Product data sheet

1. General description

The TJA1083G FlexRay node transceiver is compliant with the FlexRay Electrical Physical Layer specification ISO 17458-4:2013 (see Ref. 1 and Ref. 2). It is primarily intended for communication systems operating at between 2.5 Mbit/s and 10 Mbit/s, and provides an advanced interface between the protocol controller and the physical bus in a FlexRay network. The TJA1083G offers an optimized solution for Electronic Control Unit (ECU) applications that do not need enhanced power management and are typically switched by the ignition or activated by a dedicated wake-up line.

The TJA1083G provides a differential transmit capability to the network and a differential receive capability to the FlexRay controller. It offers excellent ElectroMagnetic Compatibility (EMC) performance as well as high ElectroStatic Discharge (ESD) protection.

The TJA1083G actively monitors system performance using dedicated error and status information (readable via SPI), as well as internal voltage and temperature monitoring.

The TJA1083G is fully functionally and pin compatible with the TJA1083 (see Ref. 3).

2. Features and benefits

2.1 Optimized for time triggered communication systems

- Compliant with ISO 17458-4:2013 (see Ref. 2)
- Automotive product qualification in accordance with AEC-Q100
- Data transfer rates from 2.5 Mbit/s to 10 Mbit/s
- Supports 60 ns minimum bit time at 400 mV differential input voltage
- Very low ElectroMagnetic Emission (EME) to support unshielded cable, meeting the latest industry standards
- Differential receiver with high common-mode range for excellent ElectroMagnetic Immunity (EMI), meeting the latest industry standards
- Auto I/O level adaptation to host controller supply voltage V_{IO}
- Can be used in 14 V, 24 V and 48 V powered systems
- Instant transmitter shut-down interface (BGE pin)

2.2 Low-power management

- Very low current consumption in Standby mode
- Remote wake-up via a wake-up pattern or dedicated FlexRay data frames on the bus lines

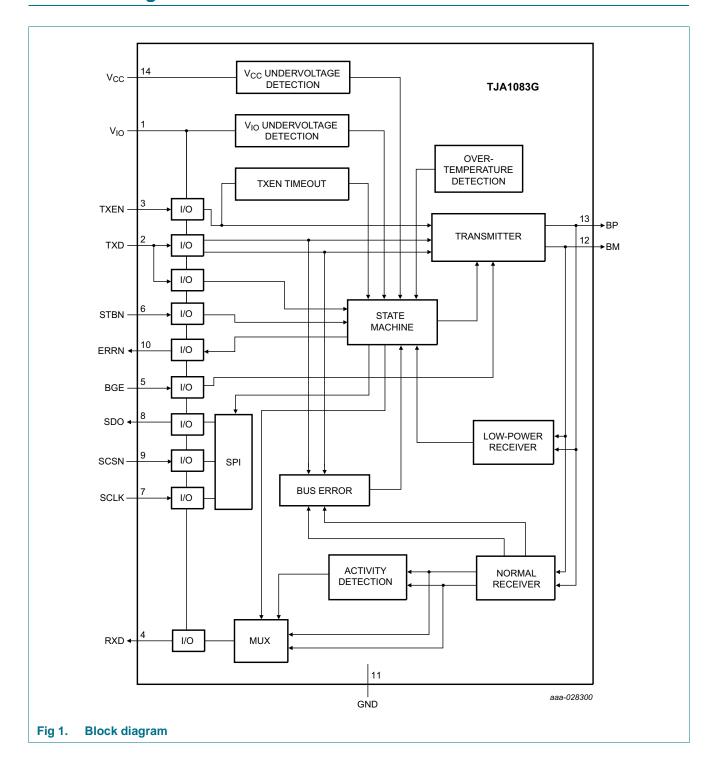
2.3 Diagnosis and robustness

- Enhanced supply voltage monitoring for V_{CC} and V_{IO}
- Two error diagnosis modes:
 - ◆ Status register readout via the Serial Peripheral Interface (SPI)
 - ◆ Simple error indication via pin ERRN
- Overtemperature detection
- Short-circuit detection on bus lines
- Power-on flag
- Clamping diagnosis for pins TXEN and BGE
- Bus pins protected against ±6 kV ESD pulses according to IEC61000-4-2 and ±8 kV according to HBM
- Bus pins protected against transients in automotive environment (according to ISO 7637 class C)
- Bus pins short-circuit proof to battery voltage (14 V, 24 V and 48 V) and ground
- Maximum differential voltage between pins BP or BM and any other pin of ±60 V
- Bus lines remain passive when the transceiver is not powered
- No reverse currents from the digital input pins to V_{IO} or V_{CC} when the transceiver is not powered

2.4 Functional classes according to FlexRay Electrical Physical Layer specification V3.0.1

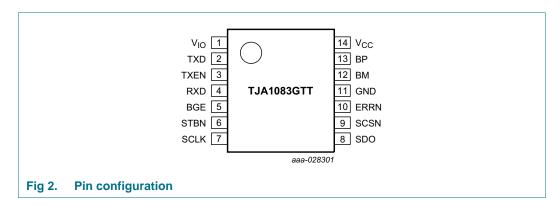
- Bus driver bus guardian control interface
- Bus driver logic level adaptation
- Bus driver remote wake-up

3. Ordering information


Table 1. Ordering information

Type number	Package	Package						
	Name	Description	Version					
TJA1083GTT	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1					

Downloaded from Arrow.com.


2 of 41

4. Block diagram

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Туре	Description
V_{IO}	1	Р	supply voltage for V_{IO} voltage level adaptation
TXD	2	I	transmit data input; internal pull-down
TXEN	3	I	transmitter enable input; when HIGH transmitter disabled; internal pull-up
RXD	4	0	receive data output
BGE	5	I	bus guardian enable input; when LOW transmitter disabled; internal pull-down
STBN	6	I	mode control input; transceiver in Normal mode when HIGH; internal pull-down
SCLK	7	I	SPI clock signal; internal pull-up
SDO	8	0	SPI data output
SCSN	9	I	SPI chip select input; internal pull-up/pull-down
ERRN	10	0	error diagnosis output and wake-up indication
GND	11	Р	ground
ВМ	12	I/O	bus line minus
BP	13	I/O	bus line plus
V_{CC}	14	Р	supply voltage (+5 V)

6. Functional description

6.1 Power modes

The TJA1083G features three power modes: Normal, Standby and Power-off. Normal and Standby modes can be selected via the STBN input (HIGH for Normal mode) once the transceiver has been powered up. See <u>Table 3</u> for a detailed description of pin signaling in the three power modes.

