

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74LVT16652A

3.3 V 16-bit bus transceiver/register; 3-state

Rev. 03 — 12 January 2005

Product data sheet

1. General description

The 74LVT16652A is a high-performance BiCMOS product designed for V_{CC} operation at 3.3 V. The device can be used as two 8-bit transceivers or one 16-bit transceiver.

Complimentary output enable (OEAB and OEBA) inputs are provided to control the transceiver functions. Select control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A LOW input level selects real-time data, and a HIGH input level selects stored data. The circuitry used for select control eliminates the typical decoding glitch that occurs in a multiplexer during the transition between stored and real-time data.

Data on the A or B bus, or both, can be stored in the internal flip-flops by LOW-to-HIGH transitions at the appropriate clock (CPAB or CPBA) inputs regardless of the levels on the select control or output enable inputs. When SAB and SBA are in real-time transfer mode, it is possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and $\overline{\text{OE}}$ BA. In this configuration, each output reinforces its input. Thus, when all other data sources to the two sets of bus lines are at high- impedance, each set of bus lines remains at its last level configuration.

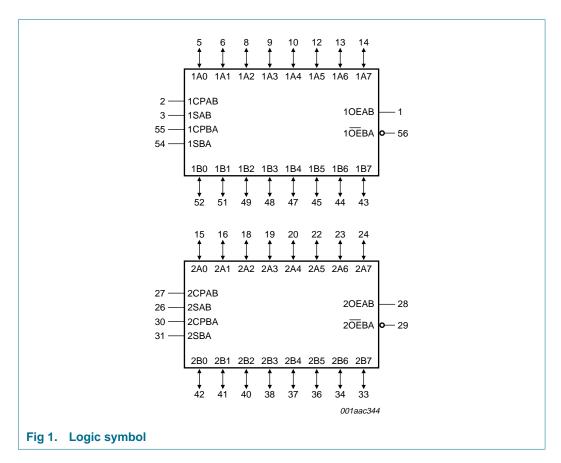
2. Features

- 16-bit bus interface
- 3-state buffers
- Output capability: +64 mA and -32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion and extraction permitted
- Power-up reset
- Power-up 3-state
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection:
 - MIL STD 883 method 3015: exceeds 2000 V
 - Machine model: exceeds 200 V

3. Quick reference data

Table 1: Quick reference data

 $T_{amb} = 25 \,^{\circ}C$.


	_					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PLH}	propagation delay nAx to nBx or nBx to nAx	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	-	2.1	-	ns
t _{PHL}	propagation delay nAx to nBx or nBx to nAx	$C_L = 50 \text{ pF}; V_{CC} = 3.3 \text{ V}$	-	2.4	-	ns
C _I	input capacitance control pins	$V_1 = 0 \text{ V or } 3.0 \text{ V}$	-	3	-	pF
C _{I/O}	I/O pin capacitance	outputs disabled; V _I = 0 V or 3.0 V	-	9	-	pF
I _{CC}	quiescent supply current	outputs disabled; V _{CC} = 3.6 V	-	70	-	μΑ

