MMBV2101LT1 Series, MV2105, MV2101, MV2109, LV2209

Preferred Device

Silicon Tuning Diodes

These devices are designed in popular plastic packages for the high volume requirements of FM Radio and TV tuning and AFC, general frequency control and tuning applications. They provide solid-state reliability in replacement of mechanical tuning methods. Also available in a Surface Mount Package up to 33 pF .

Features

- High Q
- Controlled and Uniform Tuning Ratio
- Standard Capacitance Tolerance - 10\%
- Complete Typical Design Curves
- Pb-Free Packages are Available

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	30	Vdc
Forward Current	I_{F}	200	mAdc
Forward Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ MMBV21xx Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{array}{r} 225 \\ 1.8 \\ 280 \\ 2.8 \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \mathrm{~mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{Adc}\right)$ MMBV21xx, MV21xx LV2209	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$				Vdc
		30 25	-	-	
Reverse Voltage Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=25 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	I_{R}	-	-	0.1	$\mu \mathrm{Adc}$
Diode Capacitance Temperature Co- efficient $\left(\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	TC_{C}	-	280	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com
$6.8-100 \mathrm{pF}, 30$ VOLTS
VOLTAGE VARIABLE
CAPACITANCE DIODES

(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

Device	Marking	Package	Shipping ${ }^{\dagger}$	C_{T}, Diode Capacitance $\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$ pF			Q, Figure of Merit$\begin{gathered} \begin{array}{c} \mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \\ \mathrm{f}=50 \mathrm{MHz} \end{array} \\ \hline \text { Typ } \end{gathered}$	TR, Tuning Ratio$\begin{gathered} \mathrm{C}_{2} / \mathrm{C}_{30} \\ \mathrm{f}=1.0 \mathrm{MHz} \end{gathered}$		
				Min	Nom	Max		Min	Typ	Max
MMBV2101LT1	M4G	SOT-23	3,000 / Tape \& Reel	6.1	6.8	7.5	450	2.5	2.7	3.2
MMBV2101LT1G	M4G	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel	6.1	6.8	7.5	450	2.5	2.7	3.2
MMBV2101L	M4G	SOT-23	Bulk (Note 1)	6.1	6.8	7.5	450	2.5	2.7	3.2
MV2101	MV2101	TO-92	1,000 per Box	6.1	6.8	7.5	450	2.5	2.7	3.2
MV2101G	MV2101	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	1,000 per Box	6.1	6.8	7.5	450	2.5	2.7	3.2
MMBV2103LT1	4H	SOT-23	3,000 / Tape \& Reel	9.0	10	11	400	2.5	2.9	3.2
MMBV2105LT1	4 U	SOT-23	3,000 / Tape \& Reel	13.5	15	16.5	400	2.5	2.9	3.2
MMBV2105LT1G	4 U	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel	13.5	15	16.5	400	2.5	2.9	3.2
MMBV2105L	4 U	SOT-23	Bulk (Note 1)	13.5	15	16.5	400	2.5	2.9	3.2
MV2105	MV2105	TO-92	1,000 per Box	13.5	15	16.5	400	2.5	2.9	3.2
MV2105G	MV2105	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	1,000 per Box	13.5	15	16.5	400	2.5	2.9	3.2
MMBV2107LT1	4W	SOT-23	3,000 / Tape \& Reel	19.8	22	24.2	350	2.5	2.9	3.2
MMBV2107LT1G	4W	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel	19.8	22	24.2	350	2.5	2.9	3.2
MMBV2107L	4W	SOT-23	Bulk (Note 1)	19.8	22	24.2	350	2.5	2.9	3.2
MMBV2108LT1	4X	SOT-23	3,000 / Tape \& Reel	24.3	27	29.7	300	2.5	3.0	3.2
MMBV2108LT1G	4X	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel	24.3	27	29.7	300	2.5	3.0	3.2
LV2209	LV2209	TO-92	1,000 per Box	29.7	33	36.3	200	2.5	3.0	3.2
MMBV2109LT1	4 J	SOT-23	3,000 / Tape \& Reel	29.7	33	36.3	200	2.5	3.0	3.2
MMBV2109LT1G	4 J	$\begin{gathered} \text { SOT-23 } \\ \text { (Pb-Free) } \end{gathered}$	3,000 / Tape \& Reel	29.7	33	36.3	200	2.5	3.0	3.2
MMBV2109L	4 J	SOT-23	Bulk (Note 1)	29.7	33	36.3	200	2.5	3.0	3.2
MV2109	MV2109	TO-92	1,000 per Box	29.7	33	36.3	200	2.5	3.0	3.2
MV2109G	MV2109	$\begin{gathered} \text { TO-92 } \\ \text { (Pb-Free) } \end{gathered}$	1,000 per Box	29.7	33	36.3	200	2.5	3.0	3.2