Product data sheet

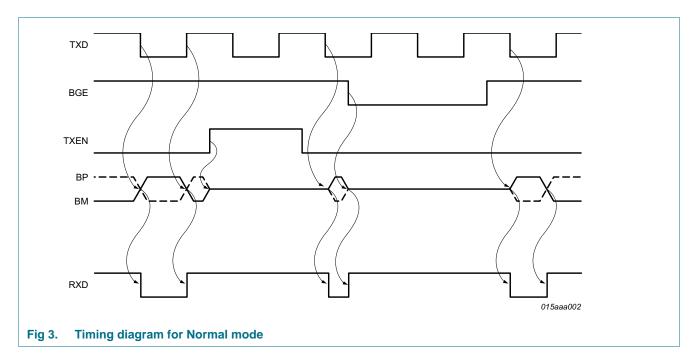
Table 3. Pin signaling in the different power modes

	•	•			•									
Mode	STBN	UV at V _{IO}	UV at V _{CC}	ERRN LOW	HIGH	RXD LOW	HIGH	SDO	Biasing BP, BM	UV-det	Trans- mitter	Low- power receiver		
Normal	HIGH	no	no	error flag set	error flag reset	bus DATA _0	bus DATA_1 or idle	high- impedance (in simple	V _{CC} / 2	enabled	enabled	enabled[1]		
Standby	LOW	no	no	wake flag set	wake flag reset	wake flag set	wake flag reset	error indication mode) or enabled	GND	GND		disabled	enabled ^[2]	
	LOW	no	yes[3]	wake flag set ^[4]	wake flag reset ^[4]	wake flag set ^[4]	wake flag reset ^[4]	(in SPI mode)				disabled		
	HIGH	no	yes[3]	error flag set	error flag reset	wake flag set ^[4]	wake flag reset ^[4]							
	Χ	yes <u>[5]</u>	no	LOW		LOW		high-				enabled[2]		
	X	yes[5]	yes[3]	LOW		LOW		impedance				disabled		
Power-off	X	X[5]	yes	high- imped	lance	HIGH			GND[6]	disabled		disabled		

^[1] The wake flag is set if a valid wake-up event is detected while switching to Standby mode.

6.1.1 Normal mode

In Normal mode, the transceiver transmits and receives data via the bus lines BP and BM. The transmitter and the normal receiver are enabled, along with the undervoltage detection function. The timing diagram for Normal mode is illustrated in Figure 3.


^[2] The wake flag is set if a valid wake-up event is detected.

^[3] $V_{uvd(VCC)} > V_{CC} > V_{th(det)POR}$.

^[4] Pins ERRN and RXD reflect the state of the wake flag prior to the V_{CC} undervoltage event.

^[5] The internal signals at pins STBN, BGE and TXD are set LOW; the internal signals at pins TXEN, SCLK and SCSN are set HIGH.

^[6] Except when $V_{CC} = 0$; in this case BP and BM are floating.

<u>Table 4</u> describes the behavior of the transmitter in Normal mode, when the temperature flag (TEMP HIGH) is not set and with no timeout on pin TXEN. Transmitter behavior is illustrated in Figure 13.

Table 4. Transmitter operation in Normal mode

BGE	TXEN	TXD	Bus state	Transmitter
L	Χ	Χ	idle	transmitter is disabled
X	Н	X	idle	transmitter is disabled
Н	L	Н	DATA_1	transmitter is enabled; the bus lines are actively driven; BP is driven HIGH and BM is driven LOW
Н	L	L	DATA_0	transmitter is enabled; the bus lines are actively driven; BP is driven LOW and BM is driven HIGH

The transmitter is activated during the first LOW level on pin TXD while pin BGE is HIGH and pin TXEN is LOW.

In Normal mode, the normal receiver output is connected directly to pin RXD (see Table 5). Receiver behavior is illustrated in Figure 14.

Table 5. Behavior of normal receiver in Normal mode

Bus state	RXD
DATA_0	L
DATA_1	Н
idle	Н

When V_{IO} and V_{CC} are within their operating ranges, pin ERRN indicates the status of the error flag. See Section 6.8 for a detailed description of error signaling in Normal mode.

6.1.1.1 Bus activity and idle detection

In Normal mode, bus activity and bus idle are detected as follows:

- Bus activity is detected when the absolute differential voltage on the bus lines is higher than |V_{i(dif)det(act)|} for t_{det(act)(bus)}:
 - If the differential voltage on the bus lines is lower than V_{IL(dif)} after bus activity has been detected, pin RXD switches LOW.
 - If the differential voltage on the bus lines is higher than V_{IH(dif)} after bus activity has been detected, pin RXD remains HIGH.
- Bus idle is detected when the absolute differential voltage on the bus lines is lower than |V_{i(dif)det(act)}| for t_{det(idle)(bus)}. This results in pin RXD being switched HIGH or staying HIGH.

6.1.2 Standby mode

Standby mode is a low-power mode featuring very low current consumption. In Standby mode, the transceiver is unable to transmit or receive data since both the transmitter and the normal receiver are switched off. The low-power receiver is activated to monitor the bus for wake-up activity, provided an undervoltage has not been detected on pin V_{CC}.

The low-power receiver is deactivated if an undervoltage is detected on pin V_{CC} - with the result that the wake flag is not set if a wake-up pattern or dedicated data frame is received.

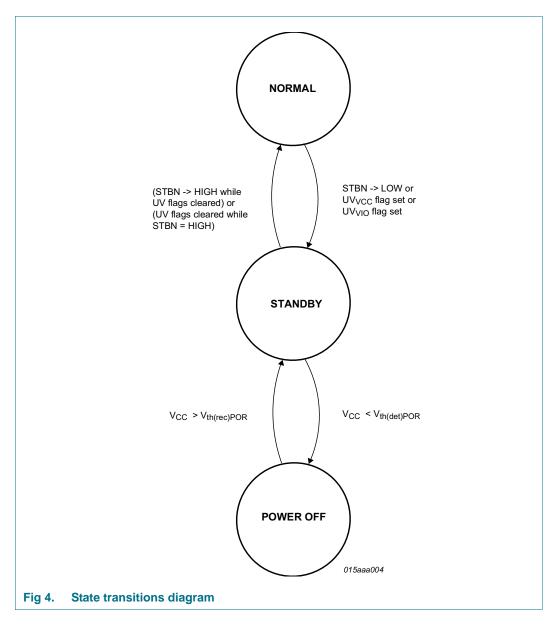
Pins ERRN and RXD indicate the status of the wake flag when V_{IO} and V_{CC} are within their operating ranges. See <u>Table 3</u> for a description of pins ERRN and RXD when an undervoltage is detected on pin V_{IO} or pin V_{CC} .

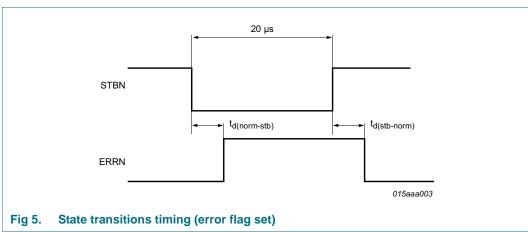
The status register cannot be read via the SPI interface if an undervoltage is detected on pin V_{IO} .

The BGE input has no effect in Standby mode.

6.1.3 Power-off mode

The transmitter and the two receivers (normal and low-power) are deactivated in Power-off mode. As a result, the wake flag is not set if a wake-up pattern or dedicated data frame is received. If the voltage at V_{CC} rises above $V_{th(rec)POR}$, the transceiver switches to Standby mode and the digital section is reset. If V_{CC} later drops below $V_{th(det)POR}$, the transceiver reverts to Power-off mode (see Section 6.2).


The status register cannot be read via the SPI interface in Power-off mode.


6.1.4 State transitions

<u>Figure 4</u> shows the TJA1083G state transition diagram. The timing diagram for the ERRN indication signal during transitions between Normal and Standby modes, when the error flag is set and the wake flag is not set, is illustrated in Figure 5 and described in Table 6.