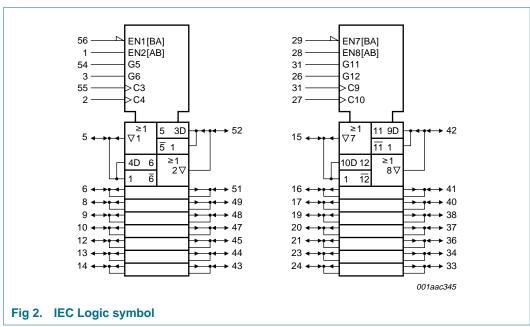
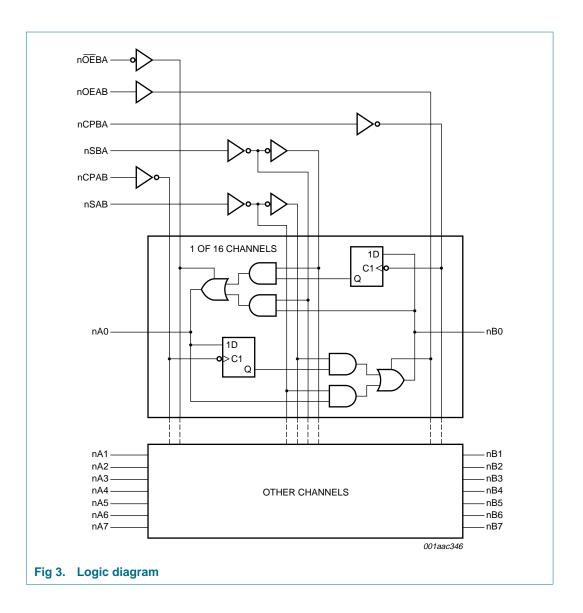
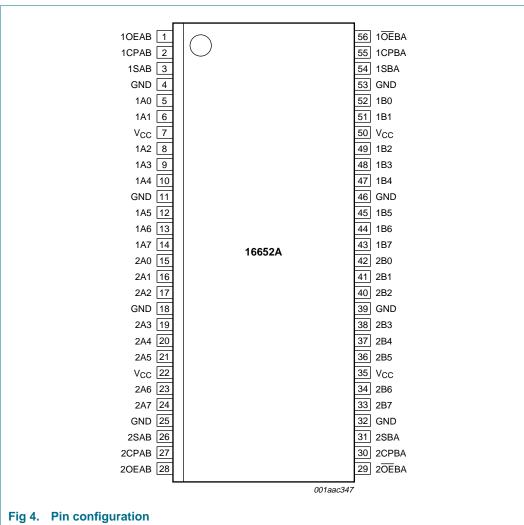

4. Ordering information

Table 2: Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74LVT16652ADGG	–40 °C to +85°C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1				
74LVT16652ADL	–40 °C to +85°C	SSOP56	plastic shrink small outline package; 56 leads; body width 7.5 mm	SOT371-1				

5. Functional diagram

9397 750 14402



Product data sheet

Pinning information

6.1 Pinning

6.2 Pin description

Table 3: Pin description

Symbol	Pin	Description
10EAB	1	A to B output enable input
1CPAB	2	A to B clock input
1SAB	3	A to B select input
GND	4	ground (0 V)
1A0	5	data input or output (A-side)
1A1	6	data input or output (A-side)
V _{CC}	7	supply voltage
1A2	8	data input or output (A-side)

9397 750 14402

Product data sheet

Symbol	Pin	Description
1A3	9	data input or output (A-side)
1A4	10	data input or output (A-side)
GND	11	ground (0 V)
1A5	12	data input or output (A-side)
1A6	13	data input or output (A-side)
1A7	14	data input or output (A-side)
2A0	15	data input or output (A-side)
2A1	16	data input or output (A-side)
2A2	17	data input or output (A-side)
GND	18	ground (0 V)
2A3	19	data input or output (A-side)
2A4	20	data input or output (A-side)
2A5	21	data input or output (A-side)
V _{CC}	22	positive supply voltage
2A6	23	data input or output (A-side)
2A7	24	data input or output (A-side)
GND	25	ground (0 V)
2SAB	26	A to B select input
2CPAB	27	A to B clock input
20EAB	28	A to B output enable input
2 OE BA	29	B to A output enable input
2CPBA	30	B to A clock input
2SBA	31	B to A select input
GND	32	ground (0 V)
2B7	33	data input or output (B-side)
2B6	34	data input or output (B-side)
V _{CC}	35	supply voltage
2B5	36	data input or output (B-side)
2B4	37	data input or output (B-side)
2B3	38	data input or output (B-side)
GND	39	ground (0 V)
2B2	40	data input or output (B-side)
2B1	41	data input or output (B-side)
2B0	42	data input or output (B-side)
1B7	43	data input or output (B-side)
1B6	44	data input or output (B-side)
1B5	45	data input or output (B-side)
GND	46	ground (0 V)
1B4	47	data input or output (B-side)
1B3	48	data input or output (B-side)
1B2	49	data input or output (B-side)

