice.

Communications interfaces

- Up to three Low Power Universal Asynchronous Receiver/Transmitter (LPUART/LIN) modules with DMA support and low power availability
- Up to three Low Power Serial Peripheral Interface (LPSPI) modules with DMA support and low power availability
- Up to two Low Power Inter-Integrated Circuit (LPI2C) modules with DMA support and low power availability
- Up to three FlexCAN modules (with optional CAN-FD support)
- FlexIO module for emulation of communication protocols and peripherals (UART, I2C, SPI, I2S, LIN, PWM, etc).

Safety and Security

- Cryptographic Services Engine (CSEc) implements a comprehensive set of cryptographic functions as described in the SHE (Secure Hardware Extension) Functional Specification. Note: CSEc (Security) or EEPROM writes/erase will trigger error flags in HSRUN mode (112 MHz) because this use case is not allowed to execute simultaneously. The device will need to switch to RUN mode (80 MHz) to execute CSEc (Security) or EEPROM writes/erase.
- 128-bit Unique Identification (ID) number
- Error-Correcting Code (ECC) on flash and SRAM memories
- System Memory Protection Unit (System MPU)
- Cyclic Redundancy Check (CRC) module
- Internal watchdog (WDOG)
- External Watchdog monitor (EWM) module

• Timing and control

- Up eight independent 16-bit FlexTimers (FTM) module, offering up to 64 standard channels (IC/OC/PWM)
- One 16-bit Low Power Timer (LPTMR) with flexible wake up control
- Two Programmable Delay Blocks (PDB) with flexible trigger system
- One 32-bit Low Power Interrupt Timer (LPIT) with 4 channels
- 32-bit Real Time Counter (RTC)

I/O and package

- 64-pin LQFP, 100-pin LQFP, 100-pin MAPBGA package options
- 16 channel DMA with up to 63 request sources using DMAMUX

2 NXP Semiconductors

Table of Contents

1	Bloo	ck diagra	am		4			6.2.5	SPLL ele	ectrical specifications	2
2	Feat	ture com	parison		5		6.3	Memor	y and men	nory interfaces	2
3	Ord	ering par	rts		7			6.3.1	Flash me	emory module (FTFC) electrical	
	3.1	Determ	nining valid	orderable parts	7				specifica	tions	2
	3.2	Orderin	ng informati	on	8				6.3.1.1	Flash timing specifications —	
4	Gen	eral			9					commands	2'
	4.1	Absolu	ıte maximur	n ratings	9				6.3.1.2	Reliability specifications	30
	4.2	Voltage	e and currer	nt operating requirements	10			6.3.2	QuadSPI	AC specifications	3
	4.3	Therma	al operating	characteristics	11		6.4	Analog	modules		3
	4.4	Power	and ground	pins	11			6.4.1	ADC elec	ctrical specifications	3
	4.5	LVR, I	LVD and PC	OR operating requirements	13				6.4.1.1	12-bit ADC operating conditions	3:
	4.6	Power	mode transi	tion operating behaviors	13				6.4.1.2	12-bit ADC electrical characteristics	3′
	4.7	Power	consumptio	n	14			6.4.2	CMP wit	th 8-bit DAC electrical specifications	3
	4.8	ESD ha	andling ratio	ngs	17		6.5	Comm	unication n	nodules	4
	4.9	EMC ra	adiated emi	ssions operating behaviors	17			6.5.1	LPUART	Γ electrical specifications	4
5	I/O	paramete	ers		17			6.5.2	LPSPI el	ectrical specifications	4
	5.1	AC ele	etrical char	acteristics	17			6.5.3	LPI2C el	ectrical specifications	49
	5.2	Genera	al AC specif	ications	18			6.5.4	FlexCAN	N electical specifications	50
	5.3	DC ele	ectrical spec	ifications at 3.3 V Range	18			6.5.5	Clockout	frequency	50
	5.4	DC ele	ectrical spec	ifications at 5.0 V Range	19		6.6	Debug	modules		50
	5.5	AC ele	ectrical spec	ifications at 3.3 V range	20			6.6.1	SWD ele	ectrical specofications	50
	5.6	AC ele	ectrical spec	ifications at 5 V range	21			6.6.2	Trace ele	ectrical specifications	5
	5.7	Standar	rd input pin	capacitance	22			6.6.3	JTAG ele	ectrical specifications	53
	5.8	Device	clock speci	fications	22	7	The	rmal attr	ibutes		50
6	Peri	pheral o	perating req	uirements and behaviors	23		7.1	Descrip	otion		5
	6.1	System	modules		23		7.2	Therma	al characte	ristics	50
	6.2	Clock i	interface mo	odules	23		7.3	Genera	l notes for	specifications at maximum junction	
		6.2.1	External S	System Oscillator electrical specifications	s23			temper	ature		59
		6.2.2	External S	System Oscillator frequency specification	ıs . 25	8	Dim	ensions.			60
		6.2.3	System C	lock Generation (SCG) specifications	26		8.1	Obtain	ing packag	e dimensions	60
			6.2.3.1	Fast internal RC Oscillator (FIRC)		9	Pinc	outs			6
				electrical specifications	26		9.1	Packag	e pinouts a	and signal descriptions	6
			6.2.3.2	Slow internal RC oscillator (SIRC)		10	Rev	ision His	story		6
				electrical specifications	26						
		6.2.4	Low Pow	er Oscillator (LPO) electrical specification	ons						
					27						

1 Block diagram

The figure below shows a superset high level architecture block diagram of the device. Other devices within the family have a subset of the features. See Feature comparison for chip specific values.

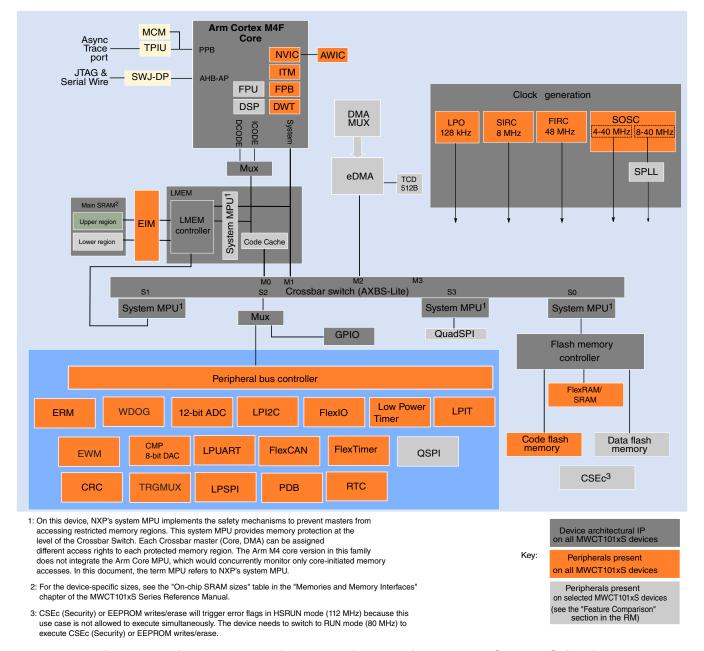


Figure 1. High-level architecture diagram for the MWCT101xS family

2 Feature comparison

The following figure summarizes the memory and package options for the MWCT101xS series and demonstrates where this device fits within the overall series. All devices which share a common package are pin-to-pin compatible.

NOTE

Availability of peripherals depends on the pin availability in a particular package. For more information see IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

			MWCT101xS								
	Parameter	MWCT1014S	MWCT1015S	MWCT1016S							
	Core		Arm [®] Cortex [™] -M4	F							
	Frequency	up	to 112 MHz (HSRUN)								
	IEEE-754 FPU		•								
	HW security module (CSEc)1		•								
	CRC module		1x								
	ISO 26262	С	apable up to ASIL-B								
	Peripheral speed	up	to 112 MHz (HSRUN)								
	Crossbar	•									
ε	DMA		•								
System	EWM		•								
ŝ	Memory protection unit		•								
	FIRC CMU		0								
	Watchdog		1x								
	Low power modes		•								
	HSRUN mode ¹		•								
	Number of I/Os	up to 89	up to 89	up to 89							
	Single supply voltage		2.7 - 5.5 V	•							
	Operating temperature (Ta) Temperature ambient	-4	0 to +105°C / +125°C								
	Flash	512 KB	1 MB	2 MB ²							
	Error correction code (ECC)		•								
	System RAM (including FlexRAM)	64 KB	128 KB	256 KB							
o v	FlexRAM (also available as system RAM)		4 KB								
Memory	Cache		4 KB								
_	EEPROM emulated by FlexRAM¹	4 KB (up to 6-	4 KB D-Flash)	See footnote 3							
	External memory interface	·	QuadSPI incl. HyperBus™								
	Low power interrupt timer		•								
70	FlexTimer (16-bit counter) 8 channels	4x (32)	6x (48)	8x (64)							
Timer	Low power timer (LPTMR)		1x								
	Real time counter (RTC)	1x 2x									
	Programmable delay block (PDB)										
og	Trigger mux (TRGMUX)	1x (64)	1x (73)	1x (81)							
Analog	12-bit SAR ADC (1 MSPS each)	2x (16)	2x (24)	2x (32)							
	Comparator with 8-bit DAC		1x								
Ē	Low power UART/LIN (Supports LIN protocol versions 1.3, 2.0, 2.1, 2.2A and SAE J2602)		3x								
nicatio	Low power SPI		3x								
Communication	Low power I2C	1	x	2x							
0	FlexCAN (CAN-FD ISO/CD 11898-1)	3x (1x with FD)	3x (2x with FD)	3x (3x with FD)							
	FlexIO (8 pins configurable as UART, SPI, I2C, I2S)		1x								
DEs	Debug & trace	SWD, JTAG⁴ (IT	SWD, JTAG (ITM, SWV, SWO), ETM								
□	Ecosystem (IDE, compiler, debugger)	NXP S32 Design	Studio + GCC + GHS + La	auterbach							
Other	Packages ⁵	LQFP-64 LQFP-100	LQFP-100 BGA-100	BGA-100							

- LEGEND:

 Not implemented

 ◆ Available on the device

 1 No write or erase access to Flash module, including Security (CSEc) and EEPROM commands, are allowed when device is running at HSRUN mode (112MHz) or VLPR mode.

 2 Available when EEEPROM, CSEc and Data Flash are not used. Else only up to 1,984 KB is available for Program Flash.

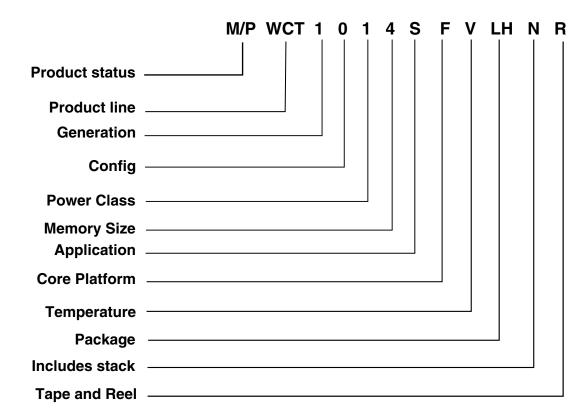
 3 4 KB (up to 512 KB D-Flash as a part of 2M Flash). Up to 64 KB of flash is used as EEPROM backup and the remaining 448 KB of the last 512 KB block can be used as Data flash or Program flash. See chapter FTFC for details.

 4 Only for Boundary Scan Register

 5 See Dimensions for package drawing

Figure 2. MWCT101xS product series comparison

3 Ordering parts


3.1 Determining valid orderable parts

To determine the orderable part numbers for this device, go to www.nxp.com and perform a part number search.

NOTE

Not all part number combinations exist

3.2 Ordering information

Product status

P: Pre Qualification M: Fully Qualified

Product line

WCT: Wireless Charging

Technology

Generation

1: 1st product Gen 2: 2nd product Gen

Config

0 = Standard 1 = Premium

Power Class

0 = 5 W 1 = 15 W2 = 60 W

3 =200 W

Memory size (Flash)

	4	5	6
M4F	512 K	1 M	2 M

Application

Blank =Customer A = Auto/Industr S = A + AUTOSAR

Core platform

F: Arm Cortex M4F

Temperature

V: -40C to 105C

Package

Pins	LQFP	BGA
64	LH	-
100	LL	МН

Includes stack

Blank = No stack

N = NFC

Tape and Reel

T: Trays and Tubes

R: Tape and Reel

NXP Semiconductors

Figure 3. Ordering information

MWCT101XS Data Sheet, Rev. 2, 07/2018

 6.8^{9}

V

4 General

4.1 Absolute maximum ratings

NOTE

- Functional operating conditions appear in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maximum values is not guaranteed. See footnotes in the following table for specific conditions.
- Stress beyond the listed maximum values may affect device reliability or cause permanent damage to the device.
- All the limits defined in the datasheet specification must be honored together and any violation to any one or more will not guarantee desired operation.
- Unless otherwise specified, all maximum and minimum values in the datasheet are across process, voltage, and temperature.

Symbol	Parameter	Conditions ¹	Min	Max	Unit							
V _{DD} ²	2.7 V - 5. 5V input supply voltage	_	-0.3	5.8 ³	V							
V_{REFH}	3.3 V / 5.0 V ADC high reference voltage	_	-0.3	5.8 ³	V							
I _{INJPAD_DC_ABS} ⁴	Continuous DC input current (positive / negative) that can be injected into an I/O pin		-3	+3	mA							
V_{IN_DC}	Continuous DC Voltage on any I/O pin with respect to V _{SS}	_	-0.8	5.8 ⁵	V							
I _{INJSUM_DC_ABS}	Sum of absolute value of injected currents on all the pins (Continuous DC limit)	_	_	30	mA							
T _{ramp} ⁶	ECU supply ramp rate	_	0.5 V/min	500 V/ms	—							
T _{ramp_MCU} ⁷	MCU supply ramp rate	_	0.5 V/min	100 V/ms	_							
T _A ⁸	Ambient temperature	_	-40	125	°C							
T _{STG}	Storage temperature	_	-55	165	°C							
					1							

Table 1. Absolute maximum ratings

V_{IN_TRANSIENT}

Transient overshoot voltage allowed on

I/O pin beyond V_{IN_DC limit}

^{1.} All voltages are referred to V_{SS} unless otherwise specified.