NXP Semiconductors TJA1083G

FlexRay node transceiver

TJA1083G

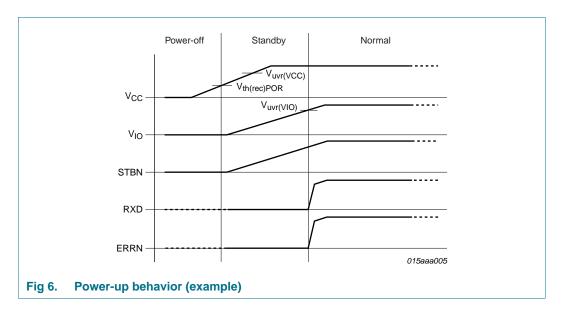
All information provided in this document is subject to legal disclaimers.

Table 6. State transitions

 \rightarrow indicates the action that initiates a transaction; 1 \rightarrow and 2 \rightarrow are the consequences of a transaction.

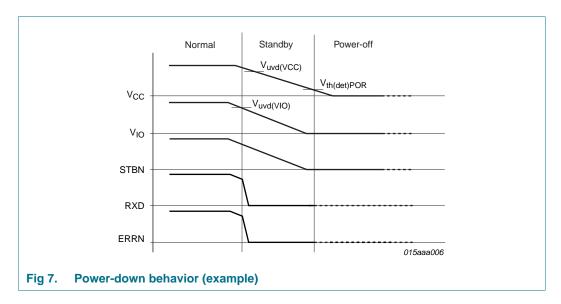
Transition	UVV _{IO} flag <mark>[1]</mark>	UVV _{CC} flag <mark>[1]</mark>	wake flag[1]	PWON flag[1]	STBN	VCC level
Normal to Standby	cleared	cleared	cleared	cleared	$\to L$	$V_{CC} > V_{uvd(VCC)}$
	$\rightarrow \text{set}$	cleared	cleared	cleared	Н	$V_{CC} > V_{uvd(VCC)}$
	cleared	\rightarrow set	cleared	cleared	Н	$V_{\text{uvd(VCC)}} > V_{\text{CC}} > V_{\text{th(det)POR}}$
Standby to Normal	cleared	cleared	$1 \rightarrow cleared$	$2 \rightarrow \text{cleared}$	\rightarrow H	$V_{CC} > V_{uvd(VCC)}$
	$\rightarrow \text{cleared}$	cleared	$1 \rightarrow cleared$	$2 \rightarrow \text{cleared}$	Н	$V_{CC} > V_{uvd(VCC)}$
	cleared	$\rightarrow \text{cleared}$	$1 \rightarrow cleared$	$2 \rightarrow \text{cleared}$	Н	$V_{\text{uvd(VCC)}} > V_{\text{CC}} > V_{\text{th(det)POR}}$
Standby to Power-off	Χ	set	X	X	Χ	\rightarrow V _{CC} < V _{th(det)POR}
Power-off to Standby	Χ	set	Χ	$1 \rightarrow set$	Χ	\rightarrow V _{CC} > V _{th(rec)POR}

^[1] See <u>Table 7</u> for set and reset conditions of all flags.


6.2 Power-up and power-down behavior

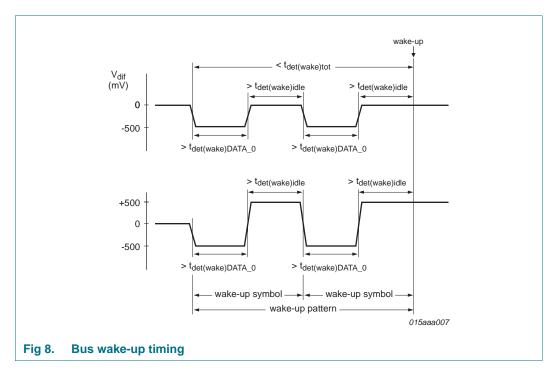
6.2.1 Power-up

The TJA1083G has two supply pins: V_{CC} (+5 V) and V_{IO} (for the voltage level adaptation). The ramp up of the different power supplies can vary, depending on the state or value of a number of signals and parameters. The power-up behavior of the TJA1083G is not affected by the sequence in which power is supplied to these pins or by the voltage ramp up.


As an example, Figure 6 shows one possible power supply ramp-up scenario. The digital section of the TJA1083G is supplied by V_{CC} . The voltage on pin V_{CC} ramps up before the voltage on pin V_{IO} . As long as the voltage on V_{CC} remains below the power-on reset recovery threshold, $V_{th(rec)POR}$, the internal state machine is inactive and the transceiver is totally passive, remaining in Power-off mode. As soon as the voltage rises above the $V_{th(rec)POR}$ threshold, the internal state machine starts running, setting the PWON flag and switching the TJA1083G to Standby mode. This initializes the V_{CC} and V_{IO} under-voltage flags to the set state (since both V_{CC} and V_{IO} are actually in undervoltage state just after power-on).

Once both V_{IO} and V_{CC} have reached their operating ranges, the under-voltage flags are reset. The operating mode is then determined by the level on STBN (the TJA1083G switches to Normal mode if STBN is HIGH and remains in Standby mode if STBN is LOW), provided V_{IO} and V_{CC} are above their respective undervoltage recovery levels $(V_{uvr(VIO)})$ and $V_{uvr(VCC)})$.

6.2.2 Power-down

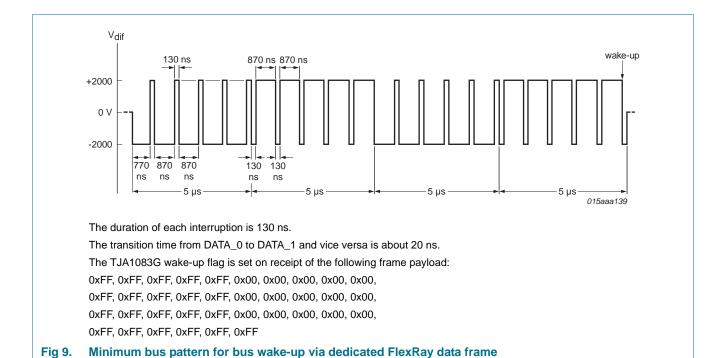

The behavior of the TJA1083G during power-down is illustrated in Figure 7.

6.3 Remote wake-up

6.3.1 Bus wake-up via wake-up pattern

A valid remote wake-up event occurs when a wake-up pattern is received. A wake-up pattern consists of at least two consecutive wake-up symbols. A wake-up symbol comprises a DATA_0 phase lasting longer than $t_{det(wake)DATA_0}$ followed by an idle phase lasting longer than $t_{det(wake)idle}$, provided both wake-up symbols occur within a time span of $t_{det(wake)tot}$ (see Figure 8). The transceiver also wakes up if DATA_1 phases are substituted for the idle phases.

See Ref. 1 for more details of the wake-up mechanism.


6.3.2 Bus wake-up via dedicated FlexRay data frame

The TJA1083G wake flag is set when a dedicated data frame emulating a valid wake-up pattern, as shown in Figure 9, is received.

The DATA_0 and DATA_1 phases of the emulated wake-up symbol are interrupted by the Byte Start Sequence (BSS) preceding each byte in the data frame. With a data rate of 10 Mbit/s, the interruption has a maximum duration of 130 ns and does not prevent the transceiver from recognizing the wake-up pattern in the payload.

