ON Semiconductor

Is Now

Onsemi

To learn more about onsemi[™], please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is provided for uses as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi roducts for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs

Protected TRIAC

Silicon Bidirectional Thyristor

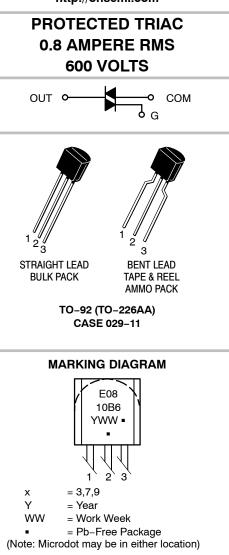
Designed for use in solid state relays, MPU interface, TTL logic and any other light industrial or consumer application. Supplied in an inexpensive TO-92 package which is readily adaptable for use in automatic insertion equipment.

Features

- One-Piece, Injection-Molded Package
- Blocking Voltage to 600 V
- Sensitive Gate Triggering in Two Trigger Modes (Quadrants)
- Improved Noise Immunity (dv/dt Minimum of 500 V/µsec at 125°C)
- Compliant with IEC6100–4–5
- High Surge Current of 8 A
- These are Pb–Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit			
Peak Repetitive Off–State Voltage (Note 1) (Sine Wave, 50 to 60 Hz, Gate Open, $T_J = 25$ to $125^{\circ}C$)	V _{DRM,} V _{RRM}	600	V			
On-State Current RMS (T _C = 80°C) (Full Sine Wave 50 to 60 Hz)	I _{T(RMS)}	0.8	A			
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, $T_C = 25^{\circ}C$)	I _{TSM}	8.0	A			
Circuit Fusing Considerations (Pulse Width = 8.3 ms)	l ² t	0.4	A ² s			
Peak Gate Power $(T_C = 80^{\circ}C, Pulse Width \leq 1.0 \ \mu s)$	P _{GM}	5.0	W			
Average Gate Power $(T_C = 80^{\circ}C, t = 8.3 \text{ ms})$	P _{G(AV)}	0.1	W			
Non-Repetitive Line Peak Voltage (IEC6100-4-5)	V _{PP}	2.0	kV			
Critical Rate of Rise of All–State Current (I_G = 2 x I_{GT} , t_r < 100 μ s, T_J = 125°C)	di/dt	100	A/μs			
Operating Junction Temperature Range	TJ	-40 to +125	°C			
Storage Temperature Range	T _{stg}	-40 to +150	°C			


Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

 V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor

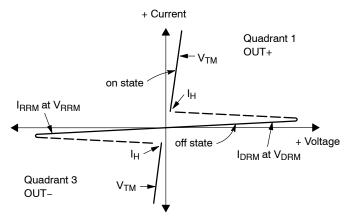
http://onsemi.com

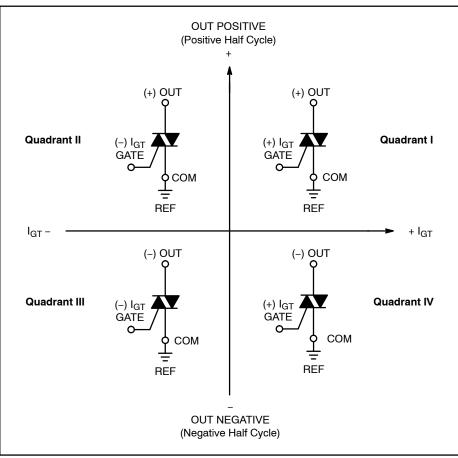
PIN ASSIGNMENT				
1	OUT			
2	Gate			
3	СОМ			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