^{2.} As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.

^{3. 60} s lifetime – No restrictions i.e. The part can switch.

¹⁰ hours lifetime - Device in reset i.e. The part cannot switch.

General

- 4. When input pad voltage levels are close to V_{DD} or V_{SS}, practically no current injection is possible.
- 5. While respecting the maximum current injection limit
- 6. This is the Electronic Control Unit (ECU) supply ramp rate and not directly the MCU ramp rate. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 7. This is the MCU supply ramp rate, and the ramp rate assumes that the HW design guidelines in AN5426 are followed. Limit applies to both maximum absolute maximum ramp rate and typical operating conditions.
- 8. T_{.I} (Junction temperature)=135 °C. Assumes T_A=125 °C for RUN mode
 - T_{.I} (Junction temperature)=125 °C. Assumes TA=105 °C for HSRUN mode
 - Assumes maximum θJA for 2s2p board. See Thermal characteristics
- 9. 60 seconds lifetime; device in reset (no outputs enabled/toggling)

4.2 Voltage and current operating requirements

NOTE

Device functionality is guaranteed up to the LVR assert level; however, electrical performance of 12-bit ADC, CMP with 8-bit DAC, IO electrical characteristics, and communication modules electrical characteristics would be degraded when voltage drops below 2.7 V

Table 2. Voltage and current operating requirements 1

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD} ²	Supply voltage	2.7 ³	5.5	V	4
V _{DD_OFF}	Voltage allowed to be developed on V _{DD} pin when it is not powered from any external power supply source.	0	0.1	V	
V_{DDA}	Analog supply voltage	2.7	5.5	V	4
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	- 0.1	0.1	V	4
V _{REFH}	ADC reference voltage high	2.7	V _{DDA} + 0.1	V	5
V _{REFL}	ADC reference voltage low	-0.1	0.1	V	
V _{ODPU}	Open drain pullup voltage level	V_{DD}	V_{DD}	V	6
I _{INJPAD_DC_OP} ⁷	Continuous DC input current (positive / negative) that can be injected into an I/O pin	-3	+3	mA	
I _{INJSUM_DC_OP}	Continuous total DC input current that can be injected across all I/O pins such that there's no degradation in accuracy of analog modules: ADC and ACMP (See section Analog Modules)	_	30	mA	

- Typical conditions assumes V_{DD} = V_{DDA} = V_{REFH} = 5 V, temperature = 25 °C and typical silicon process unless otherwise stated.
- 2. As V_{DD} varies between the minimum value and the absolute maximum value the analog characteristics of the I/O and the ADC will both change. See section I/O parameters and ADC electrical specifications respectively for details.
- 3. MWCT1016S will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged MWCT1016S is guaranteed to operate from 2.97 V. All other MWCT101xS family devices operate from 2.7 V in all modes.
- 4. V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC.

11

- 5. V_{REFH} should always be equal to or less than V_{DDA} + 0.1 V and V_{DD} + 0.1 V
- 6. Open drain outputs must be pulled to V_{DD} .
- 7. When input pad voltage levels are close to V_{DD} or V_{SS} , practically no current injection is possible.

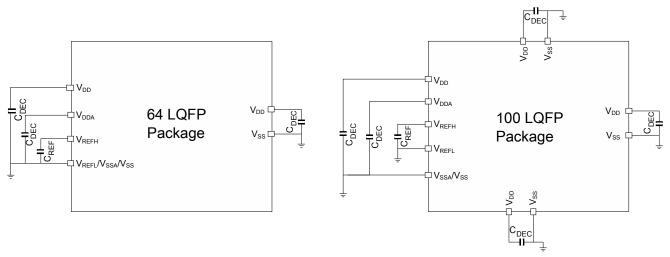

4.3 Thermal operating characteristics

Table 3. Thermal operating characteristics for 64-pin LQFP and 100-pin LQFP and MAPBGA packages

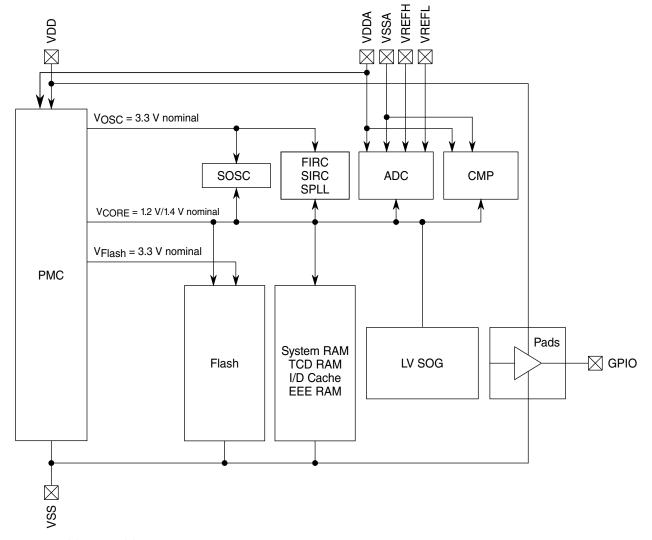
Symbol	Parameter		Value						
		Min.	Тур.	Max.					
T _{A C-Grade Part}	Ambient temperature under bias	-40	_	85 ¹	°C				
T _{J C-Grade Part}	Junction temperature under bias	-40	_	105 ¹	°C				
T _{A V-Grade Part}	Ambient temperature under bias	-40	_	105 ¹	°C				
T _{J V-Grade Part}	Junction temperature under bias	-40	_	125 ¹	°C				
T _{A M-Grade Part}	Ambient temperature under bias	-40	_	125 ²	°C				
T _{J M-Grade Part}	Junction temperature under bias	-40	_	135 ²	°C				

- 1. Values mentioned are measured at ≤ 112 MHz in HSRUN mode.
- 2. Values mentioned are measured at ≤ 80 MHz in RUN mode.

4.4 Power and ground pins

NOTE: V_{DD} and V_{DDA} must be shorted to a common source on PCB

Figure 4. Pinout decoupling


Table 4. Supplies decoupling capacitors 1, 2

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{REF} , 4, 5	ADC reference high decoupling capacitance	70	100		nF

Table 4. Supplies decoupling capacitors 1, 2 (continued)

Symbol	Description	Min. ³	Тур.	Max.	Unit
C _{DEC} ⁵ , ⁶ , ⁷	Recommended decoupling capacitance	70	100	_	nF

- V_{DD} and V_{DDA} must be shorted to a common source on PCB. The differential voltage between V_{DD} and V_{DDA} is for RF-AC only. Appropriate decoupling capacitors to be used to filter noise on the supplies. See application note AN5032 for reference supply design for SAR ADC. All V_{SS} pins should be connected to common ground at the PCB level.
- 2. All decoupling capacitors must be low ESR ceramic capacitors (for example X7R type).
- 3. Minimum recommendation is after considering component aging and tolerance.
- 4. For improved performance, it is recommended to use 10 µF, 0.1 µF and 1 nF capacitors in parallel.
- 5. All decoupling capacitors should be placed as close as possible to the corresponding supply and ground pins.
- 6. Contact your local Field Applications Engineer for details on best analog routing practices.
- 7. The filtering used for decoupling the device supplies must comply with the following best practices rules:
 - The protection/decoupling capacitors must be on the path of the trace connected to that component.
 - No trace exceeding 1 mm from the protection to the trace or to the ground.
 - The protection/decoupling capacitors must be as close as possible to the input pin of the device (maximum 2 mm).
 - · The ground of the protection is connected as short as possible to the ground plane under the integrated circuit.

*Note: VSSA and VSS are shorted at package level

Figure 5. Power diagram

MWCT101XS Data Sheet, Rev. 2, 07/2018

13

4.5 LVR, LVD and POR operating requirements

Table 5. V_{DD} supply LVR, LVD and POR operating requirements

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{POR}	Rising and falling V _{DD} POR detect voltage	1.1	1.6	2.0	V	
V _{LVR}	LVR falling threshold (RUN, HSRUN, and STOP modes)	2.50	2.58	2.7	V	
V _{LVR_HYST}	LVR hysteresis	_	45	_	mV	1
V _{LVR_LP}	LVR falling threshold (VLPS/VLPR modes)	1.97	2.22	2.44	V	
V _{LVD}	Falling low-voltage detect threshold	2.8	2.875	3	V	
V _{LVD_HYST}	LVD hysteresis	_	50	_	mV	1
V_{LVW}	Falling low-voltage warning threshold	4.19	4.305	4.5	V	
V _{LVW_HYST}	LVW hysteresis	_	75	_	mV	1
V _{BG}	Bandgap voltage reference	0.97	1.00	1.03	V	

^{1.} Rising threshold is the sum of falling threshold and hysteresis voltage.

Power mode transition operating behaviors

All specifications in the following table assume this clock configuration:

- RUN Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz
 - BUS_CLK = 48 MHz
 - FLASH CLK = 24 MHz
- HSRUN Mode:
 - Clock source: SPLL
 - SYS CLK/CORE CLK = 112 MHz
 - BUS CLK = 56 MHz
 - FLASH_CLK = 28 MHz
- VLPR Mode:
 - Clock source: SIRC
 - SYS_CLK/CORE_CLK = 4 MHz
 - BUS CLK = 4 MHz
 - FLASH CLK = 1 MHz
- STOP1/STOP2 Mode:
 - Clock source: FIRC
 - SYS_CLK/CORE_CLK = 48 MHz

MWCT101XS Data Sheet, Rev. 2, 07/2018

General

- BUS CLK = 48 MHz
- FLASH_CLK = 24 MHz
- VLPS Mode: All clock sources disabled.

Table 6. Power mode transition operating behaviors

Symbol	Description	Min.	Тур.	Max.	Unit
t _{POR}	After a POR event, amount of time from the point V_{DD} reaches 2.7 V to execution of the first instruction across the operating temperature range of the chip.	_	325	_	μs
	VLPS → RUN	8	_	17	μs
	STOP1 → RUN	0.07	0.075	0.08	μs
	STOP2 → RUN	0.07	0.075	0.08	μs
	VLPR → RUN	19	_	26	μs
	VLPR → VLPS	5.1	5.7	6.5	μs
	VLPS → VLPR	18.8	23	27.75	μs
	RUN → Compute operation	0.72	0.75	0.77	μs
	HSRUN → Compute operation	0.3	0.31	0.35	μs
	RUN → STOP1	0.35	0.38	0.4	μs
	RUN → STOP2	0.2	0.23	0.25	μs
	RUN → VLPS	0.3	0.35	0.4	μs
	RUN → VLPR	3.5	3.8	5	μs
	VLPS → Asynchronous DMA Wakeup	105	110	125	μs
	STOP1 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	STOP2 → Asynchronous DMA Wakeup	1	1.1	1.3	μs
	Pin reset → Code execution	_	214	_	μs

NOTE

HSRUN should only be used when frequencies in excess of 80 MHz are required. When using 80 MHz and below, RUN mode is the recommended operating mode.

4.7 **Power consumption**

The following table shows the power consumption targets for the device in various modes of operation. Attached MWCT101xS_Power_Modes _Configuration.xlsx details the modes used in gathering the power consumption data stated in the following table Table 7. For full functionality refer to table: Module operation in available low power modes of the Reference Manual.

NXP Semiconductors

Table 7. Power consumption (Typicals unless stated otherwise) 1

		[∂] (sHM\Aų) sHM\bbl	378	381	435	390	445	484	452	465	530	477	287	099	526	543	609	565	645	719
	MHz (mA) 4	Peripherals enabled	55.6	56.1	59.7	57.1	61.3	AN	68.3	8.69	78	70.8	82.8	AN	83.3	88.7	96.1	89.1	97.4	AA
	MHz (Peripherals disabled	43.3	43.9	46.3	44.8	47.9	AN	52	53.3	60.3	54.4	65.7	AN	60.3	65.9	70.4	63.8	73.6	AN
-1184	RUN® 80 MHZ (mA)	Peripherals enabled	39.6	40	42.1	40.5	43.5	46.8	47.6	48.7	54.4	49.6	58.8	64.8	57.7	59.9	65.1	61.5	66.8	71.6
	HON®80 (mA)	Peripherals disabled	30.2	30.5	34.8	31.2	35.6	38.7	36.2	37.2	42.4	38.1	46.9	52.8	42.1	43.4	48.7	45.2	51.6	57.5
-1184	RON® 64 MINZ (mA)	Peripherals enabled	33.3	33.5	36.2	33.8	37.3	40.3	40.2	41.3	47	42.2	51.4	57.4	45.3	46.6	53.9	47.5	55.3	61.3
	HON®64 (mA)	Peripherals disabled	25.1	26.1	29.3	26.6	30.3	35	30.5	31.5	36.7	32.5	41.3	47.3	35.5	36.8	41.9	37.6	44.9	50.9
40 8411-	RON @46 MHZ (mA)	Peripherals enabled	26.9	27.1	29.6	27.4	30.6	33.6	31.4	32.4	37.9	33.4	42.6	48.8	34.9	37.0	43.6	37.8	46.8	52.5
	n)	Peripherals disabled	19.7	20.4	23.2	20.6	23.9	26.9	23.4	24.4	29.3	25.3	34.1	40.2	27.6	29.1	34.8	29.8	38.4	44.3
CECE	(mA)		7.7	8.1	9.6	8.5	11.1	13.8	9.2	10.1	13.9	Ξ	18.3	23.7	9.6	11.1	15.6	11.9	19.0	24.5
O.F.O	(mA)		7	7.2	9.2	7.8	10.3	12.9	8	8.9	12.7	9.8	17.1	22.6	8.5	10.1	14.5	10.9	18.0	23.4
	(mA)	Peripherals enabled	1.50	1.85	2.65	2.10	2.70	3.25	1.61	1.83	3.38	2.04	4.13	5.38	2.20	2.35	3.55	2.54	4.47	80.9
. 5	ָר אַר 	Peripherals disabled	1.48	1.72	2.60	1.80	2.65	3.18	1.57	1.79	3.32	1.99	4.06	5.28	2.17	2.30	3.48	2.49	4.40	9.00
	VLPS (µA) ^{2, 3}	Peripherals enabled	39.1	159	384	273	006	1998	47	209	981	422	2017	3380	54	357	1736	222	2970	4166
	VLPS	Peripherals disabled ⁶	29.8	150	329	256	850	1960	37	207	974	419	2004	3358	38	336	1660	260	2945	3990
			Тур	Тур	Мах	Тур	Max	Max	Тур	Тур	Мах	Тур	Мах	Мах	Тур	Тур	Мах	Тур	Мах	Max
	(C°) ərufarəqməT fraidmA		25	85	•	105	•	125	25	85	•	105	•	125	25	85	•	105		125
	epiveD(qidD		MWCT1014S						MWCT1015S						MWCT1016S7					

Typical current numbers are indicative for typical silicon process and may vary based on the silicon distribution and user configuration. Typical conditions assumes $V_{DD} = V_{DDA} = V_{REFH} = 5 \text{ V}$, temperature = 25 °C and typical silicon process unless otherwise stated. All output pins are floating and On-chip pulldown is enabled for all unused input pins.