For longer interruptions at lower data rates (5 Mbit/s and 2.5 Mbit/s), the wake-up pattern should be used (see Section 6.3.1).

The wake flag is not set if an invalid wake-up pattern is received. See Ref. 1 for more details on invalid wake-up patterns.

6.4 Bus error detection

The TJA1083G detects the following bus errors during transmission:

- Short-circuit BP to BM at the ECU connector or on the bus
- Short-circuit BP to GND at the ECU connector or on the bus
- Short-circuit BM to GND at the ECU connector or on the bus
- Short-circuit BP to V_{CC} at the ECU connector or on the bus
- Short-circuit BM to V_{CC} at the ECU connector or on the bus

The bus error flag is not set when a wake-up pattern or a FlexRay Collision Avoidance Symbol (CAS) is being transmitted or received.

6.5 Fail silent behavior

Three mechanisms guarantee the 'fail silent' behavior of the TJA1083G:

- The TXEN clamped flag is set if pin TXEN goes LOW for longer than t_{detCL(TXEN)} in Normal mode; the transmitter is disabled.
- The BGE clamped flag is set if pin BGE goes HIGH for longer than t_{detCL(BGE)} in Normal mode; no action is taken.
- If a loss-of-ground occurs at the transceiver, resulting in the TJA1083G switching to Power-off mode, no current flows out of the digital input pins (TXD, TXEN, BGE, STBN, SCLK, SCSN); see Table 3 for details of the behavior of the bus pins.

6.6 TJA1083G flags

The TJA1083G has 11 status/error flags, described in Table 7.

TJA1083G

All information provided in this document is subject to legal disclaimers.

Table 7. TJA1083G flags and set/reset conditions

Flag name	Flag type	Flag description	Set condition	Reset condition[1]	Consequence of flag set
bus wake	status flag	indicates if a wake-up event has occurred	wake-up event on bus in Standby mode ^[2]	transition to Normal mode	$\begin{array}{l} RXD \to LOW; \\ ERRN \to LOW \stackrel{[3]}{\longrightarrow} \end{array}$
Normal mode	status flag	indicates if the transceiver is in Normal mode	entering Normal mode	leaving Normal mode	-
transmitter enabled	status flag	indicates the transmitter status	transmitter enabled[4]	transmitter disabled	-
BGE clamped	status flag	indicates if pin BGE is clamped	BGE HIGH for longer than t _{detCL(BGE)} [5]	BGE LOW[5]	-
PWON	status flag	indicates when the digital section is initialized	$V_{CC} > V_{th(rec)POR}$	transition to Normal mode	-
bus error	error flag	indicates if a bus error has been detected	bus error detected[5]	no bus error detected or positive edge on TXEN ^[5]	ERRN → LOW 6
TEMP HIGH	error flag	indicates if the max. junction temperature has been reached	$T_{vj} > T_{j(dis)(high)}^{[5]}$	TXEN = HIGH while $T_{vj} < T_{j(dis)(high)}$ [5]	ERRN → LOW [6]; transmitter disabled
TXEN clamped	error flag	indicates if pin TXEN is clamped	TXEN LOW for longer than t _{detCL(TXEN)} [5]	TXEN = HIGH[5]	ERRN \rightarrow LOW [6]; transmitter disabled
UVV _{CC}	error flag	indicates if there is an undervoltage at pin V_{CC}	$V_{CC} < V_{uvd(VCC)}$ for longer than $t_{det(uv)(VCC)}$	$V_{CC} > V_{uvr(VCC)}$ for longer than $t_{rec(uv)(VCC)}$	ERRN → LOW [6]; entering Standby mode
UVV _{IO}	error flag	indicates if there is an undervoltage at pin V _{IO}	$V_{IO} < V_{uvd(VIO)}$ for longer than $t_{det(uv)(VIO)}$	$V_{IO} > V_{uvr(VIO)}$ for longer than $t_{rec(uv)(VIO)}$	ERRN → LOW [6]; entering Standby mode
SPI error	error flag	indicates if an SPI error has occurred	SPI error detected ^[8]	falling edge on SCSN	ERRN → LOW [7]; SDO goes to a high impedance state

- [1] All flags, except for the PWON flag, are reset after a power-on reset.
- [2] If an undervoltage has not been detected on pin V_{CC}.
- [3] If STBN = LOW.
- [4] If BGE = HIGH, the Normal mode flag is set, the TEMP HIGH flag is not set, and the TXEN clamped flag is not set.
- [5] Flag can only be set or reset in Normal mode or on leaving Normal mode.
- [6] If STBN = HIGH.
- [7] If STBN = HIGH in SPI mode
- [8] The SPI error flag is set when:
 - a) more than 16 falling edges occur on pin SCLK while pin SCSN = LOW
 - b) less than 16 falling edges occur on pin SCLK while pin SCSN = LOW.

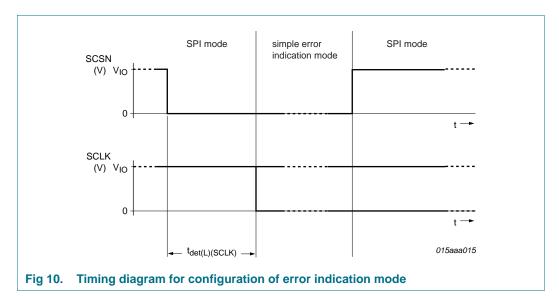
6.7 TJA1083G status register

The TJA1083G contains a 16-bit status register, of which bits S0 to S4 reflects the state of the status flags, bits S5 to S10 reflect the state of the error flags and bit S15 is a parity bit. All flags can be individually read out on pin SDO via a 16-bit SPI interface when the transceiver is configured in SPI mode. The status register bits are described in Table 8.

Table 8. TJA1083G status register

Status bit	Flag name	Set condition	Reset condition
S0	bus wake	bus wake flag set	bus wake flag cleared
S1	Normal mode	Normal mode flag set	Normal mode flag cleared
S2	transmitter enabled	transmitter enabled flag set	transmitter enabled flag cleared
S3	BGE clamped	BGE clamped flag set	BGE clamped flag cleared
S4	PWON	PWON flag set	PWON flag cleared and successful readout[1]
S5	bus error	bus error flag set	bus error flag cleared and successful readout 1]
S6	TEMP HIGH	TEMP HIGH flag set	TEMP HIGH flag cleared and successful readout [1]
S7	TXEN clamped	TXEN clamped flag set	TXEN clamped flag cleared and successful readout 11
S8	UVV _{CC}	UVV _{CC} flag set	UVV _{CC} flag cleared and successful readout[1]
S9	UVV _{IO}	UVV _{IO} flag set	UVV_IO flag cleared and successful readout $^{\boxed{11}}$
S10	SPI error	SPI error flag set	SPI error flag cleared and successful readout[1]
S11	reserved	always LOW	
S12	reserved	always HIGH	
S13	reserved	always LOW	
S14	reserved	always HIGH	
S15	parity bit	odd parity of status bits	even parity of status bits

^[1] Also cleared during Power-off.


6.8 Error signaling

The TJA1083G provides two modes for error indication:

- Simple error indication mode
- SPI mode (default mode)

SPI mode is active on power-up.