9397 750 14402

Table 3: Pin description ...continued

Symbol	Pin	Description
V _{CC}	50	supply voltage
1B1	51	data input or output (B-side)
1B0	52	data input or output (B-side)
GND	53	ground (0 V)
1SBA	54	B to A select input
1CPBA	55	B to A clock input
1 OE BA	56	B to A output enable input

7. Functional description

7.1 Function table

Table 4: Function table [1]

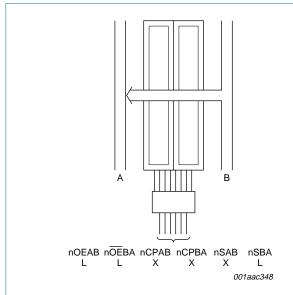
Operating mode	Input					Data I/O		
	nOEAB	nOEBA	nCPAB	nCPBA	nSAB	nSBA	nAx	nBx
Isolation	L	Н	H or L	H or L	X	X	input	input
Store A and B data	L	Н	1	↑	Χ	Χ	input	input
Store A, hold B	X	Н	1	H or L	X	X	input	unspecified output [2]
Store A in both registers	Н	Н	1	1	<u>[3]</u>	X	input	unspecified output [2]
Hold A, store B	L	X	H or L	1	X	X	unspecified output [2]	input
Store B in both registers	L	L	1	1	X	[3]	unspecified output [2]	input
Real-time B data to A bus	L	L	Χ	Χ	Χ	L	output	input
Store B data to A bus	L	L	Χ	H or L	X	Н	output	input
Real-time A data to B bus	Н	Н	Χ	Χ	L	Χ	input	output
Store A data to B bus	Н	Н	H or L	Χ	Н	X	input	output
Stored A data to B bus and stored B data to A bus	Н	L	H or L	H or L	Н	Н	output	output

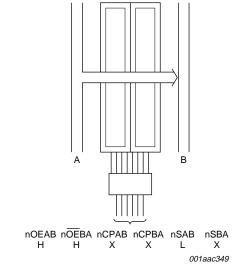
^[1] H = HIGH voltage level;

9397 750 14402

L = LOW voltage level;

X = don't care;


 $[\]uparrow$ = LOW-to-HIGH clock transition.


^[2] The data output function may be enabled or disabled by various signals at the nOEBA and nOEAB inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock.

^[3] If both select controls (nSAB and nSBA) are LOW, then clocks can occur simultaneously. If either select control is HIGH, the clocks must be staggered in order to load both registers.

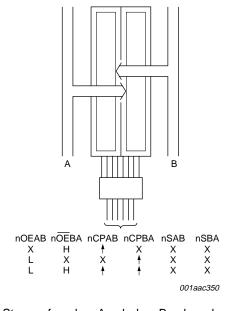
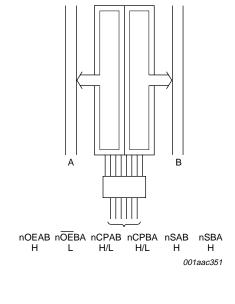

7.2 Bus management function

Figure 5 demonstrates the four fundamental bus management functions that can be performed with the 74LVT16652A. The select pins determine whether data is stored or transferred through the device in real time. The output enable pins determine the direction of the data flow.



a. Real-time bus transfer bus B to bus A

b. Real-time bus transfer bus A to bus B

c. Storage from bus A only, bus B only, or bus A plus

Fig 5. Example of bus management functions

d. Transfer stored data to bus A or bus B

9397 750 14402

Product data sheet

© Koninklijke Philips Electronics N.V. 2005. All rights reserved

8 of 21

Limiting values

Table 5: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	DC supply voltage		-0.5	+4.6	V
I _{IK}	DC input diode current	V _I < 0 V	-50	-	mA
V_{I}	DC input voltage		[2] -0.5	+7.0	V
I _{OK}	DC output diode current	V _O < 0 V	–50	-	mA
V _O	DC output voltage	output in OFF or HIGH-state	[<u>2</u>] –0.5	+7.0	V
Io	DC output current	output in LOW-state	-	128	mA
		output in HIGH-state	-64	-	mA
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		<u>[1]</u> -	150	°C

^[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability.