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

1. MMBV2101LT1, MMBV2105LT1, MMBV2107LT1 thru MMBV2109LT1, are also available in bulk. Use the device title and drop the "T1" suffix when ordering any of these devices in bulk.

PARAMETER TEST METHODS

1. C_{T}, DIODE CAPACITANCE

$\left(\mathrm{C}_{\mathrm{T}}=\mathrm{C}_{\mathrm{C}}+\mathrm{C}_{\mathrm{J}}\right) . \mathrm{C}_{\mathrm{T}}$ is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).

2. TR, TUNING RATIO

TR is the ratio of C_{T} measured at 2.0 Vdc divided by C_{T} measured at 30 Vdc .

3. Q, FIGURE OF MERIT

Q is calculated by taking the G and C readings of an admittance bridge at the specified frequency and substituting in the following equations:

$$
Q=\frac{2 \pi f C}{G}
$$

(Boonton Electronics Model 33AS8 or equivalent). Use Lead Length $\approx 1 / 16^{\prime \prime}$.

4. TC ${ }_{C}$, DIODE CAPACITANCE TEMPERATURE COEFFICIENT

TC_{C} is guaranteed by comparing C_{T} at $\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0$ $\mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-65^{\circ} \mathrm{C}$ with C_{T} at $\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}$ $=+85^{\circ} \mathrm{C}$ in the following equation, which defines TC_{C} :
$\mathrm{TC}_{\mathrm{C}}=\left|\frac{\mathrm{CT}_{\mathrm{T}}\left(+85^{\circ} \mathrm{C}\right)-\mathrm{CT}\left(-65^{\circ} \mathrm{C}\right)}{85+65}\right| \cdot \frac{10^{6}}{\mathrm{C}_{\mathrm{T}}\left(25^{\circ} \mathrm{C}\right)}$
Accuracy limited by measurement of C_{T} to $\pm 0.1 \mathrm{pF}$.

MMBV2101LT1 Series, MV2105, MV2101, MV2109, LV2209

TYPICAL DEVICE CHARACTERISTICS

Figure 1. Diode Capacitance versus Reverse Voltage

Figure 2. Normalized Diode Capacitance versus Junction Temperature

Figure 4. Figure of Merit versus Reverse Voltage

Figure 3. Reverse Current versus Reverse Bias Voltage

Figure 5. Figure of Merit versus Frequency

DATE 04/18/1998

SCALE 1:1

| DOCUMENT NUMBER: | 98ASB42118B | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | TO-92 (TO-226) | PAGE 1 OF 1 |

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

SOT-23 (TO-236)
CASE 318-08
ISSUE AS
DATE 30 JAN 2018

SCALE 4:1

NOTES:
IMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994
. CONTROLLING DIMENSION: MILLIMETERS.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
A	0.89	1.00	1.11	0.035	0.039	0.044
A1	0.01	0.06	0.10	0.000	0.002	0.004
b	0.37	0.44	0.50	0.015	0.017	0.020
\mathbf{c}	0.08	0.14	0.20	0.003	0.006	0.008
D	2.80	2.90	3.04	0.110	0.114	0.120
E	1.20	1.30	1.40	0.047	0.051	0.055
e	1.78	1.90	2.04	0.070	0.075	0.080
L	0.30	0.43	0.55	0.012	0.017	0.022
L1	0.35	0.54	0.69	0.014	0.021	0.027
$\mathbf{H E}_{\mathbf{E}}$	2.10	2.40	2.64	0.083	0.094	0.104
T	0°	---	10°	0°	---	10°

GENERIC
MARKING DIAGRAM*

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS

XXX = Specific Device Code
M = Date Code

- = Pb-Free Package
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " \quad ", may or may not be present.

[^0] rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

[^0]: ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the