To switch to simple error indication mode, SCSN must be held LOW (connected to GND) and SCLK held HIGH (connected to V_{IO}) for longer than $t_{det(L)(SCLK)}$ (provided a V_{IO} undervoltage has not occurred). When the TJA1083G is in simple error indication mode, a rising edge on SCSN initiates a transition to SPI mode (again provided a V_{IO} undervoltage has not occurred); see Figure 10.

If a V_{IO} undervoltage condition is detected, it is not possible to switch between SPI mode and simple error indication mode.

6.8.1 **SPI** mode

The error flag information in the status register is latched in SPI mode. This means that the status bit is reset once the status register has been completely read (provided the corresponding error flag has been reset). If an error condition is detected in Normal mode, pin ERRN goes LOW (provided one of the error bits, S5 to S10, is set). Pin ERRN goes HIGH again once all the error bits have been reset.

6.8.2 Simple error indication mode

If an error condition is detected in Normal mode, pin ERRN goes LOW once the relevant error flag has been set. Pin ERRN stays stable for at least $t_{\text{ERRNL(min)}}$ and goes HIGH again when all error conditions have been cleared and all flags have been reset. Error flags are not latched. It is not possible to read-out the status bits in this mode.

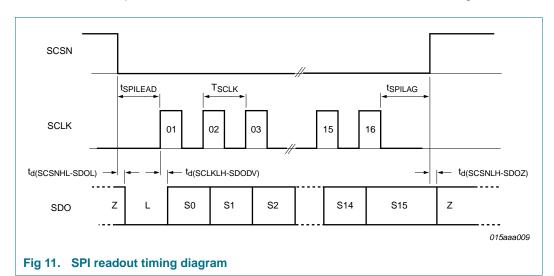
6.9 SPI interface

The TJA1083G includes a 16-bit SPI interface to enable a host to read the status register when the transceiver is in SPI mode (see Section 6.8).

While pin SCSN is HIGH, the SDO output is in a high-impedance state. To begin a status register readout, the host must force pin SCSN LOW. This action causes the SDO pin to output a LOW level by default. The data on pin SDO is then shifted out on the rising edge of the clock signal on pin SCLK.

The status bits shifted out on pin SDO are active HIGH. The status bits are refreshed and pin SDO returned to a high-impedance state once the status register has been read successfully (after exactly 16 clock cycles) and SCSN has been forced HIGH again. Clock signals on SCLK are ignored while SCSN is HIGH. The timing diagram for the SPI readout is illustrated in Figure 11.

The SLCK period ranges from 500 ns to 100 μ s (10 kbit/s to 2 Mbit/s).


If SCSN remains LOW for longer than 16 clock cycles, it is recognized as an SPI error. When this happens, the SPI error flag is set and pin SDO goes to a high-impedance state until the next falling edge on pin SCSN.

An SPI error is also assumed if fewer than 16 clock cycles are received while SCSN is LOW. If this happens, the SPI error flag is set.

All status bits are refreshed once the status register has been successfully read.

When the transceiver is in simple error indication mode the SDO output is in a high-impedance state and pin SCSN is in pull-down mode. In SPI mode pin SCSN is in pull-up mode.

SPI readout is not possible when the transceiver has detected an undervoltage on V_{IO}.

7. Limiting values

Table 9. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage	no time limit	-0.3	+5.5	V
V_{IO}	supply voltage on pin V _{IO}	no time limit	-0.3	+5.5	V
V_{ERRN}	voltage on pin ERRN	no time limit	-0.3	$V_{IO} + 0.3$	V
V_{RXD}	voltage on pin RXD	no time limit	-0.3	$V_{1O} + 0.3$	V
V_{SDO}	voltage on pin SDO	no time limit	-0.3	$V_{1O} + 0.3$	V
V_{TXEN}	voltage on pin TXEN	no time limit	-0.3	+5.5	V
V_{TXD}	voltage on pin TXD	no time limit	-0.3	+5.5	V
V_{STBN}	voltage on pin STBN	no time limit	-0.3	+5.5	V
V_{SCSN}	voltage on pin SCSN	no time limit	-0.3	+5.5	V
V_{SCLK}	voltage on pin SCLK	no time limit	-0.3	+5.5	V
V_{BGE}	voltage on pin BGE	no time limit	-0.3	+5.5	V
V_{BP}	voltage on pin BP	no time limit (with respect to pins BM and GND)	-60	+60	V

TJA1083G All information provided in this document is subject to legal disclaimers.

 Table 9.
 Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{BM}	voltage on pin BM	no time limit (with respect to pins BP and GND)	-60	+60	V
I _{I(ERRN)}	input current on pin ERRN	no time limit; V _{IO} = 0 V	-10	10	mA
I _{I(RXD)}	input current on pin RXD	no time limit; $V_{IO} = 0 \text{ V}$	-10	10	mA
I _{I(SDO)}	input current on pin SDO	no time limit; V _{IO} = 0 V	-10	10	mA
V _{trt}	transient voltage	on pins BM and BP	<u>[1]</u> –100	-	V
			[2] _	75	V
			[<u>3</u>] -150	-	V
			[4]	100	V
T _{stg}	storage temperature		-55	+150	°C
T _{vj}	virtual junction temperature		<u>[5]</u> –40	+150	°C
T _{amb}	ambient temperature		-40	+125	°C
V _{ESD}	electrostatic discharge voltage	IEC61000-4-2 on pins BP and BM to ground	<u>[6]</u> –6.0	+6.0	kV
		HBM on pins BP and BM to ground	<u>[7]</u> –8.0	+8.0	kV
		HBM on any other pin	<u>[7]</u> −4.0	+4.0	kV
		MM on all pins	<u>[8]</u> −200	+200	V
		CDM on all pins	<u>9</u> –1000	+1000	V

^[1] According to ISO7637, test pulse 1, class C; verified by an external test house.

8. Thermal characteristics

Table 10. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit	
$R_{th(j-a)}$	thermal resistance from junction to ambient	dual-layer board	109.5	K/W	
		four-layer board	[<u>2</u>] 83.0	K/W	

^[1] According to JEDEC JESD51-2 and JESD51-3 at natural convection on 1s board.

TJA1083G

^[2] According to ISO7637, test pulse 2a, class C; verified by an external test house.

^[3] According to ISO7637, test pulse 3a, class C; verified by an external test house.

^[4] According to ISO7637, test pulse 3b, class C; verified by an external test house.

In accordance with IEC 60747-1. An alternative definition of T_{vj} is: $T_{vj} = T_{amb} + P \times R_{th(j-a)}$, where $R_{th(j-a)}$ is a fixed value used in the calculation of T_{vj} . The rating for T_{vj} limits the allowable combinations of power dissipation (P) and ambient temperature (T_{amb}).

^[6] IEC61000-4-2: C = 150 pF; R = 330 Ω ; verified by an external test house; the test results were equal to or better than ± 6 kV (unaided).

^[7] HBM: C = 100 pF; R = 1.5 k Ω .

^[8] MM: C = 200 pF; L = 0.75 μ H; R = 10 Ω .

^[9] CDM: $R = 1 \Omega$.

^[2] According to JEDEC JESD51-2 and JESD51-7 at natural convection on 2s2p board. Board with two inner copper layers (thickness: 35 μm).

9. Static characteristics

Table 11. Static characteristics

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Pin V _{CC}						
I _{CC}	supply current	Standby mode with no undervoltage; $T_{\nu j} \leq 85~^{\circ}C$	-	20	30	μА
		Standby mode with no undervoltage; $T_{\nu j} \leq 150~^{\circ}C$	-	20	40	μΑ
		Power-off mode; $T_{vj} \le 85 ^{\circ}\text{C}$	-	-	30	μΑ
		Power-off mode; $T_{vj} \leq 150~^{\circ}C$	-	-		μΑ
		Normal mode; $V_{BGE} = 0 \text{ V or } V_{TXEN} = V_{IO}$	-	13	21	mA
		Normal mode; $V_{BGE} = V_{IO}$; $V_{TXEN} = 0 \text{ V}$	-	36	50	mA
		Normal mode; $V_{BGE} = V_{IO}$; $V_{TXEN} = 0 \text{ V}$; $R_{bus} > 10 \text{ M}\Omega$	-	14	22	mA
$V_{uvd(VCC)}$	undervoltage detection voltage on pin $V_{\rm CC}$		4.45	-	4.729	V
$V_{uvr(VCC)}$	undervoltage recovery voltage on pin V _{CC}		4.47	-	4.749	V
V _{uvhys(VCC)}	undervoltage hysteresis voltage on pin V_{CC}		20	-	290	mV
$V_{th(det)POR}$	power-on reset detection threshold voltage		3.75	-	4.15	V
V _{th(rec)POR}	power-on reset recovery threshold voltage		3.85	-	4.25	V
$V_{hys(POR)}$	power-on reset hysteresis voltage		100	-	500	mV
Pin V _{IO}						
I _{IO}	supply current on pin V _{IO}	Normal mode; $V_{TXEN} = V_{IO}$; $V_{BGE} = V_{IO}$; $R_{RXD} > 10 \text{ M}\Omega$	-	-	1000	μΑ
		Normal mode; $V_{TXEN} = 0 \text{ V}$; $V_{BGE} = V_{IO}$; $R_{RXD} > 10 \text{ M}\Omega$	-	-	1000	μА
		Standby mode with no undervoltage	-	2.2	7	μΑ
		Power-off mode; $V_{IO} = 5 \text{ V}$	-	3	7	μΑ
$V_{uvd(VIO)}$	undervoltage detection voltage on pin V _{IO}		2.55	-	2.774	V
$V_{uvr(VIO)}$	undervoltage recovery voltage on pin V _{IO}		2.575	-	2.799	V
V _{uvhys(VIO)}	undervoltage hysteresis voltage on pin V _{IO}		25	-	240	mV
Pin SCSN						
V _{IH}	HIGH-level input voltage		$0.7V_{IO}$	-	5.5	V
1A1083C						

Table 11. Static characteristics ... continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	Simple error indication mode; $V_{SCSN} = 0.7V_{IO}$	3	-	15	μΑ
I _{IL}	LOW-level input current	SPI mode; $V_{SCSN} = 0.3V_{IO}$	−15	-	-3	μΑ
I _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{SCSN} = 5 \text{ V}$; $V_{CC} = V_{IO} = 0 \text{ V}$	- 5	0	+5	μА
Pin SCLK						
V_{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V_{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	V _{SCLK} = V _{IO}	-1	0	+1	μΑ
I _{IL}	LOW-level input current	V _{SCLK} = 0.3V _{IO}	–15	-	-3	μΑ
I _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{SCLK} = 5 \text{ V}$; $V_{CC} = V_{IO} = 0 \text{ V}$	-5	0	+5	μА
Pin STBN						
V _{IH}	HIGH-level input voltage		$0.7V_{IO}$	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_{STBN} = 0.7V_{IO}$	3	-	15	μА
I _{IL}	LOW-level input current	V _{STBN} = 0 V	-1	0	+1	μА
Ir	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{STBN} = 5 \text{ V}$; $V_{CC} = V_{IO} = 0 \text{ V}$	-5	0	+5	μΑ
Pin TXEN						
V _{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V _{IL}	LOW-level input voltage		-0.3	-	0.3V _{IO}	V
I _{IH}	HIGH-level input current	$V_{TXEN} = V_{IO}$	-1	0	+1	μΑ
I _{IL}	LOW-level input current	$V_{TXEN} = 0.3V_{IO}$	-300	-	-50	μΑ
I _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{TXEN} = 5 \text{ V}$; $V_{CC} = V_{IO} = 0 \text{ V}$	-5	0	+5	μΑ
Pin BGE						
V_{IH}	HIGH-level input voltage		0.7V _{IO}	-	5.5	V
V_{IL}	LOW-level input voltage		-0.3	-	$0.3V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{BGE} = 0.6V_{IO}$	3	-	15	μΑ
I _{IL}	LOW-level input current	V _{BGE} = 0 V	-1	0	+1	μΑ
I _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{BGE} = 5 \text{ V}$; $V_{CC} = V_{IO} = 0 \text{ V}$	-5	0	+5	μΑ
Pin TXD						
V_{IH}	HIGH-level input voltage	Normal mode	0.6V _{IO}	-	5.5	V
V_{IL}	LOW-level input voltage	Normal mode	-0.3	-	$0.4V_{IO}$	V
I _{IH}	HIGH-level input current	$V_{TXD} = 0.6V_{IO}$	3	-	15	μΑ
I _{IL}	LOW-level input current	$V_{TXD} = 0 V$	-1	0	+1	μΑ

TJA1083

All information provided in this document is subject to legal disclaimers.

Table 11. Static characteristics ... continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
l _r	reverse current	Power-off mode; to V_{CC}/V_{IO} ; $V_{TXD} = 5 \text{ V}$; $V_{CC} = V_{IO} = 0 \text{ V}$	– 5	0	+5	μА
C _i	input capacitance	with respect to all other pins at ground; $V_{TXD} = 100 \text{ mV}$; $f = 5 \text{ MHz}$	<u>[1]</u> -	-	10	pF
Pin RXD						
V _{OH}	HIGH-level output voltage	$I_{OH(RXD)} = -1.5 \text{ mA}$	V _{IO} – 0.4	-	V_{IO}	V
V_{OL}	LOW-level output voltage	$I_{OL(RXD)} = 1.5 \text{ mA}$	-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{RXD} = V_{IO} - 0.4 \text{ V}; V_{IO} = V_{CC}$	–15	-	-1.0	mA
I _{OL}	LOW-level output current	$V_{RXD} = 0.4 \text{ V}$	1.0	-	15	mA
Vo	output voltage	when undervoltage on V_{IO} ; $R_L = 100 \; k\Omega$ to GND	-	-	500	mV
		Power-off mode; $R_L = 100 \text{ k}\Omega \text{ to V}_{IO}$	V _{IO} – 500) -	V_{IO}	mV
Pin ERRN						
V _{OH}	HIGH-level output voltage	$I_{OH(ERRN)} = -100 \mu A$	V _{IO} – 0.4	-	V_{IO}	V
V_{OL}	LOW-level output voltage	$I_{OL(ERRN)} = 200 \mu A$	-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{ERRN} = V_{IO} - 0.4 \text{ V}; V_{IO} = V_{CC}$	-1500	-	-100	μА
I _{OL}	LOW-level output current	$V_{ERRN} = 0.4 \text{ V}$	200	-	1700	μА
IL	leakage current	Power-off mode; $V_{ERRN} \le V_{IO}$	– 5	-	+5	μΑ
V _O	output voltage	when undervoltage on V_{IO} ; $R_L = 100 \; k\Omega$ to GND	-	-	500	mV
		Power-off mode; $R_L = 100 \text{ k}\Omega \text{ to GND}$	-	-	500	mV
Pin SDO						
V_{OH}	HIGH-level output voltage	$I_{OH(SDO)} = -0.5 \text{ mA}$	V _{IO} – 0.4	-	V_{IO}	V
V _{OL}	LOW-level output voltage	$I_{OL(SDO)} = 0.8 \text{ mA}$	-	-	0.4	V
I _{OH}	HIGH-level output current	$V_{SDO} = V_{IO} - 0.4 V$	-8	-3	-0.5	mA
I _{OL}	LOW-level output current	$V_{SDO} = 0.4 V$	0.8	3	9	mA
IL	leakage current	high-impedance state; 0 V < V _{SDO} < V _{IO}	-5	-	+5	μА

TJA1083G

All information provided in this document is subject to legal disclaimers.

 Table 11.
 Static characteristics ...continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _O	output voltage	when undervoltage on V _{IO} ; V _{CC} > 4.75 V; R _L = 100 k Ω to GND		-500	-	+500	mV
		Power-off mode; $R_L = 100 \text{ k}\Omega \text{ to GND}$		-	-	500	mV
Pins BP and	ВМ						
V _{o(idle)(BP)}	idle output voltage on	Normal mode; V _{TXEN} = V _{IO}		$0.4V_{CC}$	$0.5V_{CC}$	$0.6V_{CC}$	V
	pin BP	Standby mode with no undervoltage on pin $V_{\mbox{\footnotesize CC}}$		-0.1	0	+0.1	V
$V_{o(idle)(BM)} \\$	idle output voltage on	Normal mode; $V_{TXEN} = V_{IO}$		$0.4V_{CC}$	$0.5V_{CC}$	$0.6V_{CC}$	V
	pin BM	Standby mode with no undervoltage on pin $V_{\mbox{\footnotesize CC}}$		-0.1	0	+0.1	V
$I_{o(idle)BP}$	idle output current on pin BP	Normal and Standby modes with no undervoltage; $-60~V \le V_{BP} \le +60~V$		−7.5	-	+7.5	mA
I _{o(idle)BM}	idle output current on pin BM	Normal and Standby modes with no undervoltage; $-60~V \le V_{BM} \le +60~V$		−7.5	-	+7.5	mA
$V_{o(idle)(dif)}$	differential idle output voltage	Normal mode		-25	0	+25	mV
$V_{OH(dif)}$	differential HIGH-level	$4.75 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$		600	-	2000	mV
	output voltage	$4.45 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$		530	-	2000	mV
$V_{OL(dif)}$	differential LOW-level	$4.75~V \leq V_{CC} \leq 5.25~V$		-2000	-	-600	mV
	output voltage	$4.45~V \leq V_{CC} \leq 5.25~V$		-2000		-530	mV
$V_{IH(dif)}$	differential HIGH-level input voltage	Normal mode; $-10 \text{ V} \le V_{cm} \le +15 \text{ V}$	<u>[2]</u>	150	225	300	mV
$V_{IL(dif)}$	differential LOW-level	Normal mode; $-10 \text{ V} \le V_{cm} \le +15 \text{ V}$	[2]	-300	-225	-150	mV
	input voltage	Standby mode with no undervoltage on pin $V_{CC};$ -10 V $\leq V_{cm} \leq$ +15 V	<u>[2]</u>	-400	-225	-100	mV
$ \Delta V_{i(dif)(H\text{-}L)} $	differential input volt. diff. betw. HIGH- and LOW-levels (abs. value)	$V_{cm} = 2.5 \text{ V}$	[2]	-	-	30	mV
$ V_{i(dif)det(act)} \\$	activity detection differential input voltage (absolute value)			150	225	300	mV
$ I_{O(sc)} $	short-circuit output current (absolute value)	on pin BP; -5 V \leq V _{BP} \leq +60 V; R _{sc} \leq 1 Ω ; t _{sc} \geq 1500 μ s	[4][6]	-	-	60	mA
		on pin BM; $-5 \text{ V} \le \text{V}_{BM} \le +60 \text{ V};$ $R_{sc} \le 1 \Omega$; $t_{sc} \ge 1500 \mu\text{s}$	[4][6]	-	-	60	mA
		on pins BP and BM; $V_{BP} = V_{BM}$; $R_{sc} \le 1 \Omega$; $t_{sc} \ge 1500 \mu s$	<u>[5][6]</u>	-	-	60	mA
$R_{i(BP)}$	input resistance on pin BP	$R_{\text{bus}} = \infty \Omega$		10	20	40	kΩ
$R_{i(BM)}$	input resistance on pin BM	$R_{bus} = \infty \Omega$		10	20	40	kΩ

TJA1083G

All information provided in this document is subject to legal disclaimers.

Table 11. Static characteristics ... continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω to 55 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$R_{i(dif)(BP\text{-}BM)}$	differential input resistance between pin BP and pin BM	$R_{bus} = \infty \Omega$		20	40	80	kΩ
I _{LI(BP)}	input leakage current on pin BP	Power-off mode; $V_{CC} = V_{IO} = 0 \text{ V}$; $0 \text{ V} \le V_{BP} \le 5 \text{ V}$		– 5	0	+5	μΑ
		loss of ground; $V_{BP} = V_{BM} = 0 \text{ V}$; all other pins connected to 16 V via 0 Ω	[1]	-1600	-	+1600	μΑ
I _{LI(BM)}	input leakage current on pin BM	Power-off mode; $V_{CC} = V_{IO} = 0 \text{ V}$; $0 \text{ V} \le V_{BM} \le 5 \text{ V}$		– 5	0	+5	μΑ
		loss of ground; $V_{BP} = V_{BM} = 0 \text{ V}$; all other pins connected to 16 V via 0 Ω	<u>[1]</u>	-1600	-	+1600	μΑ
$V_{\text{cm(bus)(DATA_0)}}$	DATA_0 bus common-mode voltage	Normal mode		0.4V _{CC}	0.5V _{CC}	0.65V _{CC}	V
$V_{cm(bus)(DATA_1)}$	DATA_1 bus common-mode voltage	Normal mode		0.4V _{CC}	0.5V _{CC}	0.65V _{CC}	V
$\Delta V_{cm(bus)}$	bus common-mode voltage difference	Normal mode; DATA_1 – DATA_0		–25	0	+25	mV
$C_{i(BP)}$	input capacitance on pin BP	with respect to all other pins at ground; $V_{BP} = 100 \text{ mV}$; $f = 5 \text{ MHz}$	[1]	-	-	15	pF
$C_{i(BM)}$	input capacitance on pin BM	with respect to all other pins at ground; $V_{BM} = 100 \text{ mV}$; $f = 5 \text{ MHz}$	[1]	-	-	15	pF
$C_{i(dif)(\text{BP-BM})}$	differential input capacitance between pin BP and pin BM	with respect to all other pins at ground; $V_{BP} = 100 \text{ mV}$; $V_{BM} = 100 \text{ mV}$; $f = 5 \text{ MHz}$	<u>[1]</u>	-	-	5	pF
$Z_{o(eq)TX}$	transmitter equivalent output impedance	Normal mode; C_{bus} = 100 pF; R_{bus} = 40 Ω or 100 Ω	[3]	35	-	100	Ω
Temperature p	rotection						
$T_{j(dis)(high)}$	high disable junction temperature			180	-	200	°C

^[1] Guaranteed by design.

