ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

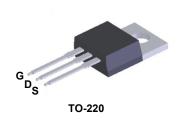
www.onsemi.com

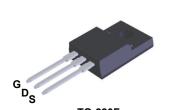
FDP4D5N10C / FDPF4D5N10C

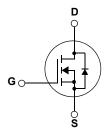
N-Channel Shielded Gate PowerTrench MOSFET 100 V, 128 A, 4.5 m Ω

Features

- Max $r_{DS(on)}$ = 4.5 m Ω at V_{GS} = 10 V, I_D = 100 A
- Extremely Low Reverse Recovery Charge, Qrr
- 100% UIL Tested
- RoHS Compliant


General Description


This N-Channel MV MOSFET is produced using ON Semiconductor's advanced PowerTrench® process that incorporates Shielded Gate technology. This process has been optimized to minimize on-state resistance and yet maintain superior switching performance with best in class soft body diode.


Applications

- Synchronous Rectification for ATX / Server / Telecom PSU
- Motor Drives and Uninterruptible Power Supplies
- Micro Solar Inverter

MOSFET Maximum Ratings T_C = 25 °C unless otherwise noted.

Cumah al	Parameter		Ratii	ngs	Units		
Symbol	r di dilletei			FDP4D5N10C	FDPF4D5N10C	Uillis	
V_{DS}	Drain to Source Voltage			100	100	V	
V_{GS}	Gate to Source Voltage			±20	±20	V	
	Drain Current -Continuous T _C	= 25°C (N	Note 3)	128*	128*		
I_D	-Continuous T _C	= 100°C (N	Note 3)	91	91	Α	
	-Pulsed	1)	Note 1)	512	512		
E _{AS}	Single Pulse Avalanche Energy	1)	Note 2)	486		mJ	
П	Power Dissipation T _C	c = 25°C		150	37.5	W	
P_{D}	Power Dissipation T _A	_ = 25°C		2.4	2.4	VV	
T _J , T _{STG}	Operating and Storage Junction Tempera	ature Range		-55 to +175	-55 to +175	°C	

^{*} Drain current limited by maximum junction temperature. Package limitation current is 120A.

Thermal Characteristics

Symbol	Parameter	FDP4D5N10C	FDPF4D5N10C	Units
$R_{\theta JC}$	Thermal Resistance, Junction to Case	1.0	4.0	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	62.5	62.5	C/VV

Package Marking and Ordering Information

Device Marking	Device	Package	Packing Mode	Quantity
FDP4D5N10C	FDP4D5N10C	TO-220	Tube	50 units
FDPF4D5N10C	FDPF4D5N10C	TO-220F	Tube	50 units

Electrical Characteristics T_J = 25 °C unless otherwise noted.

Symbol	Parameter	Test Conditions Min. Typ.		Max.	Units	
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
$\frac{\Delta BV_{DSS}}{\Delta T_{J}}$	Breakdown Voltage Temperature Coefficient	I _D = 250 μA, referenced to 25 °C		53		mV/°C
1	Zero Gate Voltage Drain Current	V _{DS} = 80 V, V _{GS} = 0 V			1	μΑ
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 80 V, T _J = 150°C			500	μΑ
I _{GSS}	Gate to Source Leakage Current	V _{GS} = ±20 V, V _{DS} = 0 V			±100	nA

On Characteristics

V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 310 \mu A$	2.0	3.2	4.0	V
r _{DS(on)}	Static Drain to Source On Resistance	V _{GS} = 10 V, I _D = 100 A		4.0	4.5	mΩ
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 100 A		134		S

Dynamic Characteristics

C _{iss}	Input Capacitance	V _{DS} = 50 V, V _{GS} = 0 V, f = 1 MHz		3615	5065	pF
Coss	Output Capacitance			2330	3265	pF
C _{rss}	Reverse Transfer Capacitance			18	35	pF
R_g	Gate Resistance		0.1	1.1	2.2	Ω

Switching Characteristics

t _{d(on)}	Turn-On Delay Time		29	47	ns
t _r	Rise Time	V _{DD} = 50 V, I _D = 100 A,	49	79	ns
t _{d(off)}	Turn-Off Delay Time	V_{GS} = 10 V, R_{GEN} = 6 Ω	41	66	ns
t _f	Fall Time		13	24	ns
Q_g	Total Gate Charge	V _{GS} = 0 V to 10 V	48	68	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = 50 \text{ V},$ $I_{D} = 100 \text{ A}$	19		nC
Q_{gd}	Gate to Drain "Miller" Charge	ID - 100 A	9		nC
Q _{oss}	Output Charge	V _{DD} = 50 V, V _{GS} = 0 V	150		nC