General

This is an average based on the use case described in the Comparator section, whereby the analog sampling is taking place periodically, with a mechanism to only enable the DAC as required. The numbers quoted assumes that only a single ANLCMP is active and the others are disabled Current numbers are for reduced configuration and may vary based on user configuration and silicon process variation.

HSRUN mode must not be used at 125°C. Max ambient temperature for HSRUN mode is 105°C.

Values mentioned are measured at RUN@80 MHz with peripherals disabled.
 With PMC_REGSC[CLKBIASDIS] set to 1. See Reference Manual for details.

The MWCT1016S data points assume that QuadSPI etc. are inactive.

й <u>к</u>4.00.6.

4.8 ESD handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
V _{HBM}	Electrostatic discharge voltage, human body model	- 4000	4000	V	1
V _{CDM}	Electrostatic discharge voltage, charged-device model			2	
	All pins except the corner pins	- 500	500	V	
	Corner pins only	- 750	750	V	
I _{LAT}	Latch-up current at ambient temperature of 125 °C	- 100	100	mA	3

- Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM).
- 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.
- 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.

4.9 EMC radiated emissions operating behaviors

EMC measurements to IC-level IEC standards are available from NXP on request.

5 I/O parameters

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

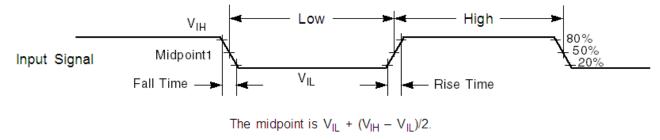


Figure 6. Input signal measurement reference

MWCT101XS Data Sheet, Rev. 2, 07/2018

NXP Semiconductors 17

5.2 General AC specifications

These general purpose specifications apply to all signals configured for GPIO, UART, and timers.

Table 8. General switching specifications

Symbol	Description	Min.	Max.	Unit	Notes
	GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path	1.5	_	Bus clock cycles	1, 2
	GPIO pin interrupt pulse width (digital glitch filter disabled, passive filter disabled) — Asynchronous path	50	_	ns	3
WFRST	RESET input filtered pulse	_	10	ns	4
WNFRST	RESET input not filtered pulse	Maximum of (100 ns, bus clock period)	_	ns	5

- This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater of synchronous and asynchronous timing must be met.
- 3. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be recognized.
- 4. Maximum length of RESET pulse which will be filtered by internal filter.
- 5. Minimum length of RESET pulse, guaranteed not to be filtered by the internal filter. This number depends on bus clock period also. For example, in VLPR mode bus clock is 4 MHz, which make clock period of 250 ns. In this case, minimum pulse width which will cause reset is 250 ns. For faster bus clock frequencies which have clock period less than 100 ns, the minimum pulse width not filtered will be 100 ns.

5.3 DC electrical specifications at 3.3 V Range

NOTE

For details on the pad types defined in Table 9 and Table 10, see Reference Manual section *IO Signal Table* and IO Signal Description Input Multiplexing sheet(s) attached with Reference Manual.

Table 9. DC electrical specifications at 3.3 V Range

Symbol	Parameter	Value			Unit	Notes
		Min.	Тур.	Max.		
V _{DD}	I/O Supply Voltage	2.7	3.3	4	٧	1
V _{ih}	Input Buffer High Voltage	$0.7 \times V_{DD}$	_	V _{DD} + 0.3	V	2
V _{il}	Input Buffer Low Voltage	V _{SS} - 0.3	_	$0.3 \times V_{DD}$	V	3
V _{hys}	Input Buffer Hysteresis	$0.06 \times V_{DD}$	_	_	V	
Ioh _{GPIO}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	3.5	_	_	mA	

Table 9. DC electrical specifications at 3.3 V Range (continued)

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.	7	
Ioh _{GPIO-HD_DSE_0}						
Iol _{GPIO}	I/O current sink capability measured when	3	_	_	mA	
Iol _{GPIO-HD_DSE_0}	$pad V_{ol} = 0.8 V$					
Ioh _{GPIO-HD_DSE_1}	I/O current source capability measured when pad $V_{oh} = (V_{DD} - 0.8 \text{ V})$	14	_	_	mA	4
lol _{GPIO-HD_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	12	_	_	mA	4
Ioh _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad V _{oh} =V _{DD} -0.8 V	9.5	_	_	mA	5
Iol _{GPIO-FAST_DSE_0}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	10	_	_	mA	5
Ioh _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad V_{oh} = V_{DD} -0.8 V	16	_	_	mA	5
Iol _{GPIO-FAST_DSE_1}	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	15.5	_	_	mA	5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full tempera	ture range a	at $V_{DD} = 3.3 \text{ V}$		<u>'</u>	6
	All pins other than high drive port pins		0.005	0.5	μA	
	High drive port pins		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		60	kΩ	7
R _{PD}	Internal pulldown resistors	20		60	kΩ	8

- 1. MWCT1016S will operate from 2.7 V when executing from internal FIRC. When the PLL is engaged MWCT1016S is guaranteed to operate from 2.97 V. All other MWCT101xS family devices operate from 2.7 V in all modes.
- 2. For reset pads, same V_{ih} levels are applicable
- 3. For reset pads, same Vil levels are applicable
- 4. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 5. For refernce only. Run simulations with the IBIS model and custom board for accurate results.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to MWCT101xS_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 7. Measured at input $V = V_{SS}$
- 8. Measured at input $V = V_{DD}$

5.4 DC electrical specifications at 5.0 V Range

Table 10. DC electrical specifications at 5.0 V Range

Symbol	Parameter		Value			Notes
		Min.	Min. Typ. Max.			
V _{DD}	I/O Supply Voltage	4	_	5.5	V	
V _{ih}	Input Buffer High Voltage	0.65 x V _{DD}	_	V _{DD} + 0.3	V	1

Table 10. DC electrical specifications at 5.0 V Range (continued)

Symbol	Parameter		Value		Unit	Notes
		Min.	Тур.	Max.		
V _{il}	Input Buffer Low Voltage	V _{SS} – 0.3	_	0.35 x V _{DD}	V	2
V _{hys}	Input Buffer Hysteresis	0.06 x V _{DD}	_	_	V	
Ioh_Standard	I/O current source capability measured when pad V_{oh} = (V_{DD} - 0.8 V)	5	_	_	mA	
lol_Standard	I/O current sink capability measured when pad V_{ol} = 0.8 V	5	_	_	mA	
loh_Strong	I/O current source capability measured when pad $V_{oh} = V_{DD}$ - 0.8 V	20	_	_	mA	3, 4
Iol_Strong	I/O current sink capability measured when pad $V_{ol} = 0.8 \text{ V}$	20	_	_	mA	4, 5
IOHT	Output high current total for all ports	_	_	100	mA	
IIN	Input leakage current (per pin) for full	temperature	e range at V _{DI}	_D = 5.5 V		6
	All pins other than high drive port pins		0.005	0.5	μА	
	High drive port pins		0.010	0.5	μA	
R _{PU}	Internal pullup resistors	20		50	kΩ	7
R _{PD}	Internal pulldown resistors	20		50	kΩ	8

- 1. For reset pads, same V_{ih} levels are applicable
- 2. For reset pads, same V_{il} levels are applicable
- 3. The value given is measured at high drive strength mode. For value at low drive strength mode see the loh_Standard value given above.
- 4. The strong pad I/O pin is capable of switching a 50 pF load at up to 40 MHz.
- 5. The value given is measured at high drive strength mode. For value at low drive strength mode see the lol_Standard value given above.
- 6. Several I/O have both high drive and normal drive capability selected by the associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only. For details refer to MWCT101xS_IO_Signal_Description_Input_Multiplexing.xlsx attached with the Reference Manual.
- 7. Measured at input $V = V_{SS}$
- 8. Measured at input $V = V_{DD}$

5.5 AC electrical specifications at 3.3 V range

Table 11. AC electrical specifications at 3.3 V Range

Symbol	DSE	Rise tir	ne (nS) ¹	Fall time (nS) 1		Capacitance (pF) ²
		Min.	Max.	Min. Max.		
tRF _{GPIO}	NA	3.2	14.5	3.4	15.7	25
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
tRF _{GPIO-HD}	0	3.2	14.5	3.4	15.7	25

Table 11. AC electrical specifications at 3.3 V Range (continued)

Symbol	DSE	Rise tii	ne (nS) ¹	Fall tin	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max.	Min.	Max.	
		5.7	23.7	6.0	26.2	50
		20.0	80.0	20.8	88.4	200
	1	1.5	5.8	1.7	6.1	25
		2.4	8.0	2.6	8.3	50
		6.3	22.0	6.0	23.8	200
tRF _{GPIO-FAST}	0	0.6	2.8	0.5	2.8	25
		3.0	7.1	2.6	7.5	50
		12.0	27.0	10.3	26.8	200
	1	0.4	1.3	0.38	1.3	25
		1.5	3.8	1.4	3.9	50
		7.4	14.9	7.0	15.3	200

^{1.} For reference only. Run simulations with the IBIS model and your custom board for accurate results.

5.6 AC electrical specifications at 5 V range

Table 12. AC electrical specifications at 5 V Range

Symbol	DSE	Rise tir	me (nS) ¹	Fall tim	ne (nS) ¹	Capacitance (pF) ²
		Min.	Max .	Min.	Max.	
tRF _{GPIO}	NA	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
tRF _{GPIO-HD}	0	2.8	9.4	2.9	10.7	25
		5.0	15.7	5.1	17.4	50
		17.3	54.8	17.6	59.7	200
	1	1.1	4.6	1.1	5.0	25
		2.0	5.7	2.0	5.8	50
		5.4	16.0	5.0	16.0	200
tRF _{GPIO-FAST}	0	0.42	2.2	0.37	2.2	25
		2.0	5.0	1.9	5.2	50
		9.3	18.8	8.5	19.3	200
	1	0.37	0.9	0.35	0.9	25
		1.2	2.7	1.2	2.9	50
		6.0	11.8	6.0	12.3	200

^{1.} For reference only. Run simulations with the IBIS model and your custom board for accurate results.

^{2.} Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for QSPI etc. . For protocol specific AC specifications, see respective sections.

^{2.} Maximum capacitances supported on Standard IOs. However interface or protocol specific specifications might be different, for example for QSPI etc. . For protocol specific AC specifications, see respective sections.

5.7 Standard input pin capacitance

Table 13. Standard input pin capacitance

	Symbol	Description	Min.	Max.	Unit
Γ	C_{IN_D}	Input capacitance: digital pins	_	7	pF

NOTE

Please refer to External System Oscillator electrical specifications for EXTAL/XTAL pins.

5.8 Device clock specifications

Table 14. Device clock specifications 1

Symbol	Description	Min.	Max.	Unit			
	High Speed run mode ²						
f _{SYS}	System and core clock	_	112	MHz			
f _{BUS}	Bus clock	_	56	MHz			
f _{FLASH}	Flash clock	_	28	MHz			
	Normal run mode (MWCT101xS serie	es) ³					
f _{SYS}	System and core clock		80	MHz			
f _{BUS}	Bus clock	_	40 ⁴	MHz			
f _{FLASH}	Flash clock	_	26.67	MHz			
	VLPR mode ⁵						
f _{SYS}	System and core clock	_	4	MHz			
f _{BUS}	Bus clock	_	4	MHz			
f _{FLASH}	Flash clock	_	1	MHz			
f _{ERCLK}	External reference clock	_	16	MHz			

- 1. Refer to the section Feature comparison for the availability of modes and other specifications.
- 2. Only available on some devices. See section Feature comparison.
- 3. With SPLL as system clock source.
- 4. 48 MHz when f_{SYS} is 48 MHz
- 5. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any other module.

6 Peripheral operating requirements and behaviors

6.1 System modules

There are no electrical specifications necessary for the device's system modules.

