

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT6888-bit magnitude comparator

Product specification
File under Integrated Circuits, IC06

December 1990

Philips

Semiconductors

8-bit magnitude comparator

74HC/HCT688

FEATURES

• Compare two 8-bit words

· Output capability: standard

I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT688 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT688 are 8-bit magnitude comparators. They perform comparison of two 8-bit binary or BCD words.

The output provides $\overline{P} = \overline{Q}$.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	LINIT		
STIVIBUL	PARAIVIETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	C _L = 15 pF; V _{CC} = 5 V				
	P_n , Q_n to $\overline{P} = \overline{Q}$		17	17	ns	
	E to $\overline{P} = Q$		8	12	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per package	notes 1 and 2	30	30	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_o = output frequency in MHz

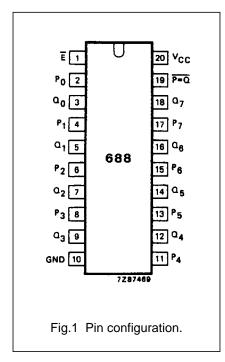
 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

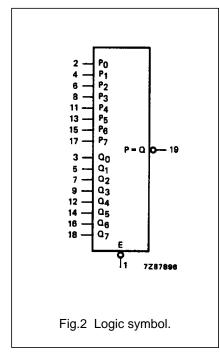
C_L = output load capacitance in pF

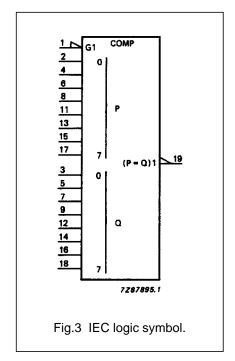
V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

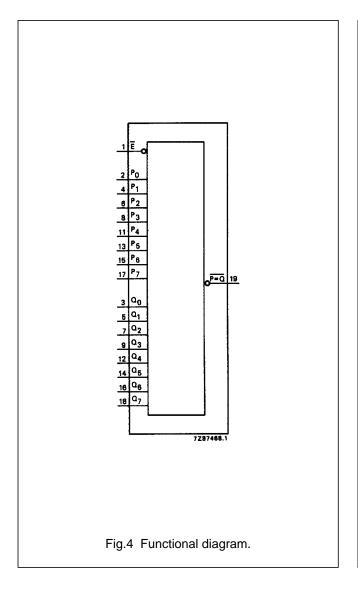

See "74HC/HCT/HCU/HCMOS Logic Package Information".

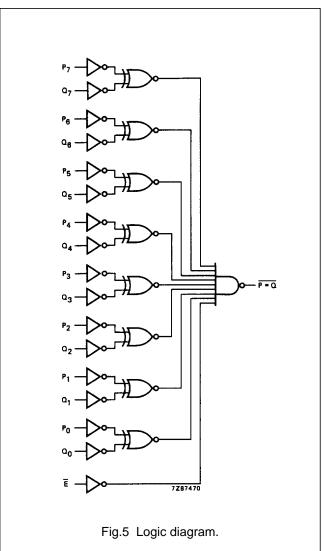

8-bit magnitude comparator


74HC/HCT688

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION					
1	Ē	enable input (active LOW)					
2, 4, 6, 8, 11, 13, 15, 17	P ₀ to P ₇	word inputs					
3, 5, 7, 9, 12, 14, 16, 18	Q ₀ to Q ₇	word inputs					
10	GND	ground (0 V)					
19	$\overline{P} = Q$	equal to output					
20	V _{CC}	positive supply voltage					





8-bit magnitude comparator

74HC/HCT688

FUNCTION TABLE

INPUTS	OUTPUT								
DATA P _n , Q _n	ENABLE E	$\overline{P} = Q$							
P = Q	L	L							
X	H	Н							
P > Q	L	Н							
P < Q	L	Н							

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

8-bit magnitude comparator

74HC/HCT688

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									
STWIBUL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(-,	
t _{PHL} / t _{PLH}	propagation delay P_n , Q_n to $\overline{P} = \overline{Q}$		55 20 16	170 34 29		215 43 37		255 51 43	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay E to P = Q		28 10 8	120 24 20		150 30 26		180 36 31	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

8-bit magnitude comparator

74HC/HCT688

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

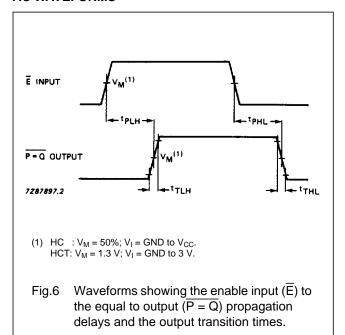
I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
P _n	0.35						
Q _n	0.35						
Ē	0.70						

AC CHARACTERISTICS FOR 74HCT


 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									
		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(3)	
t _{PHL} / t _{PLH}	propagation delay P_n , Q_n to $\overline{P} = \overline{Q}$		20	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay E to P = Q		18	24		30		36	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

8-bit magnitude comparator

74HC/HCT688

AC WAVEFORMS

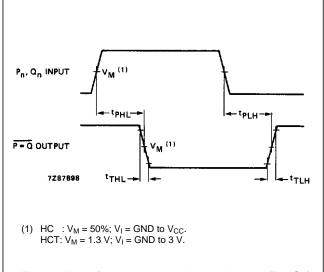
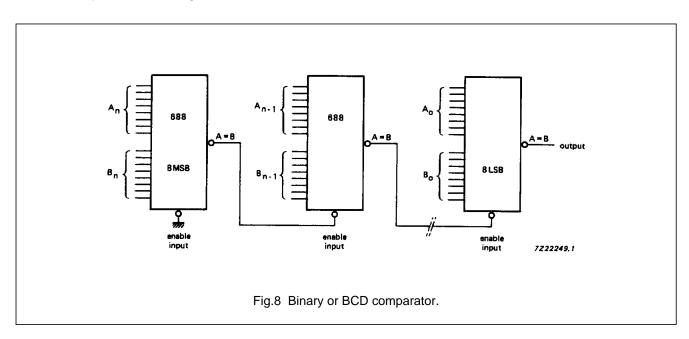



Fig.7 Waveforms showing the word inputs (P_n, Q_n) to the equal to output $(\overline{P} = \overline{Q})$ propagation delays and the output transition times.

APPLICATION INFORMATION

Two or more "688" 8-bit magnitude comparators may be cascaded to compare binary or BCD numbers of more than 8 bits. An example is shown in Fig.8.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".