NPN / PNP Silicon Switching Transistor Array

- High current gain
- Low collector-emitter saturation voltage
- Two (galvanic) internal isolated NPN / PNP transistor in one package
- Pb-free (RoHS compliant) package
- Qualified according AEC Q101

SMBT3904PN

SMBT3904UPN

Type	Marking						Pin Configuration					Package
SMBT3904PN	s3P	$1=\mathrm{E}$	$2=\mathrm{B}$	$3=\mathrm{C}$	$4=\mathrm{E}$	$5=\mathrm{B}$	$6=\mathrm{C}$	SOT363				
SMBT3904UPN	s 3 P	$1=\mathrm{E}$	$2=\mathrm{B}$	$3=\mathrm{C}$	$4=\mathrm{E}$	$5=\mathrm{B}$	$6=\mathrm{C}$	SC74				

Maximum Ratings

Parameter	Symbol	Value	Unit
Collector-emitter voltage	V_{CEO}	40	V
Collector-base voltage	V_{CBO}	40	
Emitter-base voltage	$V_{\text {EBO }}$	6	
Collector current	I_{C}	200	mA
Total power dissipation-	$P_{\text {tot }}$		mW
$T_{\text {S }} \leq 115^{\circ} \mathrm{C}$, SMBT3904PN		250	
$T_{\text {S }} \leq 105^{\circ} \mathrm{C}$, SMBT3904UPN		330	
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Storage temperature	$T_{\text {stg }}$	$-65 \ldots 150$	

Thermal Resistance			
Parameter	Symbol	Value	Unit
Junction - soldering point ${ }^{1)}$	$R_{\text {thJS }}$		K/W
SMBT3904PN		≤ 140	
SMBT3904UPN		≤ 135	

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage $I_{\mathrm{C}}=1 \mathrm{~mA}, I_{\mathrm{B}}=0$	$V_{\text {(BR)CEO }}$	40	-	-	V
Collector-base breakdown voltage $I_{\mathrm{C}}=10 \mu \mathrm{~A}, I_{\mathrm{E}}=0$	$V_{(\mathrm{BR}) \mathrm{CBO}}$	40	-	-	
Emitter-base breakdown voltage $I_{E}=10 \mu \mathrm{~A}, I_{\mathrm{C}}=0$	$V_{(\mathrm{BR}) \mathrm{EBO}}$	6	-	-	
Collector-base cutoff current $V_{\mathrm{CB}}=30 \mathrm{~V}, I_{\mathrm{E}}=0$	$I_{\text {CBO }}$	-	-	50	nA
DC current gain ${ }^{2)}$ $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=1 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=50 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \\ & I_{\mathrm{C}}=100 \mathrm{~mA}, V_{\mathrm{CE}}=1 \mathrm{~V} \end{aligned}$	$h_{\text {FE }}$	$\begin{gathered} 40 \\ 70 \\ 100 \\ 60 \\ 30 \end{gathered}$		300	-
Collector-emitter saturation voltage ${ }^{2}$) $\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=1 \mathrm{~mA} \\ & I_{\mathrm{C}}=50 \mathrm{~mA}, I_{\mathrm{B}}=5 \mathrm{~mA} \end{aligned}$	$V_{\text {CEsat }}$	-		$\begin{gathered} 0.25 \\ 0.4 \end{gathered}$	V
Base emitter saturation voltage ${ }^{2)}$ $\begin{aligned} & I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B}}=1 \mathrm{~mA} \\ & I_{\mathrm{C}}=50 \mathrm{~mA}, I_{\mathrm{B}}=5 \mathrm{~mA} \end{aligned}$	$V_{\text {BEsat }}$	0.65	-	$\begin{aligned} & 0.85 \\ & 0.95 \end{aligned}$	

[^0]SMBT3904...PN

Electrical Characteristics at $T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics					
Transition frequency $I_{\mathrm{C}}=10 \mathrm{~mA}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=100 \mathrm{MHz}$	f_{\top}	250	-	-	MHz
Collector-base capacitance $V_{\mathrm{CB}}=10 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{c b}$	-	-	3.5	pF
Emitter-base capacitance $V_{\mathrm{EB}}=0.5 \mathrm{~V}, f=1 \mathrm{MHz}$	$C_{\text {eb }}$	-	-	10	
Delay time $\begin{aligned} & V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=1 \mathrm{~mA}, \\ & V_{\mathrm{BE}(\text { (off })}=0.5 \mathrm{~V} \end{aligned}$	t_{d}	-	-	35	ns
Rise time $\begin{aligned} & V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=1 \mathrm{~mA}, \\ & V_{\mathrm{BE}(\text { off })}=0.5 \mathrm{~V} \end{aligned}$	t_{r}	-	-	35	
Storage time $V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=1 \mathrm{~mA}$	$t_{\text {stg }}$	-	-	225	
Fall time $V_{\mathrm{CC}}=3 \mathrm{~V}, I_{\mathrm{C}}=10 \mathrm{~mA}, I_{\mathrm{B} 1}=I_{\mathrm{B} 2}=1 \mathrm{~mA}$	t_{f}	-	-	75	
Noise figure $\begin{aligned} & I_{\mathrm{C}}=100 \mu \mathrm{~A}, V_{\mathrm{CE}}=5 \mathrm{~V}, f=1 \mathrm{kHz}, \\ & \Delta f=200 \mathrm{~Hz}, R_{\mathrm{S}}=1 \mathrm{k} \Omega \end{aligned}$	F	-	-	5	dB

DC current gain $h_{\text {FE }}=f\left(I_{C}\right)$
$V_{C E}=1 \mathrm{~V}$, normalized

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ SMBT3904PN

Saturation voltage $I_{\mathrm{C}}=f\left(V_{\mathrm{BEsat}} ; V_{\mathrm{CEsat}}\right)$
$h_{\text {FE }}=10$

Total power dissipation $P_{\text {tot }}=f\left(T_{\mathrm{S}}\right)$ SMBT3904UPN

Permissible Pulse Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ SMBT3904PN

Permissible Puls Load $R_{\text {thJS }}=f\left(t_{\mathrm{p}}\right)$ SMBT3904UPN

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
SMBT3904PN

Permissible Pulse Load
$P_{\text {totmax }} / P_{\text {totDC }}=f\left(t_{\mathrm{p}}\right)$
SMBT3904UPN

Delay time $t_{\mathrm{d}}=f\left(I_{\mathrm{C}}\right)$
Rise time $t_{\mathrm{r}}=f\left(I_{\mathrm{C}}\right)$

Fall time $t_{\mathrm{f}}=f\left(l_{\mathrm{C}}\right)$

Storage time $t_{\mathrm{stg}}=f\left(I_{\mathrm{C}}\right)$

Rise time $t_{\mathrm{r}}=f\left(I_{\mathrm{C}}\right)$

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Package Outline

Foot Print

Marking Layout (Example)

Small variations in positioning of
Date code, Type code and Manufacture are possible.

Standard Packing

Reel $\varnothing 180 \mathrm{~mm}=3.000$ Pieces/Reel
Reel $\varnothing 330 \mathrm{~mm}=10.000$ Pieces/Reel
For symmetric types no defined Pin 1 orientation in reel.

Edition 2009-11-16

Published by
Infineon Technologies AG
81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{1}$ For calculation of $R_{\text {thJA }}$ please refer to Application Note AN077 (Thermal Resistance Calculation)
 ${ }^{2}$ Pulse test: $\mathrm{t}<300 \mu \mathrm{~s}$; $\mathrm{D}<2 \%$