6.2 Clock interface modules

6.2.1 External System Oscillator electrical specifications

NXP Semiconductors 23

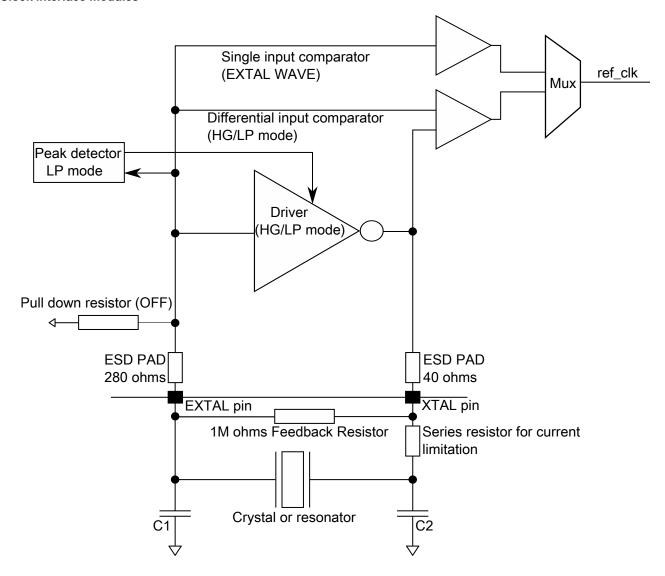


Figure 7. Oscillator connections scheme

Table 15. External System Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
g _m xosc	Crystal oscillator transconductance					
	4-8 MHz	2.2	_	13.7	mA/V	
	8-40 MHz	16	_	47	mA/V	
V _{IL}	Input low voltage — EXTAL pin in external clock mode	V _{SS}	_	0.35 * V _{DD}	V	
V _{IH}	Input high voltage — EXTAL pin in external clock mode	0.7 * V _{DD}	_	V _{DD}	V	
C ₁	EXTAL load capacitance	_	_	_		1
C ₂	XTAL load capacitance	_	_	_		1
R _F	Feedback resistor					2
	Low-gain mode (HGO=0)	_	_	_	MΩ	

Table 15. External System Oscillator electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	High-gain mode (HGO=1)	_	1	_	ΜΩ	
R _S	Series resistor	•				
	Low-gain mode (HGO=0)	_	0	_	kΩ	
	High-gain mode (HGO=1)	_	0	_	kΩ	
V _{pp}	Peak-to-peak amplitude of oscillation (oscillator mode)					3
	Low-gain mode (HGO=0)	_	1.0	_	V	
	High-gain mode (HGO=1)	_	3.3	_	V	

1. Crystal oscillator circuit provides stable oscillations when $g_{mXOSC} > 5 * gm_crit$. The gm_crit is defined as:

$$gm_crit = 4 * ESR * (2\pi F)^2 * (C_0 + C_1)^2$$

where:

2.

- g_{mXOSC} is the transconductance of the internal oscillator circuit
- ESR is the equivalent series resistance of the external crystal
- F is the external crystal oscillation frequency
- C₀ is the shunt capacitance of the external crystal
- C_L is the external crystal total load capacitance. $C_L = C_s + [C_1 * C_2 / (C_1 + C_2)]$
- C_s is stray or parasitic capacitance on the pin due to any PCB traces
- C₁, C₂ external load capacitances on EXTAL and XTAL pins

See manufacture datasheet for external crystal component values

- When low-gain is selected, internal R_F will be selected and external R_F should not be attached.
 - When high-gain is selected, external R_F (1 M Ohm) needs to be connected for proper operation of the crystal. For external resistor, up to 5% tolerance is allowed.
- The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices.

6.2.2 External System Oscillator frequency specifications Table 16. External System Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_hi}	Oscillator crystal or resonator frequency	4	_	40	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1
t _{dc_extal}	Input clock duty cycle (external clock mode)	48	50	52	%	1
t _{cst}	Crystal Start-up Time					
	8 MHz low-gain mode (HGO=0)	_	1.5	_	ms	2
	8 MHz high-gain mode (HGO=1)	_	2.5	_		
	40 MHz low-gain mode (HGO=0)	_	2	_		
	40 MHz high-gain mode (HGO=1)	_	2	_		

- 1. Frequencies below 40 MHz can be used for degraded duty cycle up to 40-60%
- 2. Proper PC board layout procedures must be followed to achieve specifications.

6.2.3 System Clock Generation (SCG) specifications

6.2.3.1 Fast internal RC Oscillator (FIRC) electrical specifications Table 17. Fast internal RC Oscillator electrical specifications

Symbol	Parameter ¹		Unit		
		Min.	Тур.	Max.]
F _{FIRC}	FIRC target frequency	_	48	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	±0.5	±1	%F _{FIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	±0.5	±1.1	%F _{FIRC}
T _{Startup}	Startup time		3.4	5	μs²
T _{JIT} , 3	Cycle-to-Cycle jitter	_	250	500	ps
T _{JIT} ³	Long term jitter over 1000 cycles	_	0.04	0.1	%F _{FIRC}

- 1. With FIRC regulator enable
- 2. Startup time is defined as the time between clock enablement and clock availability for system use.
- 3. FIRC as system clock

NOTE

Fast internal RC Oscillator is compliant with CAN and LIN standards.

6.2.3.2 Slow internal RC oscillator (SIRC) electrical specifications Table 18. Slow internal RC oscillator (SIRC) electrical specifications

Symbol	Parameter		Unit		
		Min.	Тур.	Max.	
F _{SIRC}	SIRC target frequency	_	8	_	MHz
ΔF	Frequency deviation across process, voltage, and temperature < 105°C	_	_	±3	%F _{SIRC}
ΔF125	Frequency deviation across process, voltage, and temperature < 125°C	_	_	±3.3	%F _{SIRC}
T _{Startup}	Startup time	_	9	12.5	μs ¹

1. Startup time is defined as the time between clock enablement and clock availability for system use.

26 NXP Semiconductors

6.2.4 Low Power Oscillator (LPO) electrical specifications Table 19. Low Power Oscillator (LPO) electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{LPO}	Internal low power oscillator frequency	113	128	139	kHz
T _{startup}	Startup Time	_	<u> </u>	20	μs

6.2.5 SPLL electrical specifications

Table 20. SPLL electrical specifications

Symbol	Parameter	Min.	Тур.	Max.	Unit
F _{SPLL_REF} ¹	PLL Reference Frequency Range	8	_	16	MHz
F _{SPLL_Input} ²	PLL Input Frequency	8	_	40	MHz
F _{VCO_CLK}	VCO output frequency	180	_	320	MHz
F _{SPLL_CLK}	PLL output frequency	90	_	160	MHz
J _{CYC_SPLL}	PLL Period Jitter (RMS) ³				
	at F _{VCO_CLK} 180 MHz	_	120	_	ps
	at F _{VCO_CLK} 320 MHz	_	75	_	ps
J _{ACC_SPLL}	PLL accumulated jitter over 1µs (RMS)3		•		
	at F _{VCO_CLK} 180 MHz	_	1350	_	ps
	at F _{VCO_CLK} 320 MHz	_	600	_	ps
D _{UNL}	Lock exit frequency tolerance	± 4.47	_	± 5.97	%
T _{SPLL_LOCK}	Lock detector detection time ⁴	_	_	150 × 10 ⁻⁶ + 1075(1/F _{SPLL_REF})	S

^{1.} F_{SPLL_REF} is PLL reference frequency range after the PREDIV. For PREDIV and MULT settings refer SCG_SPLLCFG register of Reference Manual.

6.3 Memory and memory interfaces

6.3.1 Flash memory module (FTFC) electrical specifications

This section describes the electrical characteristics of the flash memory module.

MWCT101XS Data Sheet, Rev. 2, 07/2018

NXP Semiconductors 27

^{2.} F_{SPLL_Input} is PLL input frequency range before the PREDIV must be limited to the range 8 MHz to 40 MHz. This input source could be derived from a crystal oscillator or some other external square wave clock source using OSC bypass mode. For external clock source settings refer SCG_SOSCCFG register of Reference Manual.

^{3.} This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary

^{4.} Lock detector detection time is defined as the time between PLL enablement and clock availability for system use.

6.3.1.1 Flash timing specifications — commands Table 21. Flash command timing specifications

Symbol	Descrip	tion ¹	MW	CT1014S	MWC	T1015S	MWC	CT1016S		
			Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{rd1blk}	Read 1 Block	32 KB flash	_	<u> </u>	_	<u> </u>	<u> </u>	<u> </u>	ms	
	execution time	64 KB flash	_	0.5	_	0.5	1_	1_		
		128 KB flash	_	1_	_	1_	<u> </u>	1_	1	
		256 KB flash	_	_	_	<u> </u>	_	<u> </u>	7	
		512 KB flash	_	1.8	_	2	_	2	7	
t _{rd1sec}	Read 1 Section	2 KB flash	_	75	_	75	_	75	μs	
	execution time	4 KB flash	_	100	_	100	_	100		
t _{pgmchk}	Program Check execution time	_	_	95	_	95	_	100	μs	
t _{pgm8}	Program Phrase execution time	_	90	225	90	225	90	225	μs	
t _{ersblk}	Erase Flash Block	32 KB flash	<u> </u>	-	 	<u> </u>	_	<u> </u>	ms	2
	execution time	64 KB flash	30	550	30	550	<u> </u>	<u> </u>		
		128 KB flash	_	_	_	<u> </u>	_	<u> </u>		
		256 KB flash	<u> </u>	-	-	<u> </u>	_	<u> </u>		
		512 KB flash	250	4250	250	4250	250	4250		
t _{ersscr}	Erase Flash Sector execution time	_	12	130	12	130	12	130	ms	2
t _{pgmsec1k}	Program Section execution time (1KB flash)	_	5	_	5	_	5	_	ms	
t _{rd1all}	Read 1s All Block execution time	_	_	2.3	_	5.2	_	8.2	ms	
t _{rdonce}	Read Once execution time	_		30	_	30	_	30	μs	
t _{pgmonce}	Program Once execution time	_	90	_	90	_	90	_	μs	
t _{ersall}	Erase All Blocks execution time	_	400	4900	700	10000	1400	17000	ms	2
t _{vfykey}	Verify Backdoor Access Key execution time	_	_	35	_	35	_	35	μs	
t _{ersallu}	Erase All Blocks Unsecure execution time	_	400	4900	700	10000	1400	17000	ms	2
t _{pgmpart}	Program Partition for EEPROM execution time	32 KB EEPROM backup	70	_	70	_	_	_	ms	3
		64 KB EEPROM backup	71	_	71	_	150	_		

Table 21. Flash command timing specifications (continued)

Symbol	Descript	tion ¹	MW	CT1014S	MWC	T1015S	MWC	T1016S		
			Тур	Max	Тур	Max	Тур	Max	Unit	Notes
t _{setram}	Set FlexRAM Function execution	Control Code 0xFF	0.08	_	0.08	_	0.08	_	ms	3
	time	32 KB EEPROM backup	0.8	1.2	0.8	1.2	_	_		
		48 KB EEPROM backup	1	1.5	1	1.5	_	_		
		64 KB EEPROM backup	1.3	1.9	1.3 1.9		1.3	1.9		
t _{eewr8b}	Byte write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	_	_	μs	3,4
		48 KB EEPROM backup	430	1850	430	1850	_	_		
		64 KB EEPROM backup	475	2000	475	2000	475	4000		
t _{eewr16b}	16-bit write to FlexRAM execution time	32 KB EEPROM backup	385	1700	385	1700	_	_	μs	3,4
		48 KB EEPROM backup	430	1850	430	1850	_	_		
		64 KB EEPROM backup	475	2000	475	2000	475	4000		
eewr32bers	32-bit write to erased FlexRAM location execution time	_	360	2000	360	2000	360	2000	μs	
t _{eewr32b}	32-bit write to FlexRAM execution time	32 KB EEPROM backup	630	2000	630	2000	_	_	μs	3,4
		48 KB EEPROM backup	720	2125	720	2125	_	_		
		64 KB EEPROM backup	810	2250	810	2250	810	4500		
t _{quickwr}	32-bit Quick Write	1st 32-bit write	200	550	200	550	200	1100	μs	4,5,6
dnicxmi	execution time: Time from CCIF clearing (start the	2nd through Next to Last (Nth-1) 32-bit write	150	550	150	550	150	550		

Memory and memory interfaces

Table 21. Flash command timing specifications (continued)

Symbol	Descrip	MWC	CT1014S	MWC	MWC	T1016S				
			Тур	Max	Тур	Max	Тур	Max	Unit	Notes
	complete, ready for next 32-bit write) Last (Nth) 32-bit write (time for write only, not cleanup)		200	550	200	550	200	550		
tquickwrClnup	Quick Write Cleanup execution time	_	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	_	(# of Quick Writes) * 2.0	ms	7

- 1. All command times assumes 25 MHz or greater flash clock frequency (for synchronization time between internal/external clocks).
- 2. Maximum times for erase parameters based on expectations at cycling end-of-life.
- 3. For all EEPROM Emulation terms, the specified timing shown assumes previous record cleanup has occurred. This may be verified by executing FCCOB Command 0x77, and checking FCCOB number 5 contents show 0x00 No EEPROM issues detected.
- 4. 1st time EERAM writes after a Reset or SETRAM may incur additional overhead for EEE cleanup, resulting in up to 2× the times shown.
- Only after the Nth write completes will any data be valid. Emulated EEPROM record scheme cleanup overhead may occur after this point even after a brownout or reset. If power on reset occurs before the Nth write completes, the last valid record set will still be valid and the new records will be discarded.
- 6. Quick Write times may take up to 550 μs, as additional cleanup may occur when crossing sector boundaries.
- 7. Time for emulated EEPROM record scheme overhead cleanup. Automatically done after last (Nth) write completes, assuming still powered. Or via SETRAM cleanup execution command is requested at a later point.

NOTE

Under certain circumstances FlexMEM maximum times may be exceeded. In this case the user or application may wait, or assert reset to the FTFC macro to stop the operation.

6.3.1.2 Reliability specifications

Table 22. NVM reliability specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes								
	When using as Program and Data Flash													
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	_	_	years	1								
n _{nvmcycp}	Cycling endurance	1 K	_	_	cycles	2, 3								
	When using FlexMemory feature: FlexRAM as Emulated EEPROM													
t _{nvmretee}	Data retention	5	_	_	years	4								
n _{nvmwree16}	Write endurance • EEPROM backup to FlexRAM ratio = 16	100 K	_	_	writes	5, 6, 7								
n _{nvmwree256}	EEPROM backup to FlexRAM ratio = 256	1.6 M	_	_	writes									

- 1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.
- 2. Program and Erase for PFlash and DFlash are supported across product temperature specification in Normal Mode (not supported in HSRUN mode).
- 3. Cycling endurance is per DFlash or PFlash Sector.
- 4. Data retention period per block begins upon initial user factory programming or after each subsequent erase. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5 years.

Memory and memory interfaces

- 5. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product temperature specification in Normal Mode (not supported in HSRUN mode). Greater write endurance may be achieved with larger ratios of EEPROM backup to FlexRAM.
- 6. For usage of any EEE driver other than the FlexMemory feature, the endurance spec will fall back to the specified endurance value of the D-Flash specification (1K).
- 7. FlexMemory calculator tool is available at NXP web site for help in estimation of the maximum write endurance achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM reliability specifications section of data sheet. This calculator is only applies to the FlexMemory feature.

6.3.2 QuadSPI AC specifications

The following table describes the QuadSPI electrical characteristics.

- Measurements are with maximum output load of 25 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- I/O operating voltage ranges from 2.97 V to 3.6 V
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.
- Add 50 ohm series termination on board in QuadSPI SCK for Flash A to avoid loop back reflection when using in Internal DQS (PAD Loopback) mode.
- QuadSPI trace length should be 3 inches.
- For non-Quad mode of operation if external device doesn't have pull-up feature, external pull-up needs to be added at board level for non-used pads.
- With external pull-up, performance of the interface may degrade based on load associated with external pull-up.

MWCT101XS Data Sheet, Rev. 2, 07/2018

Table 23. QuadSPI electrical specifications

			go	SO	Мах																204	
	12	DDR3	External DQS	External DQS			-	-	ı	ı	0	0	-	0	0	ı		30	0x01		Ñ	
FLASH B	RUN/HSRUN ²]	Exter	Exter	Min														O		ı	50.04
FL	RUN/I	SDR	rnal oling	_	Мах														8		50	1
		S	Internal Sampling	Ξ	Min		0	0			•	'	0	0	0	'		•	00×0			50.0
				nal	Мах														0		20	1
			DQS	Internal Loopback	Min		0	-	0	0	•	'	0	0	0	30		•	00X0			1\ŧ2CK
	N	~-	Internal DQS	ack	Мах																80	1
	HSRUN ¹	SDR	=	PAD Loopback	Min		0	-	-	-	ı		0	-	0	0		•	00X0		ı	
					Max																40	1\ŧ2CK
⋖			Internal Sampling	Ξ	Min		0	0	ı	ı	ı		0	0	0	ı		ı	00X0	ပ္ပ	-	
FLASH A			0,	<u>×</u>	_	Register Settings														Timing Parameters		1\ŧ2CK
_			S	Internal Loopback	n Max	gister 9	0	-	0	0	1	ı	0	0	0	23		ı	00X0	ing Paı	48	1
			Internal DQS		Min	R														ij	'	1/ŧ8CK
	RUN1	SDR	Inter	PAD Loopback	Мах		0	_	_	-			0	-	0	0			00X0		64	1
	Œ	6)		Log	Min														0		ı	1\ŧ2CK
			Internal Sampling	Ξ	Мах		0	0					0	0	0				0x00		38	1
			Inte	_	Min				-	-									ŏ			1\ŧSCK
Unit							ı	ı	ı	ı	-				ı			ı	ı		MHz	ns
Sym																					fsck	tsck
FLASH PORT		QuadSPI Mode					MCR[DDR_EN]	MCR[DQS_EN]	MCR[SCLKCFG[0]]	MCR[SCLKCFG[1]]	MCR[SCLKCFG[2]]	MCR[SCLKCFG[3]]	MCR[SCLKCFG[5]]	SMPR[FSPHS]	SMPR[FSDLY]	SOCCR	[SOCCFG[7:0]]	SOCCR[SOCCFG[15:8]]	FLSHCR[TDH]		SCK Clock Frequency	SCK Clock Period

Table continues on the next page...

Table 23. QuadSPI electrical specifications (continued)

			Sč	S	×								
	2	DDR ³	External DQS	External DQS	Мах	f2CK/S + 5.5	'	'	9	1	'	1	25
FLASH B	RUN/HSRUN ²	۵	Exteri	Exteri	Min	42CK/S - 5.5	2	20	,	C)	9	2	- 7
Ę	RUN	SDR	Internal Sampling	Ξ	Мах	FSCK\S + 5.5			10	2	ı	ı	25
		S	Inte		Min	f2CK\5 - 5'2	25	0			10	2	N
				Internal Loopback	Мах	f2CK/5 + 1.5			4	D.	ı	ı	25
			I DOS	Inte	Min	f2CK/5 - 1.5	6	-			2	2	2
	UN,	æ	Internal DQS	D back	Мах	fSCK/2 - 0.750			4	32		ı	
	HSRUN ¹	SDR		PAD Loopback	Min	£SCK/2 - 0.750	1.6	-	ı		5	5	25
			Internal Sampling	Z	Мах	fSCK/2 + 1.5			4	2	ı	ı	2
FLASH A			Inte	Z	Min	1.5 - 1.5	14	0			2	2	25
FLA				Internal Loopback	Мах	fSCK/2 + 1.5			4.5	2			15
			al DQS	Internal Loopbac	Min	f2CK/5 - 1.5	10	-	ı	ı	2	2	25
	Z	SDR	Internal DQS	PAD Loopback	Мах	f2CK/5 + 1.5			4.5	5			10
	RUN1	S		PAD Loopba	Min	f2CK/S - 1.5	2.5	-	ı	ı	2	2	25
			Internal Sampling	_	Max	fSCK/2 + 1.5			4.5	2		ı	15
			Internal Sampling	Ξ	Min	f2CK/5 - 1.5	15	0	ı	1	2	2	25
Unit						SU	SU	SU	SU	SU	SU	SU	þţ
Sym						tspc	t _{IS}	ŧ	tov	tı∨	tcssck	tsckcs	
FLASH PORT		QuadSPI Mode				SCK Duty Cycle	Data Input Setup Time	Data Input Hold Time	Data Output Valid Time	Data Output In-Valid Time	CS to SCK Time ⁶	SCK to CS Time 7	Output Load

See Reference Manual for details on mode settings See Reference Manual for details on mode settings t- 0. 6. 4. 6. 6. γ.

Valid for HyperRAM only

RWDS(External DQS CLK) frequency

For operating frequency ≤ 64 Mhz,Output invalid time is 5 ns. Program register value QuadSPI_FLSHCR[TCSS] = 4 h2 Program register value QuadSPI_FLSHCR[TCSH] = 4 h1

MWCT101XS Data Sheet, Rev. 2, 07/2018

Memory and memory interfaces

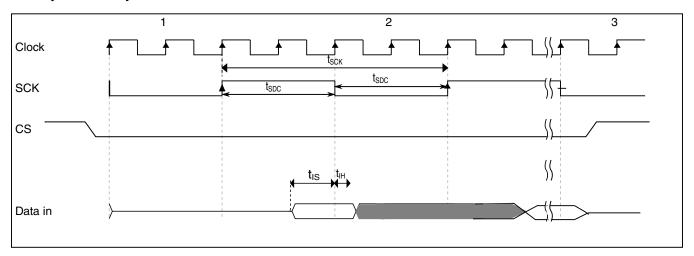


Figure 8. QuadSPI input timing (SDR mode) diagram

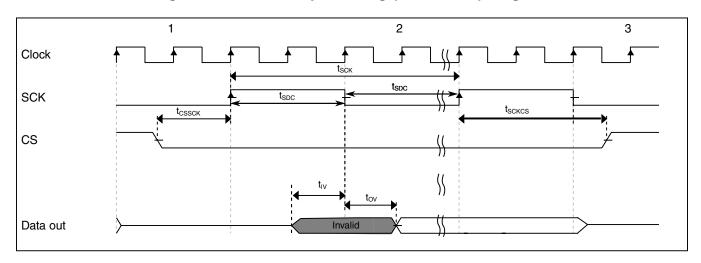
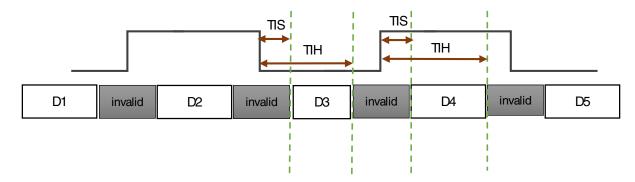



Figure 9. QuadSPI output timing (SDR mode) diagram

TIS-Setup Time TIH-Hold Time

Figure 10. QuadSPI input timing (HyperRAM mode) diagram

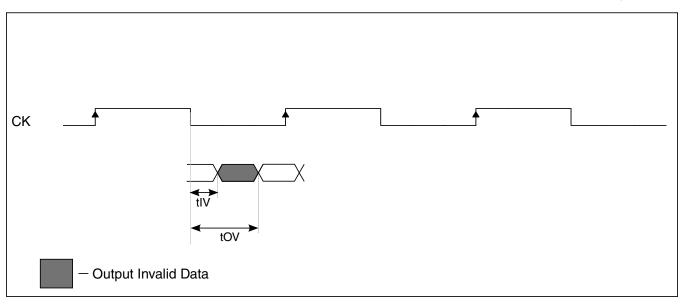


Figure 11. QuadSPI output timing (HyperRAM mode) diagram

6.4 Analog modules

6.4.1 ADC electrical specifications

6.4.1.1 12-bit ADC operating conditions Table 24. 12-bit ADC operating conditions

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
V _{REFH}	ADC reference voltage high		See Voltage and current operating requirements for values	V_{DDA}	See Voltage and current operating requirements for values	V	2
V _{REFL}	ADC reference voltage low		See Voltage and current operating requirements for values	0	See Voltage and current operating requirements for values	mV	2
V _{ADIN}	Input voltage		V _{REFL}	_	V_{REFH}	V	
R _S	Source impedendance	f _{ADCK} < 4 MHz	_	_	5	kΩ	
R _{SW1}	Channel Selection Switch Impedance		_	0.75	1.2	kΩ	
R _{AD}	Sampling Switch Impedance		_	2	5	kΩ	
C _{P1}	Pin Capacitance		_	10	_	pF	
C _{P2}	Analog Bus Capacitance		_	_	4	pF	
C _S	Sampling capacitance		_	4	5	pF	

Table 24. 12-bit ADC operating conditions (continued)

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
f _{ADCK}	ADC conversion clock frequency	Normal usage	2	40	50	MHz	3, 4
fconv	ADC conversion frequency	No ADC hardware averaging. ⁵ Continuous conversions enabled, subsequent conversion time	46.4	928	1160	Ksps	6, 7
		ADC hardware averaging set to 32. ⁵ Continuous conversions enabled, subsequent conversion time	1.45	29	36.25	Ksps	6, 7

- 1. Typical values assume $V_{DDA} = 5 \text{ V}$, Temp = 25 °C, $f_{ADCK} = 40 \text{ MHz}$, $R_{AS} = 20 \Omega$, and $C_{AS} = 10 \text{ nF}$ unless otherwise stated. Typical values are for reference only, and are not tested in production.
- For packages without dedicated V_{REFH} and V_{REFL} pins, V_{REFH} is internally tied to V_{DDA}, and V_{REFL} is internally tied to V_{SS}.
 To get maximum performance, reference supply quality should be better than SAR ADC. See application note AN5032 for details.
- 3. Clock and compare cycle need to be set according to the guidelines mentioned in the Reference Manual .
- 4. ADC conversion will become less reliable above maximum frequency.
- 5. When using ADC hardware averaging, see the Reference Manual to determine the most appropriate setting for AVGS.
- 6. Numbers based on the minimum sampling time of 275 ns.
- For guidelines and examples of conversion rate calculation, see the Reference Manual or download the ADC calculator tool.

Figure 12. ADC input impedance equivalency diagram

6.4.1.2 12-bit ADC electrical characteristics

NOTE

- ADC performance specifications are documented using a single ADC. For parallel/simultaneous operation of both ADCs, either for sampling the same channel by both ADCs or for sampling different channels by each ADC, some amount of decrease in performance can be expected. Care must be taken to stagger the two ADC conversions, in particular the sample phase, to minimize the impact of simultaneous conversions.
- On reduced pin packages where ADC reference pins are shared with supply pins, ADC analog performance characteristics may be impacted. The amount of variation will be directly impacted by the external PCB layout and hence care must be taken with PCB routing. See AN5426 for details

Table 25. 12-bit ADC characteristics (2.7 V to 3 V) ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V_{DDA}	Supply voltage		2.7	_	3	V	
I _{DDA_ADC}	Supply current per ADC		_	0.6	_	mA	3
SMPLTS	Sample Time		275	-	Refer to the Reference Manual	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±2.0	_	LSB ⁵	6, 7, 8, 9

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH}=V_{DDA}=V_{DD}$, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 3 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS}=20 Ω, and C_{AS}=10 nF.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. $1 LSB = (V_{REFH} V_{REFL})/2^N$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- 7. For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

MWCT101XS Data Sheet, Rev. 2, 07/2018

NXP Semiconductors 37

ADC electrical specifications

Table 26. 12-bit ADC characteristics (3 V to 5.5 V)($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SS}$)

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
V_{DDA}	Supply voltage		3	_	5.5	V	
I _{DDA_ADC}	Supply current per ADC		_	1	_	mA	3
SMPLTS	Sample Time		275	_	Refer to the Reference Manual	ns	
TUE ⁴	Total unadjusted error		_	±4	±8	LSB ⁵	6, 7, 8, 9
DNL	Differential non-linearity		_	±0.7	_	LSB ⁵	6, 7, 8, 9
INL	Integral non-linearity		_	±1.0	_	LSB ⁵	6, 7, 8, 9

- 1. All accuracy numbers assume the ADC is calibrated with V_{REFH}=V_{DDA}=V_{DD}, with the calibration frequency set to less than or equal to half of the maximum specified ADC clock frequency.
- 2. Typical values assume V_{DDA} = 5.0 V, Temp = 25 °C, f_{ADCK} = 40 MHz, R_{AS} =20 Ω , and C_{AS} =10 nF unless otherwise stated.
- 3. The ADC supply current depends on the ADC conversion rate.
- 4. Represents total static error, which includes offset and full scale error.
- 5. $1 LSB = (V_{REFH} V_{REFL})/2^{N}$
- 6. The specifications are with averaging and in standalone mode only. Performance may degrade depending upon device use case scenario. When using ADC averaging, refer to the *Reference Manual* to determine the most appropriate settings for AVGS.
- For ADC signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or high frequency switching pins, some degradation in the ADC performance may be observed.
- 8. All values guarantee the performance of the ADC for multiple ADC input channel pins. When using ADC to monitor the internal analog parameters, assume minor degradation.
- 9. All the parameters in the table are given assuming system clock as the clocking source for ADC.

NOTE

- Due to triple bonding in lower pin packages like the 64-LQFP, degradation might be seen in ADC parameters.
- When using high speed interfaces such as the QuadSPI, there may be some ADC degradation on the adjacent analog input paths. See following table for details.

Pin name	TGATE purpose
PTE8	CMP0_IN3
PTC3	ADC0_SE11/CMP0_IN4
PTC2	ADC0_SE10/CMP0_IN5
PTD7	CMP0_IN6
PTD6	CMP0_IN7
PTD28	ADC1_SE22
PTD27	ADC1_SE21

39

6.4.2 CMP with 8-bit DAC electrical specifications

Table 28. Comparator with 8-bit DAC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
I _{DDHS}	Supply current, High-speed mode ¹		•		μA
	-40 - 125 ℃	_	230	300	
I _{DDLS}	Supply current, Low-speed mode ¹				μA
	-40 - 105 °C	_	6	11	
	-40 - 125 °C		6	13	
V _{AIN}	Analog input voltage	0	0 - V _{DDA}	V_{DDA}	V
V _{AIO}	Analog input offset voltage, High-speed mode				mV
	-40 - 125 °C	-25	±1	25	
V _{AIO}	Analog input offset voltage, Low-speed mode				mV
	-40 - 125 °C	-40	±4	40	
t _{DHSB}	Propagation delay, High-speed mode ²				ns
	-40 - 105 °C	_	35	200	
	-40 - 125 °C		35	300	
t _{DLSB}	Propagation delay, Low-speed mode ²				μs
	-40 - 105 °C	_	0.5	2	
	-40 - 125 °C	_	0.5	3	
t _{DHSS}	Propagation delay, High-speed mode ³				ns
	-40 - 105 °C	_	70	400	
	-40 - 125 °C	_	70	500	
t _{DLSS}	Propagation delay, Low-speed mode ³				μs
	-40 - 105 °C	_	1	5	
	-40 - 125 °C	_	1	5	
t _{IDHS}	Initialization delay, High-speed mode ⁴				μs
	-40 - 125 °C	_	1.5	3	
t _{IDLS}	Initialization delay, Low-speed mode ⁴				μs
	-40 - 125 °C	_	10	30	
V _{HYST0}	Analog comparator hysteresis, Hyst0				mV
	-40 - 125 °C	_	0	_	
V _{HYST1}	Analog comparator hysteresis, Hyst1, High-speed mode				mV
	-40 - 125 °C	_	19	66	
	Analog comparator hysteresis, Hyst1, Low-speed mode				
	-40 - 125 °C	_	15	40	
V _{HYST2}	Analog comparator hysteresis, Hyst2, High-speed mode				mV
	-40 - 125 °C	_	34	133	

Table continues on the next page...

ADC electrical specifications

Table 28. Comparator with 8-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
	Analog comparator hysteresis, Hyst2, Low-speed mode				
	-40 - 125 °C	_	23	80	1
V _{HYST3}	Analog comparator hysteresis, Hyst3, High-speed mode				mV
	-40 - 125 °C	_	46	200	1
	Analog comparator hysteresis, Hyst3, Low-speed mode				
	-40 - 125 °C	_	32	120	1
I _{DAC8b}	8-bit DAC current adder (enabled)			•	
	3.3V Reference Voltage	_	6	9	μA
	5V Reference Voltage	_	10	16	μΑ
INL ⁵	8-bit DAC integral non-linearity	-0.75	_	0.75	LSB ⁶
DNL	8-bit DAC differential non-linearity	-0.5	_	0.5	LSB ⁶
t _{DDAC}	Initialization and switching settling time	_	_	30	μs

- 1. Difference at input > 200mV
- 2. Applied \pm (100 mV + V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 3. Applied \pm (30 mV + 2 × V_{HYST0/1/2/3}+ max. of V_{AIO}) around switch point.
- 4. Applied \pm (100 mV + $V_{HYST0/1/2/3}$).
- 5. Calculation method used: Linear Regression Least Square Method
- 6. $1 LSB = V_{reference}/256$

NOTE

For comparator IN signals adjacent to V_{DD}/V_{SS} or XTAL/EXTAL or switching pins cross coupling may happen and hence hysteresis settings can be used to obtain the desired comparator performance. Additionally, an external capacitor (1nF) should be used to filter noise on input signal. Also, source drive should not be weak (Signal with < 50 K pull up/down is recommended).

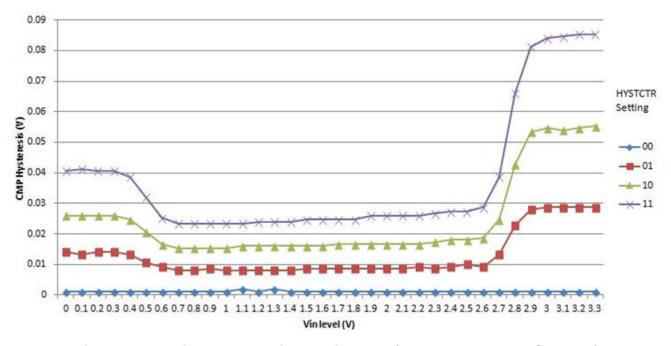


Figure 13. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 0)

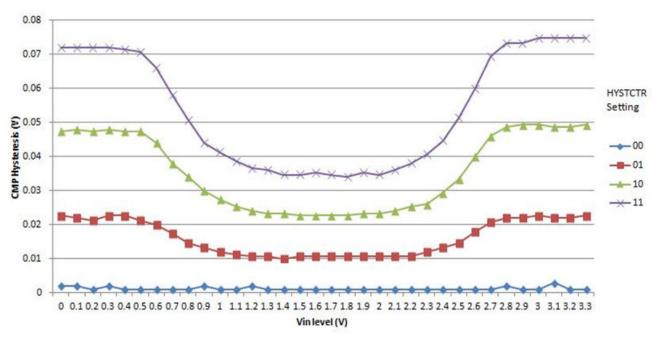


Figure 14. Typical hysteresis vs. Vin level (VDDA = 3.3 V, PMODE = 1)

ADC electrical specifications

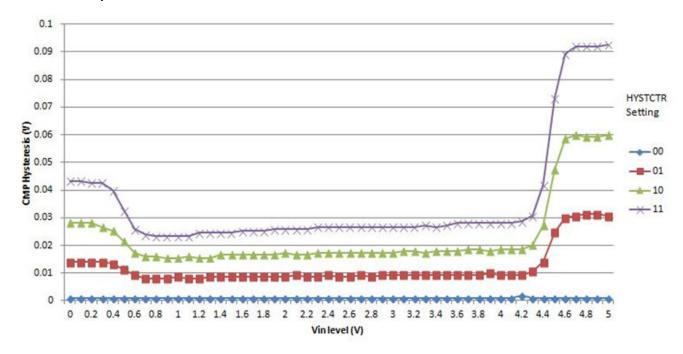


Figure 15. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 0)

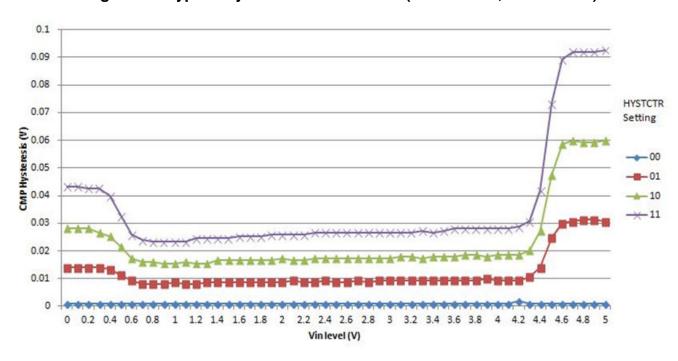


Figure 16. Typical hysteresis vs. Vin level (VDDA = 5 V, PMODE = 1)

6.5 Communication modules

6.5.1 LPUART electrical specifications

Refer to General AC specifications for LPUART specifications.

6.5.1.1 Supported baud rate

Baud rate = Baud clock / ((OSR+1) * SBR).

For details, see section: 'Baud rate generation' of the *Reference Manual*.

6.5.2 LPSPI electrical specifications

The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic LPSPI timing modes.

- All timing is shown with respect to 20% V_{DD} and 80% V_{DD} thresholds.
- All measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew setting (DSE = 1).

MWCT101XS Data Sheet, Rev. 2, 07/2018

NXP Semiconductors 43

Table 29. LPSPI electrical specifications1

Unit	0,	Мах.	4 MHz	4	4	4	2 MHz	2	2	2	- ns		1	1	- ns	ı		
VLPR Mode	3.3 V IO	Min.	1	ı	ı	ı	1	ı	ı	ı	200	200	200	200	1		09- ^L	ئ ^{†4} را
VLPR	5.0 V IO	Мах.	4	4	4	4	N	8	0	2	ı	ı						
	5.0	Min.	ı	ı		1		ı		ı	200	200	200	200			09- ^L	lqinəq 1*(
	3.3 V IO	Мах.	99	99	48	48	14 7	14 7	12	12	ı	ı	•	ı	ı	ı		
HSRUN Mode ²	3.3	Min.	1	•	ı	,	ı	ı	ı	ı	72	72	83	83	1		-25	lqinəq1*(
HSRUI	5.0 V IO	Мах.	99	99	48	48	14	14	24	12	ı	ı	ı	ı	1	ı		
	2.0	Min.	ı	ı	ı	ı	ı	ı		1	72	72	42	83	ı		¹ -29	l [*] tperipl
	3.3 V IO	Мах.	40	40	48	48	10	10	12	12	ı	1	-	1	ı	ı		
Run Mode ²	3.3	Min.	ı	ı	ı	ı	ı	ı	1	ı	100	100	83	83	ı		9Z- ^u	l*(
Run	5.0 V IO	Мах.	40	40	40	48	10	10	20	12	ı	1	-	ı	ı	ı		
	2.0	Min.	ı	ı			ı	ı		ı	100	100	20	83			-25 -	ı lqinəq∫*(∣
Conditions			Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶
Description			Peripheral				y of	operation			SPSCK period					time (PCS to		
Symbol			fperiph, 3, 4				f _{op}			_	tspsck		_	_	t _{Lead} 8			
MuM							-				0				က			

Table continues on the next page...

Table 29. LPSPI electrical specifications1 (continued)

± 2				su				ns					ns						ns				
		V 10	Мах.						g+7	SCK _{\Z}	dS;	ļ		1			ı			ı	1		
WI DD Mode	Mode	3.3 V	Min.	1		09	(SCKPCS+1)*t _{periph} -			zeck _l			18	78	20		20		14	0	-	12	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	01/	Мах.						g+ 7	SCK _{/5}	dS;	l.		1							ı		
		5.0 V IO	Min.	1		09	(SCKPCS+1)*t _{periph} -			, SCK			18	72	20		20		14	0	Ξ	12	
		V IO	Мах.	-	ı				£+3	SCK/5	dS;	ļ	ı		ı				ı	ı			
UCDIN MODE	Моде	3.3	Min.	-		52	(SCKPCS+1)*t _{periph} -		2-3	, PSCK/	ısı		2	37 ¹⁰ 32 ¹¹	7		6		က	0	က	က	
NIGON	וטאכה	V 10	Мах.	-					£+3	SCK/5	dS;	l	ı	1					ı	1	ı		
$\cdot \Big $		5.0 V	Min.	-		52	(SCKPCS+1)*t _{periph} -		5-3	-SCK/	ısı		က	56	2		7		က	0	2	က	
		V 10	Мах.	-	ı				£+3	SCK/5	dS;	ļ	ı	1					ı	ı			
) John Modol	Mode	3.3 \	Min.	-		52	(SCKPCS+1)*t _{periph} -		2-3	-SCK/	ısı		2	38	8		10		က	0	က	က	
0.00	בחת	5.0 V IO	Мах.	-	ı				£+3	SCK/5	dS;	l	,	ı	1		ı		ı	ı	ı	ı	
•		2.0	Min.	-		52	(SCKPCS+1)*tperiph-		g-3	, sck	ısı		8	29	7		∞		က	0	က	က	
	Conditions			Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	Slave	Master	Master Loophack ⁵	Loobago	Master Loopback(slow) ⁶	Slave	Master	Master	Loopback ⁵	Master	Loopback(slow) ⁶	Slave	Master	Master Loopback ⁵	Master Loopback(slow) ⁶	
20:140:2000	Describinon				time (Affer SPSCK delav)		_	\mathbf{x}) high or low				Data setup	•						time(inputs)			
Cymphol	эушрог			t _{Lag}				twspsck					tsu						ξ				
Si N				4				2					9						7				

Table continues on the next page...

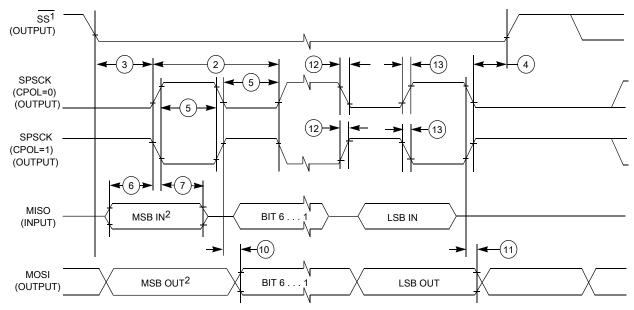
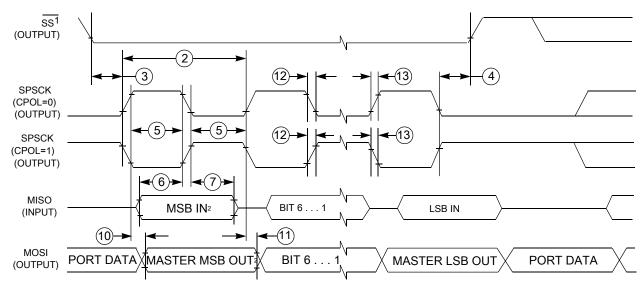

Communication modules

Table 29. LPSPI electrical specifications1 (continued)

Description	L		Run	Mode ²			HSRUN	Mode ²			VI PR	Mode		Unit
		5.0	01 >	3.3	01 \	5.0	01 \	3.3	0 >	5.0	0	3.3 V	0	
	•	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	
access	Slave		20	1	50	,	20	1	50	1	100		100	Su
MISO (7)	Slave		50	1	50	1	50		50	1	100		100	SU
valid SPSCK	Slave	1	30	1	39	1	56	1	36 ¹⁰	1	92	1	96	ns
	Master		12	ı	16		7		15	,	47		48	
	Master Loopback ⁵		12		16	1	-		15	1	47		48	
	Master Loopback(slow) ⁶		8	ı	10	1	7		6	1	44		44	
hold	Slave	4	ı	4	ı	4		4	ı	4		4		ns
outputs)	Master	-15	ı	-22	ı	-15	,	-23	ı	-22		-29		
	Master Loopback ⁵	-10	1	-14	1	-10	1	-14	-	-14	1	-19	1	
	Master Loopback(slow) ⁶	-15	ı	-22	ı	-15	ı	-22	1	-21	1	-27		
/Fall time	Slave		-	1	-	ı	-	ı	1		-	,	-	ns
	Master			ı		ı		ı		ı		ı		
	Master Loopback ⁵	1		1		1		ı		ı		ı		
	Master Loopback(slow) ⁶	ı		1		ı		1		ı		ı		
/Fall time	Slave		25	-	25	ı	25	ı	25		25	ı	25	ns
\	Master			ı		ı		ı				ı		
	Master Loopback 5			ı		1		ı		ı		ı		
	Master Loopback(slow) ⁶	ı		1		ı		ı		ı		ı		
	Slave access time Slave MISO (SOUT) disable time Data valid (after SPSCK edge) Rise/Fall time input Rise/Fall time output		Slave - It Loopback(slow)6 Slave - Slave - It Loopback(slow)6 Slave - It Raster - It Loopback(slow)6 Slave - It Raster - It Loopback(slow)6 Slave - It Raster - It Raster - It Loopback(slow)6 Slave - It Raster - It Raster - It Raster - It Raster - It Loopback(slow)6 Slave - It Raster - It	Conditions 5.0 v IC	Conditions Fun Mode Slave - 50 ∨ IO Slave - 50 - Slave - 50 - Slave - 50 - Master - 50 - Loopback(slow)6 - 12 - Master - 12 - Loopback(slow)6 - 1 - Slave - 1 - Loopback(slow)6 - - 1 - Master - 1 - - Loopback(slow)6 - - - - Master - - -	Conditions Fun Mode² 5.0 V IO 3.3 V I Slave - 50 V IO 3.3 V I Slave - 50 - Slave - 50 - Loopback(slow)6 - 4 - 4 Master -15 - -22 Loopback(slow)6 - 15 - -22 Master - 15 - -22 Loopback(slow)6 - 15 - -22 Loopback(slow)6 - 15 - - Master - 15 - - Loopback(slow)6 - 15 - - Master - 25 - Master - 25 - Master - 25 - Master - - - Master - - - Master - -	Conditions Run Mode² Sia v IO 3.3 v IO Min. M	Conditions Fun Mode² Slave - 50 V IO 3.3 V IO 5.0 V Slave - 50 - 50 - Slave - 50 - 50 - Slave - 50 - 50 - Loopback(slow)6 - 12 - 16 - Loopback(slow)8 - 12 - 15 - 15 Master -15 - -22 - -15 - - Loopback(slow)8 - 15 - - - - - - Master - 1 -	Conditions Fun Mode² Hun Mode² Hun. Max. Min. Min. Max. Min. Min. Min. Min. Min. Min. Min. Min.<	Conditions Fun Mode² FSO VIO 3.3 VIO 5.0 VIO 3.3 VIO 5.0 VIO 3.3 VIO	Conditions FILT Mode² HSRUIN Mode² HSRUIN Mode² Slave - 50 V IO 3.3 V IO 5.0 V IO 3.3 V IO Slave - 50 - 50 - 50 - Slave - 50 - 50 - 50 - 50 - Slave - 50 - 50 - 50 - 50 - Slave - 50 - 50 - 50 - 50 - Master - 12 - 16 - 11 - 15 - 26 - 36 10 - Master - 12 - 16 - 11 - 15 - 26 - 28 - - 28 - - - - - - - - - - - - - - -	Conditions Fun Mode² HSRUN Mode² HSRUN Mode² FISTUR Mode FISTUR Mode	Sieve Siev	Conditions Fun Mode² HSPUN Mode² TSD V IO 3.3 V IO 5.0 V IO 3.3 V IO


- Frace length should not exceed 11 inches for SCK pad when used in Master loopback mode.
- While transitioning from HSRUN mode to RUN mode, LPSPI output clock should not be more than 14 MHz. - 6. 6. 4. 6.
 - periph = LPSPI peripheral clock
 - periph = 1/fperiph
- Master Loopback mode In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as 1. Clock pads used are PTD15 and PTE0. Applicable only for LPSP10.
 - Master Loopback (slow) In this mode LPSPI_SCK clock is delayed for sampling the input data which is enabled by setting LPSPI_CFGR1[SAMPLE] bit as Clock pad used is PTB2. Applicable only for LPSP10. 6.
 - This is the maximum operating frequency (fop) for LPSP10 with medium PAD type only. Otherwise, the maximum operating frequency (fop) is 12 Mhz. Set the PCSSCK configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where PCSSCK ranges from 0 to 255.
 - Set the SCKPCS configuration bit as 0, for a minimum of 1 delay cycle of LPSPI baud rate clock, where SCKPCS ranges from 0 to 255. Maximum operating frequency (f_{op}) is 12 MHz irrespective of PAD type and LPSPI instance. 7. 8. 9. 10.
 - Applicable for LPSP10 only with medium PAD type, with maximum operating frequency (fop) as 14 MHz.

Communication modules

- 1. If configured as an output.
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 17. LPSPI master mode timing (CPHA = 0)

- 1.If configured as output
- 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.

Figure 18. LPSPI master mode timing (CPHA = 1)

49

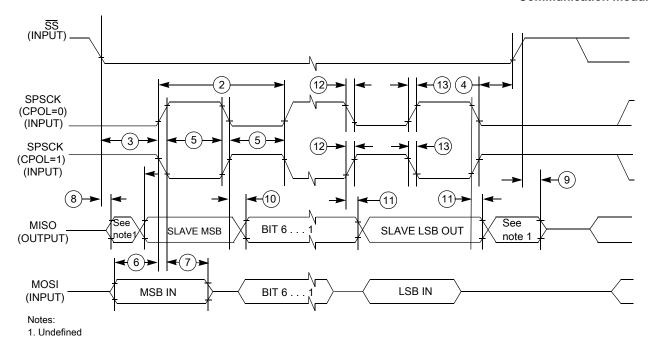


Figure 19. LPSPI slave mode timing (CPHA = 0)

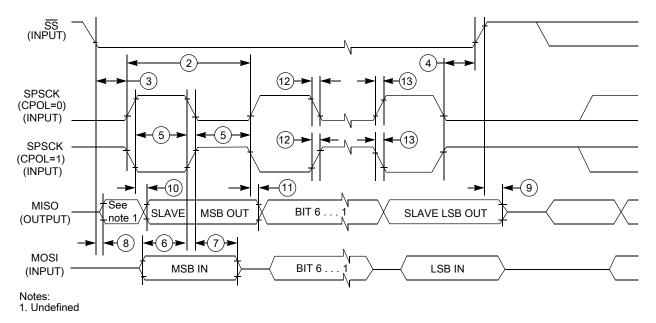


Figure 20. LPSPI slave mode timing (CPHA = 1)

6.5.3 LPI2C electrical specifications

See General AC specifications for LPI2C specifications.

For supported baud rate see section 'Chip-specific LPI2C information' of the *Reference Manual*.

6.5.4 FlexCAN electical specifications

For supported baud rate, see section 'Protocol timing' of the *Reference Manual*.

6.5.5 Clockout frequency

Maximum supported clock out frequency for this device is 20 MHz

6.6 Debug modules

6.6.1 SWD electrical specofications

Table 30. SWD electrical specifications

Symbol	Description		Run	Run Mode			HSRUI	HSRUN Mode			VLPR Mode	Mode		Unit
		5.0 V	OI A	3.3 V IO	01 /	5.0	5.0 V IO	3.3	3.3 V IO	5.0	5.0 V IO	3.3	3.3 V IO	
		Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	Min.	Мах.	
S1	SWD_CLK frequency of operation	,	52		25	ı	25	1	25	ı	10	ı	10	MHz
S2	SWD_CLK cycle period	1/S1	,	1/S1	,	1/S1	ı	1/S1		1/S1		1/S1		Su
S3	SWD_CLK clock pulse width	25/25 - 2	9 + 2/38	25/5 - 2	25/5 + 5	25/5 - 2	25\5 + 2	25/5 - 5	27/2 + 5	25/5 - <u>5</u>	25/S + 5	25/2 - 5	25/5 + 5	SU
S4	SWD_CLK rise and fall times	ı	-	ı	-	ı	-	ı	-	į	1	ı	-	SU
68	SWD_DIO input data setup time to SWD_CLK rise	4	1	4	1	4	1	4		16		16		SU
S10	SWD_DIO input data hold time after SWD_CLK rise	က	1	က	1	က	1	င	1	10		10		SU
S11	SWD_CLK high to SWD_DIO data valid	•	28	ı	38	ı	28	1	38	1	02	1	77	SU
S12	SWD_CLK high to SWD_DIO high-Z		28		38	1	28	1	38	1	02	1	77	SU
S13	SWD_CLK high to SWD_DIO data invalid	0	ı	0	1	0	ı	0		0	-	0	ı	SU

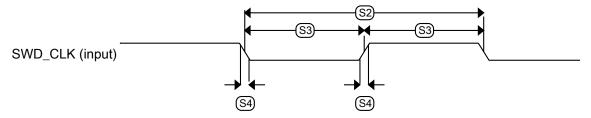


Figure 21. Serial wire clock input timing

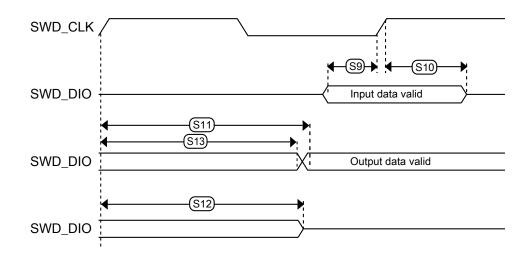


Figure 22. Serial wire data timing

6.6.2 Trace electrical specifications

The following table describes the Trace electrical characteristics.

- Measurements are with maximum output load of 50 pF, input transition of 1 ns and pad configured with fastest slew settings (DSE = 1'b1).
- While doing the mode transition (RUN -> HSRUN or HSRUN -> RUN), the interface should be OFF.

Table 31. Trace specifications

	Symbol	Description	R	UN Mode	•	HSRUI	N Mode	VLPR Mode	Unit
_	Fsys	System frequency	80	48	40	112	80	4	MHz

Table continues on the next page...

53

Table 31. Trace specifications (continued)

	Symbol	Description	F	RUN Mode)	HSRUI	N Mode	VLPR Mode	Unit
	f _{TRACE}	Max Trace frequency	80	48	40	74.667	80	4	MHz
ads	t _{DVO}	Data Output Valid	4	4	4	4	4	20	ns
Trace on fast pads	t _{DIV}	Data Output Invalid	-2	-2	-2	-2	-2	-10	ns
	f _{TRACE}	Max Trace frequency	22.86	24	20	22.4	22.86	4	MHz
ads	t _{DVO}	Data Output Valid	8	8	8	8	8	20	ns
Trace on slow pads	t _{DIV}	Data Output Invalid	-4	-4	-4	-4	-4	-10	ns

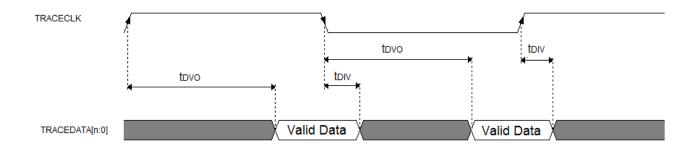


Figure 23. TRACE CLKOUT specifications

6.6.3 JTAG electrical specifications

Debug modules

Table 32. JTAG electrical specifications

Unit			MHz			SU	SU			ns	SU	SU	ns		Su	Su	SU	ns	SU	ns
	01/	Мах.		10	10	ı		9	12\2 +	-	1	1	80	1	80	1	1	80	1	80
Mode	3.3 V IO	Min.		-	ı	1/JI		S	- Z/Zr	-	15	8	1	0	1	15	8	-	0	ı
VLPR Mode	5.0 V IO	Мах.		10	10	ı		G	12\2 +	1		-	08		08	-		08	-	80
	5.0	Min.				1/JI		g	- 2/2Ր		15	8	1	0		15	8		0	1
	3.3 V IO	Мах.		20	20	ı		9	12\2 +	1	1	1	32	1	32	1	1	32	1	32
HSRUN Mode	3.3	Min.		ı	ı	1/JI		9	- Z/Zr	ı	5	5	ı	0	1	8	2	ı	0	
HSRUN	5.0 V IO	Мах.		20	20	1		g	12\2 +	-	1	1	28	1	28	1	1	28	1	28
	5.0	Min.				1/JI		g	- 2/2۲	ı	5	5	1	0	1	ဇ	2		0	ı
	3.3 V IO	Мах.		20	20	ı		9	12\2 +	1	ı	ı	32	ı	32	ı	ı	32	•	32
un Mode	3.3	Min.		ı	ı	1/JI		9	- 2/2	ı	5	5	i	0	ı	3	2	ı	0	ı
Run	5.0 V IO	Мах.		20	20	ı		9	12/2 +	-	1	1	28	1	28	1	1	28	1	28
	5.0	Min.		ı	ı	1/1		g	- Z/Zr	ı	2	2	ı	0	1	3	2	ı	0	
Description			TCLK frequency of operation	Boundary Scan	JTAG	TCLK cycle period	TCLK clock pulse width	Boundary Scan	JTAG	TCLK rise and fall times	Boundary scan input data setup time to TCLK rise	Boundary scan input data hold time after TCLK rise	TCLK low to boundary scan output data valid	TCLK low to boundary scan output data invalid	TCLK low to boundary scan output high-Z	TMS, TDI input data setup time to TCLK rise	TMS, TDI input data hold time after TCLK rise	TCLK low to TDO data valid	TCLK low to TDO data invalid	TCLK low to TDO high-Z
Symbol			Г			J2	13			46	J5	96	7٢	98	6f	J10	111	J12	J13	J14

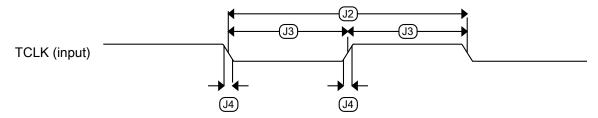


Figure 24. Test clock input timing

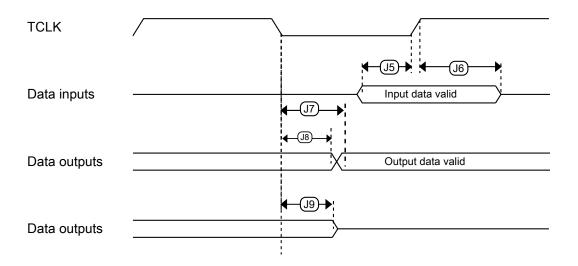


Figure 25. Boundary scan (JTAG) timing

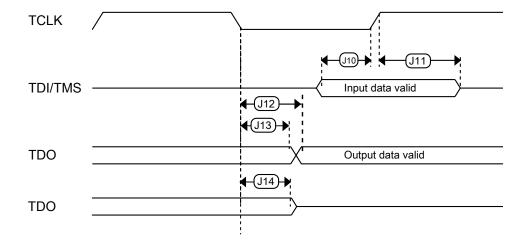


Figure 26. Test Access Port timing

7 Thermal attributes

7.1 Description

The tables in the following sections describe the thermal characteristics of the device.