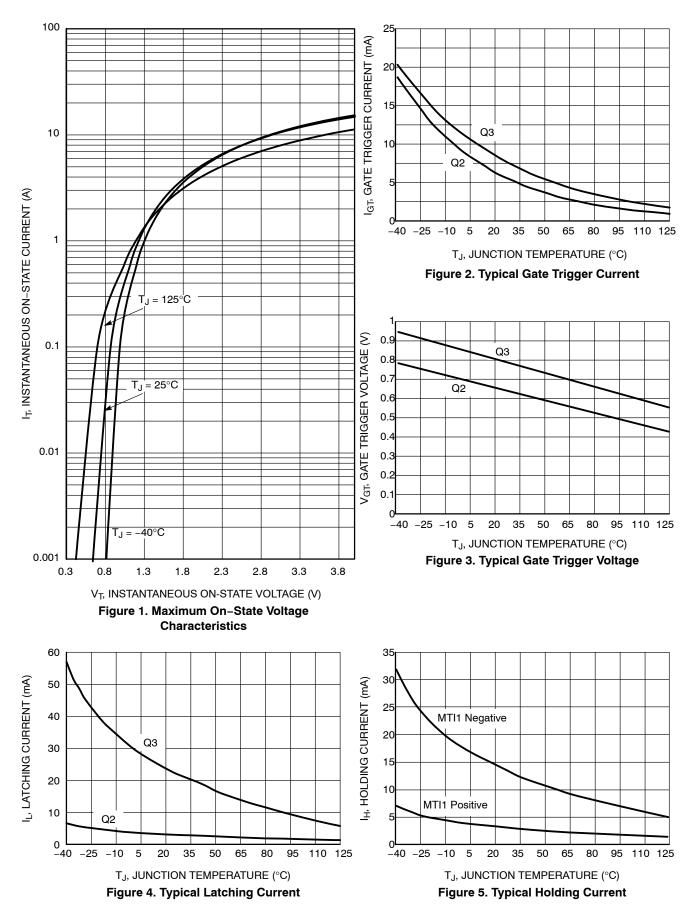
THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Ambient PCB Mounted per Figure TBD	R_{\thetaJA}	156	°C/W
Thermal Resistance, Junction-to-Tab Measured on OUT Tab Adjacent to Epoxy	$R_{\theta JT}$	25	°C/W
Maximum Device Temperature for Soldering Purposes for 10 Secs Maximum		260	°C


$\label{eq:constraint} \textbf{ELECTRICAL CHARACTERISTICS} \ (T_C = 25^\circ C \ \text{unless otherwise noted}; \ \text{Electricals apply in both directions})$

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				
$ \begin{array}{ll} \mbox{Peak Repetitive Blocking Current} & T_J = 25^{\circ}\mbox{C} \\ \mbox{(V}_D = Rated V_{DRM}/V_{RRM}; \mbox{Gate Open)} & T_J = +125^{\circ}\mbox{C} \end{array} $	I _{DRM} , I _{RRM}			2.0 200	μΑ μΑ
ON CHARACTERISTICS					
Peak On–State Voltage ($I_{TM} = \pm 1.1$ A Peak; Pulse Width ≤ 2.0 ms, Duty Cycle $\leq 2.0\%$)	V _{TM}	_	-	1.3	V
Gate Trigger Current (dc) $(V_D = 12 \text{ Vdc}, R_L = 30 \Omega)$ OUT(+), G(-) OUT(-), G(-)	I _{GT}	0.15 0.15		10 10	mA
Latching Current (V _D = 12 V, I _G = 1.2 x I _{GT}) OUT(+), G(-) All Types OUT(-), G(-) All Types	١L			30 30	mA
Gate Trigger Voltage (dc) (V _D = 12 Vdc, R_L = 30 Ω)	V _{GT}	_	-	1.0	V
Gate Non–Trigger Voltage (V _D = 12 V, R _L = 30 Ω , T _J = 125°C) Quadrants 2, 3	V _{GD}	0.15	-	-	V
Dynamic Resistance	R _D	_	-	300	mΩ
Holding Current (V _D = 12 Vdc, Initiating Current = 50 mA, Gate Open)	Ι _Η	-	-	25	mA
DYNAMIC CHARACTERISTICS					
Rate of Change of Commutating Current (Commutating dv/dt = 15 V/ μ s, Gate Open, T _J = 125°C, f = 250 Hz, without Snubber)	di/dt(c)	0.3	-	-	A/ms
Critical Rate of Rise of Off–State Voltage (V_D = 67% V_{DRM} , Exponential Waveform, Gate Open, T _J = 125°C)	dv/dt	500	-	_	V/µs
Clamping Voltage (I _{CL} = 1.0 mA, t _p = 1 ms, T _J = 125°C)	V _{CL}	650	-	-	V

Voltage Current Characteristic of Triacs (Bidirectional Device)


Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to COM.