Drain-Source Diode Characteristic

I _S	Maximum Continuous Drain to Source Diode Forward Current		-	-	128	Α
I _{SM}	Maximum Pulsed Drain to Source Diode Forward Current		-	-	512	Α
V_{SD}	Source to Drain Diode Forward Voltage	V _{GS} = 0 V, I _S = 100 A		1.0	1.3	V
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 50 V,		82	132	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 100 \text{ A}, dI_F/dt = 100 \text{ A/}\mu\text{s}$		106	170	nC
t _{rr}	Reverse Recovery Time	V _{GS} = 0 V, V _{DD} = 50 V,		71	114	ns
Q _{rr}	Reverse Recovery Charge	$I_F = 100 \text{ A}, dI_F/dt = 300 \text{ A}/\mu\text{s}$		258	413	nC

Notes:

- ${\bf 1.\ Pulsed\ Id\ please\ refer\ to\ Figure\ "Forward\ Bias\ Safe\ Operating\ Area"\ for\ more\ details.}$
- 2. E_{AS} of 486 mJ is based on starting T_J = 25 °C, L = 3 mH, I_{AS} = 18 A, V_{DD} = 100 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 58 A.
- 3. Computed continuous current limited to Max Junction Temperature only, actual continuous current will be limited by thermal & electro-mechanical application board design.

Typical Characteristics T_J = 25 °C unless otherwise noted.

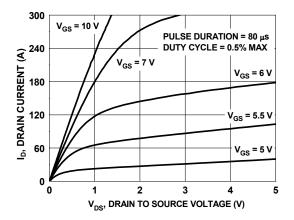


Figure 1. On Region Characteristics

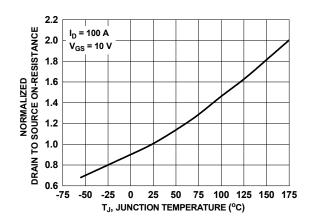


Figure 3. Normalized On Resistance vs. Junction Temperature

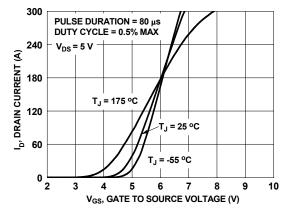


Figure 5. Transfer Characteristics

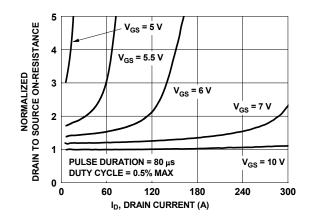


Figure 2. Normalized On-Resistance vs. Drain Current and Gate Voltage

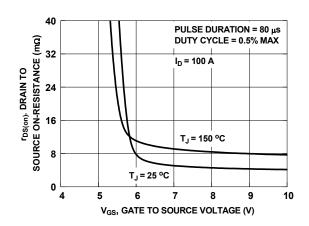


Figure 4. On-Resistance vs. Gate to Source Voltage

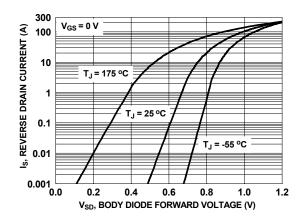


Figure 6. Source to Drain Diode Forward Voltage vs. Source Current

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

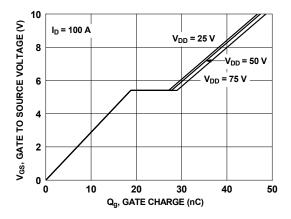


Figure 7. Gate Charge Characteristics

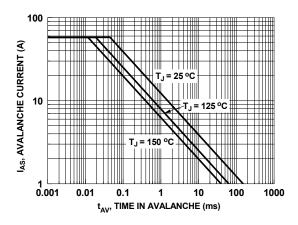


Figure 9. Unclamped Inductive Switching Capability

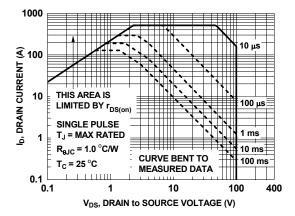


Figure 11. Forward Bias Safe Operating Area for FDP4D5N10C

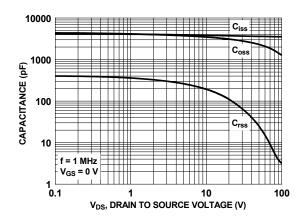


Figure 8. Capacitance vs. Drain to Source Voltage

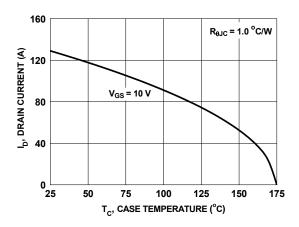


Figure 10. Maximum Continuous Drain Current vs. Case Temperature

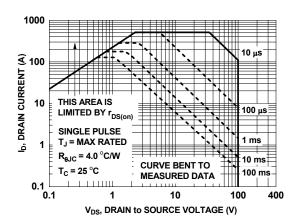
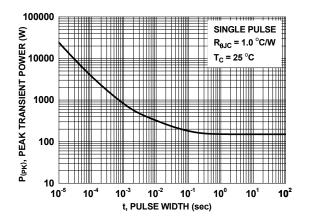



Figure 12. Forward Bias Safe Operating Area for FDPF4D5N10C

Typical Characteristics $T_J = 25$ °C unless otherwise noted.

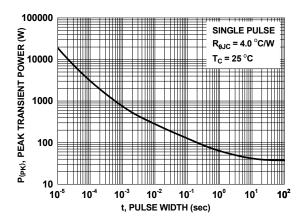


Figure 13. Single Pulse Maximum Power Dissipation for FDP4D5N10C

Figure 14. Single Pulse Maximum Power Dissipation for FDPF4D5N10C

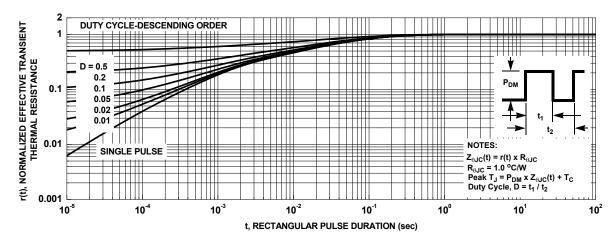


Figure 15. Junction-to-Case Transient Thermal Response Curve for FDP4D5N10C

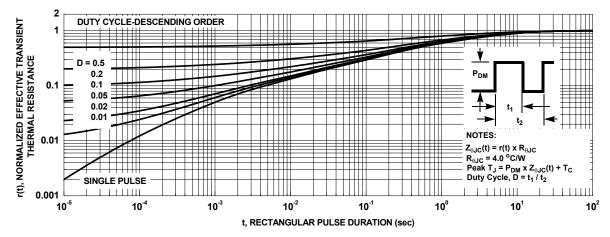
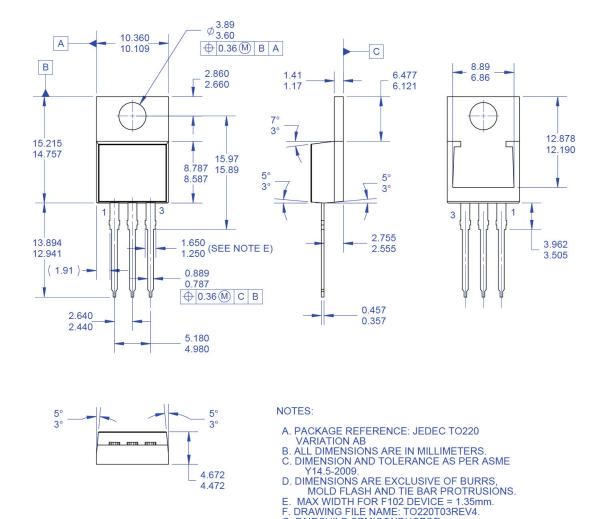
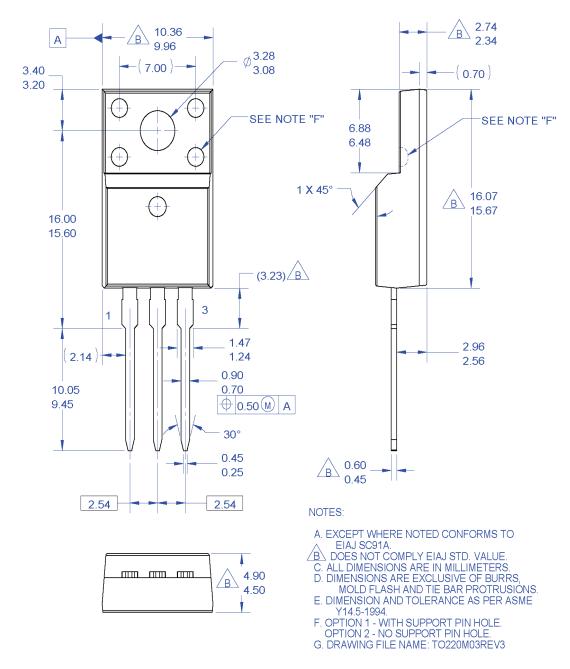



Figure 16. Junction-to-Case Transient Thermal Response Curve for FDPF4D5N10C

Dimensional Outline and Pad Layout

TO-220, Molded, 3-Lead, Jedec Variation AB (Delta)

G. FAIRCHILD SEMICONDUCTOR.


4 472

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other

ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by

ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

Dimensional Outline and Pad Layout

TO220, Molded, 3-Lead, Full Pack, EIAJ SC91, Straight Lead

ON Semiconductor and the ON Logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.

ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any itability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by

ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.