9. Recommended operating conditions

Table 6: Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.7	-	3.6	V
VI	input voltage		0	-	5.5	V
V _{IH}	HIGH-level input voltage		2.0	-	-	V
V _{IL}	LOW-level input voltage		-	-	0.8	V
I _{OH}	HIGH-level output current		-	-	-32	mA
I _{OL}	LOW-level output current		-	-	32	mA
		duty cycle ≤ 50 %; f ≥ 1 kHz	-	-	64	mA
Δt/ΔV	input transition rise or fall rate	outputs enabled	-	-	10	ns/V
T _{amb}	ambient temperature		-40	-	+85	°C

^[2] The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

10. Static characteristics

Table 7: Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -40) °C to +85 °C [1]					
V _{IK}	input clamp voltage	$V_{CC} = 2.7 \text{ V}; I_{IK} = -18 \text{ mA}$	-	-0.85	-1.2	V
V _{OH}	HIGH-level output voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $I_{OH} = -100 \mu\text{A}$	V _{CC} - 0.2	V _{CC}	-	V
		$V_{CC} = 2.7 \text{ V}; I_{OH} = -8 \text{ mA}$	2.4	2.5	-	V
		$V_{CC} = 3.0 \text{ V}; I_{OH} = -32 \text{ mA}$	2.0	2.3	-	V
V _{OL}	LOW-level output voltage	$V_{CC} = 2.7 \text{ V}; I_{OL} = 100 \mu\text{A}$	-	0.07	0.2	V
		V _{CC} = 2.7 V; I _{OL} = 24 mA	-	0.3	0.5	V
		V _{CC} = 3.0 V; I _{OL} = 16 mA	-	0.25	0.4	V
		V _{CC} = 3.0 V; I _{OL} = 32 mA	-	0.3	0.5	V
		V _{CC} = 3.0 V; I _{OL} = 64 mA	-	0.4	0.55	V
V _{RST}	power-up output low voltage	V_{CC} = 3.6 V; I_{O} = 1 mA; V_{I} = GND or V_{CC}	[2] -	0.11	0.55	V
I _{LI}	input leakage current					
	control pins	$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}$	-	0.1	±1	μΑ
		V _{CC} = 0 V or 3.6 V; V _I = 5.5 V	-	0.1	10	μΑ
	I/O data pins	$V_{CC} = 3.6 \text{ V}; V_I = 5.5 \text{ V}$	[3] _	0.1	20	μΑ
		V _{CC} = 3.6 V; V _I = V _{CC}	[3] _	0.1	10	μΑ
		V _{CC} = 3.6 V; V _I = 0 V	[3] _	+0.1	- 5	μΑ
I _{OFF}	output off current	$V_{CC} = 0 \text{ V}$; $V_I \text{ or } V_O = 0 \text{ V to } 4.5 \text{ V}$	-	0.1	±100	μΑ
I _{HOLD}	bus-hold current A or B	$V_{CC} = 3 \text{ V}; V_{I} = 0.8 \text{ V}$	<u>[4]</u> 75	135	-	μΑ
	outputs	V _{CC} = 3 V; V _I = 2.0 V	<u>[4]</u> –75	-140	-	μΑ
		$V_{CC} = 0 \text{ V to } 3.6 \text{ V}; V_I = 3.6 \text{ V}$	[4] ±500	-	-	μΑ
I _{EX}	current into an output in the HIGH-state when $V_O > V_{CC}$	$V_O = 5.5 \text{ V}; V_{CC} = 3.0 \text{ V}$	-	45	125	μΑ
I _{PU} , I _{PD}	power-up or down 3-state output current	$V_{CC} \le 1.2 \text{ V}; V_O = 0.5 \text{ V to } V_{CC};$ $V_I = \text{GND or } V_{CC}; \text{ pins nOEAB}$ and $n\overline{\text{OEBA}}$ are don't care	<u>[5]</u> _	35	±100	μΑ
I _{CC}	quiescent supply current	V_{CC} = 3.6 V; V_{I} = GND or V_{CC} and I_{O} = 0 A				
		outputs HIGH	-	0.07	0.12	mA
		outputs LOW	<u>[6]</u> _	4.9	6	mA
		outputs disabled	<u>[7]</u> -	0.07	0.12	mA

9397 750 14402

 Table 7:
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ΔI_{CC}	additional supply current per input pin	V_{CC} = 3.3 V \pm 0.3 V; one input at V_{CC} – 0.6 V; other inputs at V_{CC} or GND	<u>[8]</u> _	0.1	0.2	mA
C _I	input capacitance control pins	$V_1 = 0 \text{ V or } 3.0 \text{ V}$	-	3	-	pF
C _{I/O}	I/O pin capacitance	outputs disabled; $V_I = 0 \text{ V}$ or 3.0 V	-	9	-	pF

- [1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.
- [2] For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
- [3] Unused pins at V_{CC} or GND.
- [4] This is the bus-hold overdrive current required to force the input to the opposite logic state.
- [5] This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms. From V_{CC} = 1.2 V to V_{CC} = 3.3 V \pm 0.3 V a transition time of 100 μ s is permitted. This parameter is valid for T_{amb} = 25 °C only.
- [6] I_{CC} is measured with 16 outputs LOW.
- [7] I_{CC} is measured with outputs pulled to V_{CC} or GND.
- [8] This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND.

11. Dynamic characteristics

Table 8: Dynamic characteristics

GND = 0 V; $t_r = t_f = 2.5$ ns; $C_L = 50$ pF; $R_L = 500$ Ω ; test circuit see Figure 12.

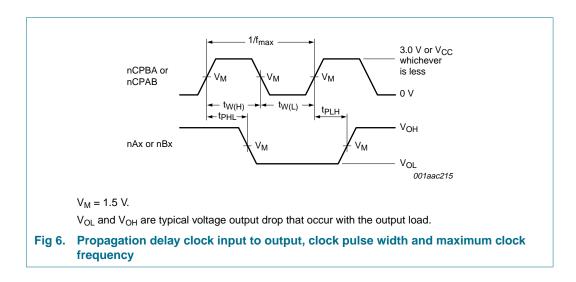
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$T_{amb} = -40$	°C to +85 °C [1]					
f _{max}	maximum clock frequency	V_{CC} = 2.7 V or 3.3 V ± 0.3 V; see Figure 6	150	180	-	MHz
t _{PLH}	propagation delay	see Figure 7				
	nAx to nBx or nBx to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5	2.1	3.4	ns
		V _{CC} = 2.7 V	-	-	3.9	ns
	propagation delay	see Figure 6				
	nCPAB to nBx or nCPBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.5	4.2	ns
	HOP DA TO HAX	V _{CC} = 2.7 V	-	-	4.7	ns
	propagation delay	see Figure 8				
	nSAB to nBx or nSBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.3	4.5	ns
		V _{CC} = 2.7 V	-	-	5.4	ns

Product data sheet

GND = 0 V; $t_r = t_f = 2.5$ ns; $C_L = 50$ pF; $R_L = 500$ Ω ; test circuit see Figure 12.

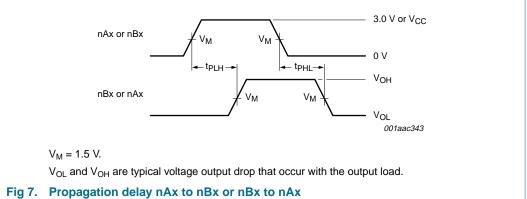
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL}	propagation delay	see Figure 7				
	nAx to nBx or nBx to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	0.5	2.4	3.4	ns
		V _{CC} = 2.7 V	-	-	3.9	ns
	propagation delay	see Figure 6				
	nCPAB to nBx or nCPBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.7	4.2	ns
	HOLDA TOTIAX	V _{CC} = 2.7 V	-	-	4.7	ns
	propagation delay	see Figure 8				
	nSAB to nBx or nSBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.5	4.5	ns
	HODA TO HAX	V _{CC} = 2.7 V	-	-	5.4	ns
t _{PZH}	output enable time	see Figure 9				
	nOEBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.7	4.3	ns
		V _{CC} = 2.7 V	-	-	5.0	ns
	output enable time	see Figure 10				
	nOEAB to nBx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.6	4.2	ns
		V _{CC} = 2.7 V	-	-	4.9	ns
PZL	output enable time nOEBA to nAx	see Figure 10				
		$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	3.1	4.3	ns
		V _{CC} = 2.7 V	-	-	5.0	ns
	output enable time	see Figure 9				
	nOEAB to nBx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	2.9	4.2	ns
		V _{CC} = 2.7 V	-	-	4.9	ns
PHZ	output disable time	see Figure 9				
	nOEBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	3.1	4.9	ns
		V _{CC} = 2.7 V	-	-	5.3	ns
	output disable time	see Figure 9				
	nOEAB to nBx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	3.4	5.2	ns
		V _{CC} = 2.7 V	-	-	5.8	ns
PLZ	output disable time	see Figure 10				
	nOEBA to nAx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	2.8	4.4	ns
		V _{CC} = 2.7 V	-	-	4.6	ns
	output disable time	see Figure 10				
	nOEAB to nBx	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.5	3.0	4.4	ns
		V _{CC} = 2.7 V	-	-	4.6	ns

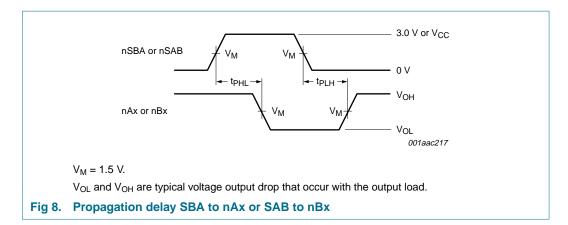
^[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 $^{\circ}C.$

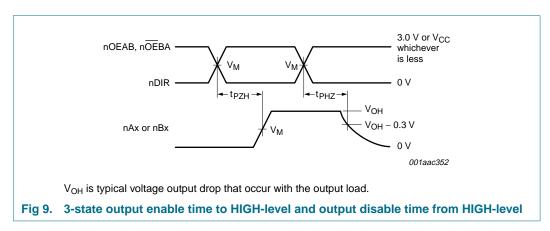

Table 9: Dynamic characteristics setup requirements

GND = 0 V; $t_r = t_f = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -4	0 °C to +85 °C [1]					
t _{su(H)}	set-up time HIGH	see Figure 11				
	nAx to nCPAB or nBx to nCPBA	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	0.6	-	ns
	HDX to HOL DA	V _{CC} = 2.7 V	1.1	-	-	ns
t _{su(L)}	set-up time LOW	see Figure 11				
	nAx to nCPAB or nBx to nCPBA	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.9	0.5	-	ns
	TIDX to TICE DA	V _{CC} = 2.7 V	2.4	-	-	ns ns ns
t _{h(H)}	hold time HIGH	see Figure 11				
	nAx to nCPAB or nBx to nCPBA	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	0.4	-	
	HDX (U HOF DA	V _{CC} = 2.7 V	1.0	-	-	ns
t _{h(L)}	hold time LOW	see Figure 11				
	nAx to nCPAB or nBx to nCPBA	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	1.0	0.5	-	ns
	TIDA TO TIOT DA	V _{CC} = 2.7 V	1.0	-	-	ns
t _{W(H)}	pulse width HIGH	see Figure 6				
	nCPAB or nCPBA	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.6	2.2	-	ns
		V _{CC} = 2.7 V	2.6	-	-	ns
t _{W(L)}	pulse width LOW	see Figure 6				
	nCPAB or nCPBA	$V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$	2.8	2.4	-	ns
		V _{CC} = 2.7 V	2.8	-	-	ns


^[1] All typical values are measured at V_{CC} = 3.3 V and T_{amb} = 25 °C.

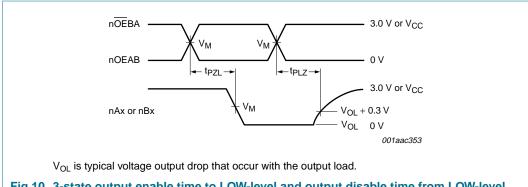
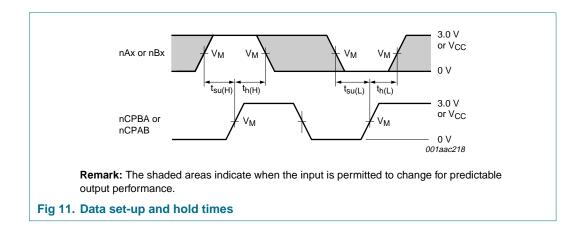
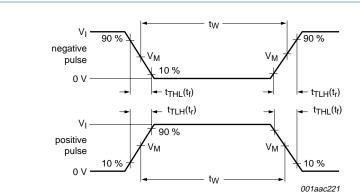

12. Waveforms

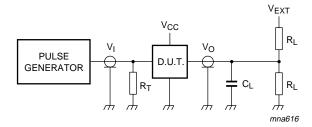


9397 750 14402

Product data sheet

Product data sheet


Fig 10. 3-state output enable time to LOW-level and output disable time from LOW-level

 $V_{M} = 1.5 V.$

a. Input pulse definition

Test data is given in Table 10.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

 C_L = Load capacitance including jig and probe capacitance.

 R_L = Load resistor.

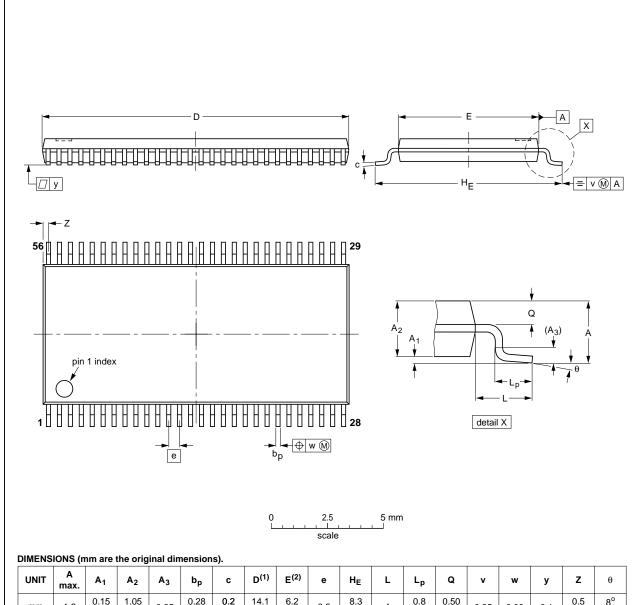
 V_{EXT} = Test voltage for switching times.

b. Test circuit

Fig 12. Load circuitry for switching times

Table 10: Test data

Input				Load		V _{EXT}			
VI	Repetition rate	t _W	t _r , t _f	CL	R _L	t _{PHZ} , t _{PZH}	t _{PLZ} , t _{PZL}	t _{PLH} , t _{PHL}	
2.7 V	≤ 10 MHz	500 ns	≤ 2.5 ns	50 pF	500 Ω	GND	6 V	open	


Product data sheet

13. Package outline

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm

SOT364-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E ⁽²⁾	е	HE	٦	Lp	ø	٧	w	у	Z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

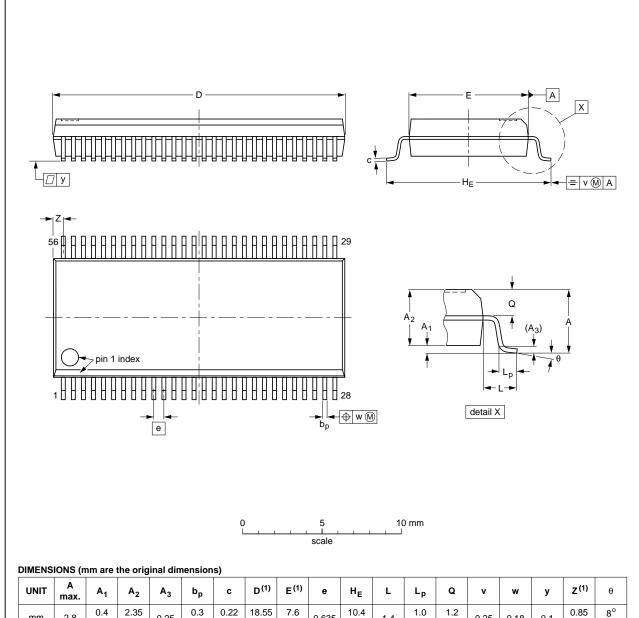

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT364-1		MO-153				-99-12-27 03-02-19

Fig 13. Package outline SOT364-1 (TSSOP56)

9397 750 14402

SSOP56: plastic shrink small outline package; 56 leads; body width 7.5 mm

SOT371-1

•	IIVILIAO	10145 (11	iiiii ai e	uie orig	illai ulli	ICHSION	3)												
	UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
	mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	18.55 18.30	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT371-1		MO-118			99-12-27 03-02-18	

Fig 14. Package outline SOT371-1 (SSOP56)

9397 750 14402

14. Revision history

Table 11: Revision history

Document ID	Release date	Data sheet status	Change notice	Doc. number	Supersedes
74LVT16652A_3	20050112	Product data sheet	-	9397 750 14402	74LVT16652A_2
Modifications:	InformationProduct titSection 2 or Section 3 or Section 3	t of this data sheet has be n standard of Philips Ser le modified <u>'Features"</u> : modified JEC <u>'Quick reference data"</u> : n "Dynamic characteristic	SD78 _{PLH} and t _{PHL}	v presentation and	
74LVT16652A_2	19980219	Product specification	-	9397 750 03561	74LVT16652A_1
74LVT16652A_1	1994	Product specification	-	-	-

Downloaded from Arrow.com.

15. Data sheet status

Level	Data sheet status [1]	Product status [2] [3]	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

16. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

17. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

18. Contact information

For additional information, please visit: http://www.semiconductors.philips.com
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com

9397 750 14402

Philips Semiconductors

3.3 V 16-bit bus transceiver/register; 3-state

19. Contents

1	General description
2	Features 1
3	Quick reference data
4	Ordering information
5	Functional diagram 3
6	Pinning information
6.1 6.2	Pinning
7	Functional description 7
7.1 7.2	Function table
8	Limiting values
9	Recommended operating conditions
10	Static characteristics
11	Dynamic characteristics
12	Waveforms
13	Package outline
14	Revision history
15	Data sheet status
16	Definitions
17	Disclaimers
18	Contact information 20

© Koninklijke Philips Electronics N.V. 2005

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 12 January 2005 Document number: 9397 750 14402

Published in The Netherlands