TO-92 EIA RADIAL TAPE IN FAN FOLD BOX OR ON REEL

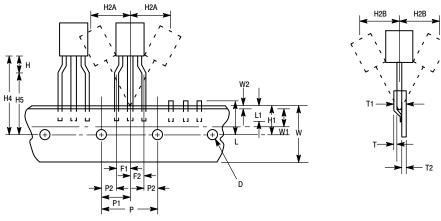


Figure 6. Device Positioning on Tape

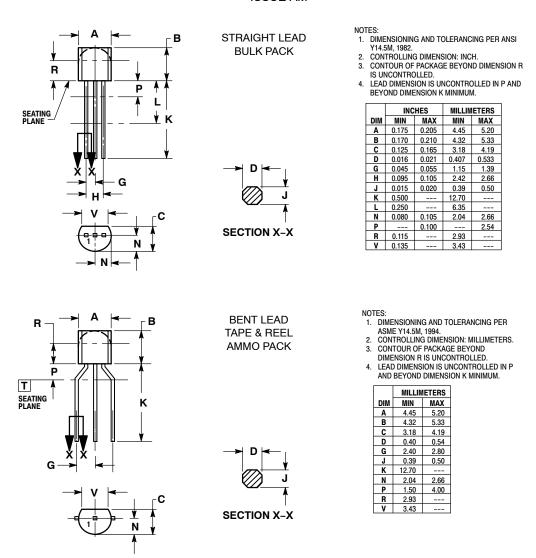
		Specification				
		Inc	Inches		Millimeter	
Symbol	Item	Min	Max	Min	Max	
D	Tape Feedhole Diameter	0.1496	0.1653	3.8	4.2	
D2	Component Lead Thickness Dimension	0.015	0.020	0.38	0.51	
F1, F2	Component Lead Pitch	0.0945	0.110	2.4	2.8	
Н	Bottom of Component to Seating Plane	0.059	0.156	1.5	4.0	
H1	Feedhole Location	0.3346	0.3741	8.5	9.5	
H2A	Deflection Left or Right	0	0.039	0	1.0	
H2B	Deflection Front or Rear	0	0.051	0	1.0	
H4	Feedhole to Bottom of Component	0.7086	0.768	18	19.5	
H5	Feedhole to Seating Plane	0.610	0.649	15.5	16.5	
L	Defective Unit Clipped Dimension	0.3346	0.433	8.5	11	
L1	Lead Wire Enclosure	0.09842	-	2.5	-	
Р	Feedhole Pitch	0.4921	0.5079	12.5	12.9	
P1	Feedhole Center to Center Lead	0.2342	0.2658	5.95	6.75	
P2	First Lead Spacing Dimension	0.1397	0.1556	3.55	3.95	
Т	Adhesive Tape Thickness	0.06	0.08	0.15	0.20	
T1	Overall Taped Package Thickness	-	0.0567	-	1.44	
T2	Carrier Strip Thickness	0.014	0.027	0.35	0.65	
W	Carrier Strip Width	0.6889	0.7481	17.5	19	
W1	Adhesive Tape Width	0.2165	0.2841	5.5	6.3	
W2	Adhesive Tape Position	.0059	0.01968	0.15	0.5	

 Maximum alignment deviation between leads not to be greater than 0.2 mm.
Defective components shall be clipped from the carrier tape such that the remaining protrusion (L) does not exceed a maximum of 11 mm. 4. Component lead to tape adhesion must meet the pull test requirements.

Maximum non-cumulative variation between tape feed holes shall not exceed 1 mm in 20 pitches.
Holddown tape not to extend beyond the edge(s) of carrier tape and there shall be no exposure of adhesive.

7. No more than 1 consecutive missing component is permitted.

8. A tape trailer and leader, having at least three feed holes is required before the first and after the last component.


9. Splices will not interfere with the sprocket feed holes.

ORDERING & SHIPPING INFORMATION: Packaging Options, Device Suffix

Device				
U.S.	Europe Equivalent	Description of TO–92 Tape Orientation	Package	Shipping
	NYE08-10B6RL1G	Flat side of TO-92 and adhesive tape visible	TO-92 (Pb-Free)	Radial 2000 / Tape and Reel
NYE08-10B6TG		N/A, Bulk	TO-92 (Pb-Free)	5000 Units / Box
NYE08-10B6RLRP	G	Round side of TO-92 and adhesive tape visible	TO-92 (Pb-Free)	Radial Tape and Fan Fold Box (2000 Units / Box)
NYE08-10B6RLRF	G	Round side of TO-92 and adhesive tape on reverse side	TO-92 (Pb-Free)	Radial Tape and Fan Fold Box (2000 Units / Box)

PACKAGE DIMENSIONS

TO-92 (TO-226AA) CASE 029-11 ISSUE AM

ON Semiconductor and war registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use popress, and expanshabe attorney fees ansin

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Order

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative