

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is and its officers, employees, even if such claim any manner.

FPF2G120BF07ASP F2, 3ch Boost module PCM and NTC

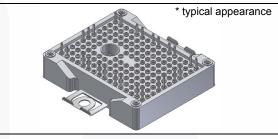
General Description

The FPF2G120BF07ASP is the 3ch boost topology which is providing an optimized solution for the multi-string solar application. And the integrated high speed field stop IGBTs and SiC diodes are providing lower conduction and switching losses. And the pre-applied PCM requires no additional process of the thermal interface material printing. Furthermore, the screw clamp provides a fast and reliable mounting method.

Electrical Features

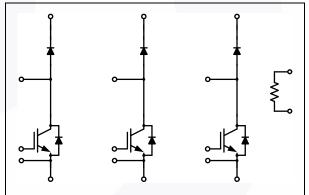
- High Efficiency
- Low Conduction and Switching Losses
- High Speed Field Stop IGBT
- SiC SBD for Boost Diode
- Built-in NTC for Temperature Monitoring

Mechanical Features


- Compact Size : F2 Package
- Soldering Pin
- Al₂O₃ Substrate with Low Thermal Resistance
- Pre-applied PCM (Phase Change Material)

Applications

Solar Inverter


Related Materials

- AN-5077: Design Considerations for High Power Module (HPM)
- AN-4186: F1 and F2 Modules with Pre-applied Phase Change Material (PCM)

June 2015

Internal Circuit Diagram

Package Marking and Ordering Information

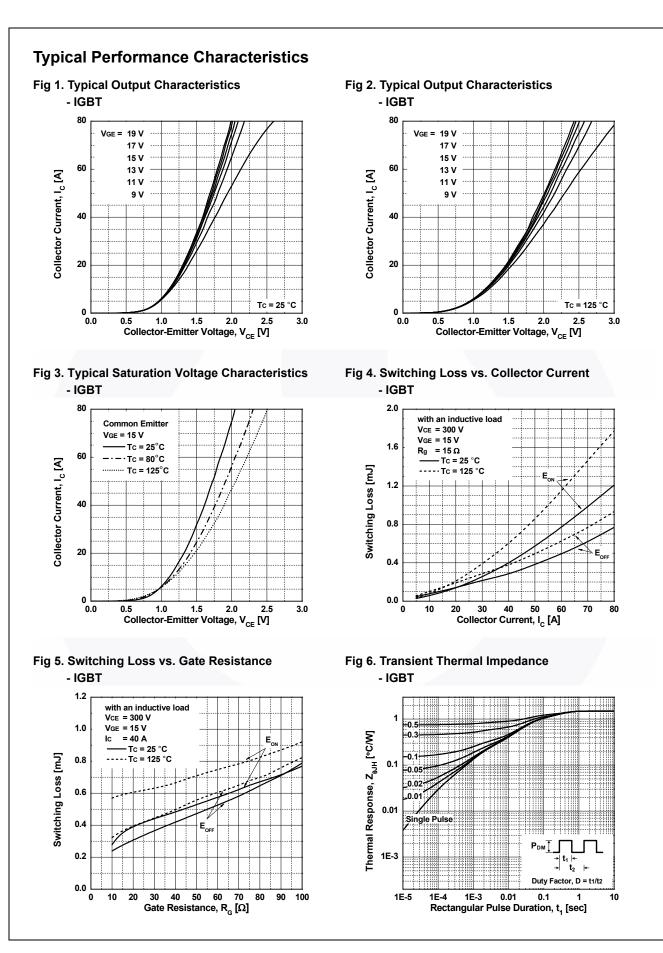
Device	Device Marking	Package	PCM	Packing Type	Quantity / Tray
FPF2G120BF07AS	FPF2G120BF07AS	F2	Х	Tray	14
FPF2G120BF07ASP	FPF2G120BF07ASP	F2	0	Tray	14

©2015 Fairchild Semiconductor Corporation FPF2G120BF07ASP Rev. 1.1

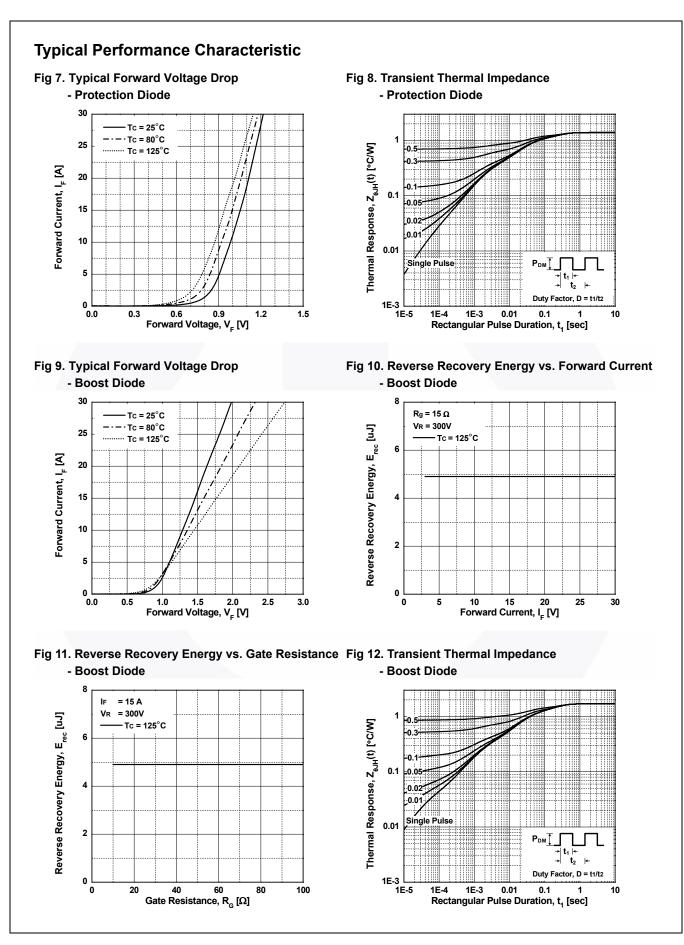
FPF2G120BF07ASP - F2, 3ch Boost module PCM and NTC

Symbol	Description	Condition	Rating	Units
Boost IGB1	-			·
V _{CES}	Collector-Emitter Voltage		650	V
V _{GES}	Gate-Emitter Voltage	± 20	V	
	Transient Gate-Emitter Voltage		± 25	V
I _C	Continuous Collector Current	T _C = 80 °C, T _{Jmax} = 175 °C	40	A
I _{CM}	Pulsed Collector Current	limited by T _{Jmax}	80	A
P _D	Maximum Power Dissipation		156	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
Protection	Diode			1
V _{RRM}	Peak Repetitive Reverse Voltage		650	V
IF	Continuous Forward Current	T _C = 80 °C, T _{Jmax} = 175 °C	15	A
I _{FM}	Maximum Forward Current		30	A
I _{FSM}	Non-repetitive Peak Surge Current	60Hz Single Half-Sine Wave	150	A
l ² t - value	Surge Current Integral Value		93	A ² s
PD	Maximum Power Dissipation		140	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
Boost Diod	e			
V _{RRM}	Peak Repetitive Reverse Voltage		650	V
l _F	Continuous Forward Current	T _C = 80 °C, T _{Jmax} = 175 °C	15	A
I _{FM}	Maximum Forward Current		30	A
I _{FSM}	Non-repetitive Peak Surge Current	60Hz Single Half-Sine Wave	120	Α
l ² t - value	Surge Current Integral Value		60	A ² s
P _D	Maximum Power Dissipation		98	W
TJ	Operating Junction Temperature		- 40 to + 150	°C
Module				
T _{STG}	Storage Temperature		- 40 to + 125	°C
V _{ISO}	Isolation Voltage	AC 1 min.	2500	V
IsoMaterial			Al ₂ O ₃	-
T _{MOUNT}	Mounting Torque		2.0 to 5.0	N•m
Creepage	Terminal to Heat Sink	11.5	mm	
	Terminal to Terminal	6.3	mm	
Clearance	Terminal to Heat Sink		10.0	mm
	Terminal to Terminal		5.0	mm

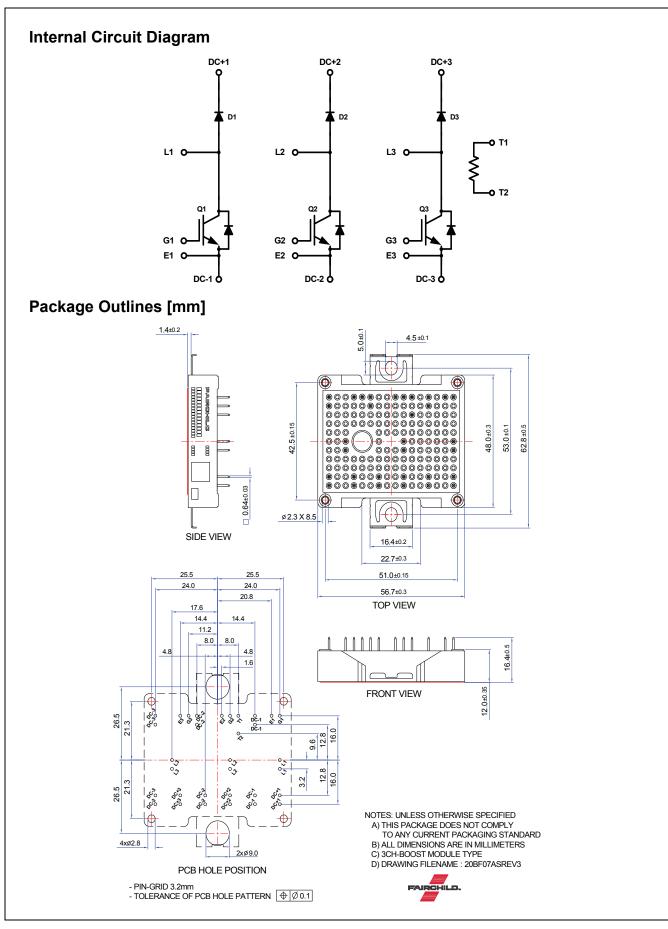
Downloaded from Arrow.com.


2

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
Boost IGE	ВТ		-	1		
Off Charac	teristics					
BV _{CES}	Collector-Emitter Breakdown Voltage	V _{GE} = 0 V, I _C = 1 mA	650	-	-	V
ICES	Collector Cut-off Current	$V_{CE} = V_{CES}, V_{GE} = 0 V$	-	-	250	μA
I _{GES} On Charac	Gate-Emitter Leakage Current	$V_{GE} = V_{GES}, V_{CE} = 0 V$	-	-	± 2	μA
V _{GE(th)}	Gate-Emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 40 \text{ mA}$	3.9	5.1	6.8	V
V _{CE(sat)}	Collector-Emitter Saturation Voltage	I _C = 40 A, V _{GE} = 15 V	-	1.55	2.2	V
()		$I_{\rm C}$ = 40 A, $V_{\rm GE}$ = 15 V, $T_{\rm C}$ = 125 °C	-	1.85	-	V
R _{LEAD}	Lead Resistance of Pin to Chip	per Chip	-	3.3	-	mΩ
	Characteristics				1	
t _{d(on)}	Turn-On Delay Time	V _{CC} = 300 V	-	24	-	ns
t _r	Rise Time	$I_{\rm C} = 40$ A	-	24	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15 V R _G = 15 Ω	-	132	-	ns
t _f	Fall Time	Inductive Load	-	17	-	ns
E _{ON}	Turn-On Switching Loss per Pulse	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$	-	0.40	-	mJ
E _{OFF}	Turn-Off Switching Loss per Pulse		-	0.28	-	mJ
t _{d(on)}	Turn-On Delay Time	V _{CC} = 300 V	-	22	-	ns
t _r	Rise Time	$I_{\rm C} = 40$ A	-	27	-	ns
t _{d(off)}	Turn-Off Delay Time	V _{GE} = 15 V R _G = 15 Ω	-	148	-	ns
t _f	Fall Time	Inductive Load	-	17	-	ns
E _{ON}	Turn-On Switching Loss per Pulse	T _C = 125 °C	-	0.59	-	mJ
E _{OFF}	Turn-Off Switching Loss per Pulse		-	0.37	-	mJ
Qg	Total Gate Charge	V _{CC} = 300 V, I _C = 40 A, V _{GE} = 15 V	-	65	-	nC
R _{0JC}	Thermal Resistance of Junction to Case	per Chip	-	-	0.96	°C/W
R _{0CH}	Thermal Resistance of Case to Heat sink	per Chip, λ_{PCM} = 3.4 W/mK	-	0.54	-	°C/W
Protectio	n Diode				1	
V _F	Diode Forward Voltage	I _F = 15 A	-	1.05	1.4	V
. 6		I _F = 15 A, T _C = 125 °C	· ·	0.95	-	V
R _{LEAD}	Lead Resistance of Pin to Chip	per Chip	-	2.4	-	mΩ
I _R	Reverse Leakage Current	$V_{\rm R} = 650 \text{ V}$	-	-	250	μΑ
R _{θJC}	Thermal Resistance of Junction to Case	per Chip	-	-	1.07	°C/W
R _{0CH}	Thermal Resistance of Case to Heat sink	per Chip, λ_{PCM} = 3.4 W/mK	-	0.33	-	°C/W
Boost Dic						
V _F	Diode Forward Voltage	I _F = 15 A	-	1.45	1.9	V
۷F	Didde Forward Voltage	I _F = 15 A, T _C = 125 °C	-	1.45	1.9	V
D	Lead Resistance of Pin to Chip	$r_F = 15 \text{ A}, r_C = 123 \text{ C}$		2.8	-	
R _{LEAD}	Reverse Leakage Current	$V_{\rm R} = 650 \text{ V}$	-	2.0	- 60	mΩ μA
I _R I	Reverse Recovery Current	V _R = 300 V, I _F = 15 A,		9.2	00	A
	Total Capacitive Charge	$v_R = 300 v_1 F = 13 A_1$ di / dt = 1390 A/us,	-	9.2 60	-	nC
Q _C	Reverse Recovery Energy	$T_{\rm C} = 25 \ ^{\circ}{\rm C}$		4.9		
E _{rec}	Reverse Recovery Energy	V _R = 300 V, I _F = 15 A,		4.9 9.2	-	μJ
I _{rr}	Total Capacitive Charge	$v_R = 300 \text{ V}, \text{ I}_F = 13 \text{ A},$ di / dt = 1390 A/us,	-	9.2 65	-	A nC
Q _C	Reverse Recovery Energy	$T_{\rm C} = 125 \ ^{\circ}{\rm C}$		4.9	-	
E _{rec}	Thermal Resistance of Junction to Case	per Chip	-	4.9	- 1.52	μJ °C/W
R _{θJC} R _{θCH}	Thermal Resistance of Case to Heat sink	per Chip, λ _{PCM} = 3.4 W/mK	-	- 0.18	1.52	°C/W


3

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
NTC (The	rmistor)					
NIC	Rated Resistance	T _C = 25 °C	-	10	-	kΩ
		T _C = 100 °C	-	936	-	Ω
	Tolerance	T _C = 25 °C	- 3	-	+ 3	%
P _D	Power Dissipation	T _C = 25 °C	-	-	20	mW
B _{Value}	B-Constant	B _{25/50}	-	3450	-	K
		B _{25/100}	-	3513	-	K


4

©2015 Fairchild Semiconductor Corporation FPF2G120BF07ASP Rev. 1.1

@2015 Fairchild Semiconductor Corporation FPF2G120BF07ASP Rev. 1.1

©2015 Fairchild Semiconductor Corporation FPF2G120BF07ASP Rev. 1.1

7

FPF2G120BF07ASP - F2, 3ch Boost module PCM and NTC

Downloaded from Arrow.com.

FPF2G120BF07ASP

ı

F2, 3ch Boost module PCM and NTC

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.