NOTE

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting side (board) temperature, ambient temperature, air flow, power dissipation or other components on the board, and board thermal resistance.

7.2 Thermal characteristics

Thermal characteristics for the 64/100-pin LQFP package Table 33.

Rating	Conditions	Symbol	Packages		Values		Unit
				MWCT1014S	MWCT1015S	MWCT1016S	
Thermal resistance, Junction to Ambient (Natural	Single layer board	Reja	64	61	69	NA	°C/W
Convection) ^{1, 2}	(18)		100	52	21	NA	°C/W
Thermal resistance, Junction to Ambient (Natural	Two layer board	ReJA	64	45	44	NA	°C/W
Convection)	(1s1p)		100	42	40	NA	°C/W
Thermal resistance, Junction to Ambient (Natural	Four layer board	ReJA	64	43	41	NA	°C/W
Convection) ^{1, 2}	(2s2p)		100	40	39	NA	°C/W
Thermal resistance, Junction to Ambient (@200 ft/	Single layer board	Велма	64	49	48	NA	°C/W
min) ^{1, 3}	(1s)		100	42	41	NA	°C/W
Thermal resistance, Junction to Ambient (@200 ft/min) ¹	Two layer board	Велма	64	38	37	NA	°C/W
	(1s1p)		100	35	34	NA	°C/W
Thermal resistance, Junction to Ambient (@200 ft/	Four layer board	Велма	64	36	35	NA	°C/W
min) ^{1, 3}	(2s2p)		100	34	33	AN	°C/W
Thermal resistance, Junction to Board ⁴	ı	RejB	64	25	23	NA	°C/W
			100	25	24	NA	°C/W
Thermal resistance, Junction to Case ⁵	1	ReJC	64	12	11	AN	°C/W
			100	12	11	NA	°C/W
Thermal resistance, Junction to Package Top ⁶	Natural Convection	Ψυτ	64	2	2	AN	°C/W
			100	2	2	NA	°C/W

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air low, power dissipation of other components on the board, and board thermal resistance.

Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively

Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s or 2s2p board, respectively 0, ω, 4,

Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek etters are not available, the thermal characterization parameter is written as Psi-JT. 6.5

Table 34. Thermal characteristics for the 100 MAPBGA package

	Rating	Conditions	Symbol		Values		Unit
				MWCT1015S	MWCT1014S	MWCT1016S	
	Thermal resistance, Junction to Ambient (Natural Convection) Single layer board (1s)	Single layer board (1s)	$R_{\theta JA}$	57.2	61.0	52.5	M/O.
	Thermal resistance, Junction to Ambient (Natural Convection) Four layer board (2s2p)	Four layer board (2s2p)	$R_{\theta J A}$	32.1	35.6	27.5	W/O°
	Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 2, 3}	Single layer board (1s)	Велма	44.1	46.6	39.0	%C/W
	Thermal resistance, Junction to Ambient (@200 ft/min) ^{1, 3}	Two layer board (2s2p)	Велма	27.2	30.9	22.8	w/S°
	Thermal resistance, Junction to Board ⁴	1	ReJB	15.3	18.9	11.2	W/O°
М	Thermal resistance, Junction to Case 5	ı	Rejc	10.2	14.2	7.5	W/O°
WC.	Thermal resistance, Junction to Package Top outside center ⁶		тс₩	0.2	0.4	0.2	W/O.
T101	Thermal resistance, Junction to Package Bottom outside center ⁷		агф	12.2	15.9	18.3	M/O _°

Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.

Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal oi ω 4:

Per JEDEC JESD51-6 with the board horizontal.

Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the board near the package.

Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1). 6.5

Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-2. When Greek etters are not available, the thermal characterization parameter is written as Psi-JT.

Thermal characterization parameter indicating the temperature difference between package bottom center and the junction temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written as Psi-JB.

7.3 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_I, can be obtained from this equation:

$$T_I = T_A + (R_{\Theta IA} \times P_D)$$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta,IA}$ = junction to ambient thermal resistance (°C/W)
- P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. Unfortunately, there are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in the following equation as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\theta JC}$ = junction to case thermal resistance (°C/W)
- $R_{\theta CA}$ = case to ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

MWCT101XS Data Sheet, Rev. 2, 07/2018

Dimensions

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{JT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using this equation:

$$T_J = T_T + (\Psi_{JT} \times P_D)$$

where:

- T_T = thermocouple temperature on top of the package (°C)
- Ψ_{JT} = thermal characterization parameter (°C/W)
- P_D = power dissipation in the package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

8 Dimensions

8.1 Obtaining package dimensions

Package dimensions are provided in the package drawings.

To find a package drawing, go to http://www.nxp.com and perform a keyword search for the drawing's document number:

Package option	Document Number
64-pin LQFP	98ASS23234W
100-pin LQFP	98ASS23308W
100-pin MAPBGA	98ASA00802D

9 Pinouts

9.1 Package pinouts and signal descriptions

For package pinouts and signal descriptions, refer to the Reference Manual.

10 Revision History

The following table provides a revision history for this document.

Table 35. Revision History

Rev. No.	Date	Substantial Changes
Rev. 0	May 2017	Initial release.
Rev. 1	Dec 2017	 In "Feature comparison" section, updated the "MWCT101xS product series comparison" figure. In Table 1, • Updated note 'All the limits defined' • Updated parameter 'I_{INJPAD_DC_ABS}', 'V_{IN_DC}', I_{INJSUM_DC_ABS}. In Table 2, • Updated min. value of V_{DD_OFF} • Added parameter I_{INJPAD_DC_OP} and I_{INJSUM_DC_OP}. Updated footnote to T_{SPLL_LOCK} and removed I_{DDSPLL} in "SPLL electrical specifications" table. In "12-bit ADC electrical characteristics" section, • Updated table: 12-bit ADC characteristics (2.7 V to 3 V) (VREFH = VDDA, VREFL = VSS) • Added typ. value to I_{DDA_ADC}, TUE, DNL, and INL • Added min. value to SMPLTS • Removed footnote 'All the parameters in this table ' • Updated table: 12-bit ADC characteristics (3 V to 5.5 V) (VREFH = VDDA, VREFL = VSS) • Added typ. value to I_{DDA_ADC} • Removed footnote 'All the parameters in this table ' • In "Flash command timing specifications" table, updated Max. value of t_{Vfykey} to 35 µs • Updated "MWCT101xS product series comparison" figure. • In Table 5, updated TBDs for V_{LVR_HYST}, V_{LVD_HYST}, and V_{LVW_HYST} • In Power mode transition operating behaviors, • Added VLPR → VLPS • Added VLPR → VLPR • Updated TBDs for VLPS → Asynchronous DMA Wakeup, STOP1 → Asynchronous DMA Wakeup • In Table 7, updated the specifications for MWCT1014S. • Updated the attachment MWCT101xS_Power_ModesConfiguration.xlsx. • In "Standard input pin capacitance" table, removed C_{IN_A}. • In "External System Oscillator electrical specifications" table,

Table continues on the next page...

Revision History

Table 35. Revision History (continued)

Rev. No.	Date	Substantial Changes
		 Updated specifications for g_{mXOSC}. Removed I_{DDOSC} In "Fast internal RC Oscillator (FIRC) electrical specifications" section, Added parameter ΔF125. Removed I_{DDFIRC} In "Slow internal RC oscillator (SIRC) electrical specifications" section, Added parameter ΔF125. Removed I_{DDSIRC} In "Low Power Oscillator (LPO) electrical specifications" section, removed I_{LPO} Updated section: "Flash memory module (FTFC) electrical specifications" In section: "12-bit ADC electrical characteristics", Updated TBDs in Table 25. Updated TBDs in Table 26. In section: QuadSPI AC specifications, updated figure 'QuadSPI output timing (HyperRAM mode) diagram'. In section: "ADC electrical specifications", updated Table 24. In section: "CMP with 8-bit DAC electrical specifications", added note 'For comparator IN signals adjacent ' In table: "LPSPI electrical specifications", minor update in footnote 6. In table: Table 33, updated specifications for MWCT1015S.
Rev. 2	July 2018	 Global update: removed Ethernet and SAI Updated the attachment MWCT101xS_Power_Modes _Configuration.xlsx In 'Key features': Added a note under 'Power management', 'Memory and memory interfaces', and 'Safety and security' Updated FlexIO under Communications interfaces Updated Cryptographic Services Engine (CSEc) under 'Safety and security' Updated package information In High-level architecture diagram for the MWCT101xS family, added footnote 3 In "Feature comparison" section, updated the "MWCT101xS product series comparison" figure: Updated the "System RAM" row Added support for LIN protocol version 2.2 A Updated the Ecosystem information Updated the Package information Updated the Package information Updated Ordering information In Absolute maximum ratings: Updated Ordering information In Absolute maximum ratings: Updated footnote for 'Tramp' Updated Voltage and current operating requirements In Power and ground pins Removed the 144-pin LQFP package Updated footnote 'VDD and VDDA must be shorted' Updated the "Power diagram" figure In Power mode transition operating behaviors updated numbers for: VLPR → VLPS

MWCT101XS Data Sheet, Rev. 2, 07/2018

Table 35. Revision History

Rev. No.	Date	Substantial Changes
		 VLPS → VLPR
		 RUN → VLPS
		 RUN → VLPR
		In Power consumption :
		Updated specs
		Removed section 'Modes configuration', amd moved its
		content under the first paragraph.
		Updated footnote 'Typical current numbers are indicative'
		Updated footnote 'The MWCT1016S data'
		Removed footnote 'Above MWCT1016S data is preliminary
		targets only'
		In General AC specifications :
		Updated max value and footnote of WFRST
		Updated symbol for not filtered pulse to 'WNFRST', updated
		min value, removed max. value, and added footnote
		Fixed naming conventions to align with DS in DC electrical
		specifications at 3.3 V Range and DC electrical specifications at 5.0
		V Range
		Updated specs for AC electrical specifications at 3.3 V range and
		AC electrical specifications at 5 V range
		In Device clock specifications :
		Added footnote to f _{BUS}
		In External System Oscillator frequency specifications :
		Updated 't _{dc extal} '
		Added footnote 'Frequecies below ' to 'fec extal' and 'tdc extal'
		Updated Flash timing specifications — commands
		In Reliability specifications :
		Updated footnotes
		In QuadSPI AC specifications :
		Updated 'MCR[SCLKCFG[5]]' value to 0
		Updated 'Data Input Setup Time' HSRUN Internal DQS PAD
		Loopback value to 1.6
		 Updated 'Data Input Setup Time' DDR External DQS min.
		value to 2
		 Updated 'Data Input Hold Time' DDR External DQS min. value
		to 20
		 Updated t_{IV}
		Upadted figure 'QuadSPI output timing (SDR mode) diagram'
		and 'QuadSPI input timing (HyperRAM mode) diagram'
		In 12-bit ADC operating conditions :
		Fixed the typo in R _{SW1}
		 Removed parameter 'ΔV_{DDA}'
		In 12-bit ADC electrical characteristics :
		 Added note 'On reduced pin packages where '
		Removed max. value of 'IDDA_ADC'
		Added note 'Due to triple '
		In CMP with 8-bit DAC electrical specifications:
		 Updated Typ. and Max. values of 'I_{DDLS}'
		 Upadted Typ. value of 't_{DHSB}'
		 Updated Typ. value of 'V_{HYST1}', 'V_{HYST2}', and 'V_{HYST3}'
		In LPSPI electrical specifications :
		 Updated 'f_{periph}' and 'f_{op}', and 't_{SPSCK}'
		 Updated 3.3 V numbers and added footnote against f_{op}, t_{SU},
		ans t _V in HSRUN Mode
		Added footnote to 'twspsck'

Revision History

Table 35. Revision History

Rev. No.	Date	Substantial Changes
		 Updated t_{Lead} and t_{Lag} Added footnote in Figure: LPSPI slave mode timing (CPHA = 0) and Figure: LPSPI slave mode timing (CPHA = 1) In Thermal characteristics :
		 Updated table name for the LQFP packages Added table for the BGA package Updated Obtaining package dimensions

How to Reach Us:

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address: nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to unidentified vulnerabilities. Customers are responsible for the design and operation of their applications and products to reduce the effect of these vulnerabilities on customer's applications and products, and NXP accepts no liability for any vulnerability that is discovered. Customers should implement appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP. the NXP logo. NXP SECURE CONNECTIONS FOR A SMARTER WORLD. COOLFLUX. EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore, Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart, Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org.

© 2017–2018 NXP B.V.

Document Number MWCT101xSF Revision 2, 07/2018