- [5] R_{sc} is the short-circuit resistance between BP and BM.
- [6] $t_{\rm sc}$ is the minimum duration of the short-circuit

^[2] V_{cm} is the BP/BM common mode voltage.

^[3] $Z_{o(TX)(eq)} = 50 \ \Omega \times (V_{bus(100)} - V_{bus(40)})/(2.5 \times V_{bus(40)} - V_{bus(100)})$, where: $V_{bus(100)} =$ the differential output voltage on a load of 100 Ω and 100 pF in parallel. $V_{bus(40)} =$ the differential output voltage on a load of 40 Ω and100 pF in parallel, when driving a DATA_1.

^[4] R_{sc} is the short-circuit resistance; voltage difference between bus pins BP and BM is 60 V max.

10. Dynamic characteristics

Table 12. Dynamic characteristics

All parameters are guaranteed for $V_{CC} = 4.45 \text{ V}$ to 5.25 V; $V_{IO} = 2.55 \text{ V}$ to 5.25 V; $T_{vj} = -40 \text{ °C}$ to +150 °C; $R_{bus} = 40 \Omega$ and $C_{bus} = 100 \text{ pF}$ unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Pins BP and B	M						
t _{d(TXD-bus)}	delay time from TXD to bus	Normal mode	[1][2]				
		DATA_0		-	-	60	ns
		DATA_1		-	-	60	ns
$\Delta t_{d(TXD\text{-bus})}$	delay time difference from TXD to bus	Normal mode; between DATA_0 and DATA_1; Normal mode	[1][2]	-4	-	+4	ns
t _{d(bus-RXD)}	delay time from bus to RXD	Normal mode; $C_{RXD} = 25 pF$; $V_{cm} = 2.5 V$	[3][4]				
		DATA_0		-	-	75	ns
		DATA_1		-	-	75	ns
$\Delta t_{d(bus\text{-RXD})}$	delay time difference from bus to RXD	between DATA_0 and DATA_1; Normal mode; C_{RXD} = 25 pF; V_{cm} = 2.5 V	[3][4]	– 5	-	5	ns
t _{d(TXEN-busidle)}	delay time from TXEN to bus idle	Normal mode; $V_{TXD} = 0 V$	<u>[5]</u>	-	-	75	ns
t _{d(TXEN-busact)}	delay time from TXEN to bus active	Normal mode; V _{TXD} = 0 V	<u>[5]</u>	-	-	75	ns
$ \Delta t_{\text{d(TXEN-bus)}} $	delay time difference from TXEN to bus (absolute value)	Normal mode; between TXEN to bus active and TXEN to bus idle; $V_{TXD} = 0 \ V$	[6][5]			50	ns
t _{d(BGE-busidle)}	delay time from BGE to bus idle	Normal mode; $V_{TXD} = 0 V$	<u>[5]</u>	-	-	75	ns
t _{d(BGE-busact)}	delay time from BGE to bus active	Normal mode; V _{TXD} = 0 V	<u>[5]</u>	-	-	75	ns
t _{r(dif)(bus)}	bus differential rise time	DATA_0 to DATA_1; 20 % to 80 %	<u>[5]</u>	6	-	18.75	ns
t _{f(dif)(bus)}	bus differential fall time	DATA_1 to DATA_0; 80 % to 20 %	<u>[5]</u>	6	-	18.75	ns
$\Delta t_{(r-f)(dif)}$	difference between differential rise and fall time	on bus; 80 % to 20 %	[5]	-3	-	3	ns
t _{f(bus)(idle-act)}	bus fall time from idle to active	bus idle to DATA_0; $-30 \text{ mV} > V_{\text{dif}} > -300 \text{ mV}$	[5][7]	-	-	30	ns
t _{f(bus)(act-idle)}	bus fall time from active to idle	DATA_1 to bus idle; 300 mV > V _{dif} > 30 mV	[5][7]	-	-	30	ns
t _{r(bus)(act-idle)}	bus rise time from active to idle	DATA_0 to bus idle; -300 mV < V_{dif} < -30 mV	[5][7]	-	-	30	ns
Wake-up detec	tion						
t _{det(wake)} DATA_0	DATA_0 wake-up detection time	Standby mode with no undervoltage on pin V_{CC} ; -10 V \leq V _{cm} \leq +15 V	[3][8]	1	-	4	μS
t _{det(wake)idle}	idle wake-up detection time	Standby mode with no undervoltage on pin V_{CC} ; -10 V \leq V _{cm} \leq +15 V	[3][8]	1	-	4	μS

TJA10830

All information provided in this document is subject to legal disclaimers.

 Table 12.
 Dynamic characteristics ...continued

All parameters are guaranteed for V_{CC} = 4.45 V to 5.25 V; V_{IO} = 2.55 V to 5.25 V; T_{vj} = -40 °C to +150 °C; R_{bus} = 40 Ω and C_{bus} = 100 pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{det(wake)tot}	total wake-up detection time	Standby mode with no undervoltage on pin V_{CC} ; -10 V \leq V _{cm} \leq +15 V	[3][8]	50	-	115	μS
t _{sup(int)} wake	wake-up interruption suppression time	Standby mode with no undervoltage on pin V_{CC} ; -10 V \leq V _{cm} \leq +15 V	[3][9]	130	-	1000	ns
t _{d(wake-ERRN)}	delay time from wake-up to ERRN	Standby mode		-	-	100	μS
t _{d(wake-RXD)}	delay time from wake-up to RXD	Standby mode		-	-	100	μS
Undervoltage							
t _{det(uv)(VCC)}	undervoltage detection time on pin V_{CC}	$0 \text{ V} \le V_{IO} \le 5.5 \text{ V};$ $V_{CC} = 4.35 \text{ V}$		2	-	100	μS
t _{rec(uv)(VCC)}	undervoltage recovery time on pin V_{CC}	$0 \text{ V} \le V_{IO} \le 5.5 \text{ V};$ $V_{CC} = 4.85 \text{ V}$		2	-	100	μS
t _{det(uv)(VIO)}	undervoltage detection time on pin V_{IO}	$V_{th(det)POR} < V_{CC} < 5.5 \text{ V};$ $V_{IO} = 2.45 \text{ V}$		5	-	100	μS
t _{rec(uv)(VIO)}	undervoltage recovery time on pin V_{IO}	$V_{th(det)POR} < V_{CC} < 5.5 \text{ V};$ $V_{IO} = 2.9 \text{ V}$		5	-	100	μS
Activity detection	on						
t _{det(act)(bus)}	activity detection time on bus pins	Normal mode; $V_{cm} = 2.5 \text{ V}$; V_{dif} : 0 mV \rightarrow 400 mV	[3][7]	100	-	250	ns
t _{det(idle)(bus)}	idle detection time on bus pins	Normal mode; $V_{cm} = 2.5 \text{ V}$; V_{dif} : 400 mV \rightarrow 0 mV	[3][7]	50	-	200	ns
$ \Delta t_{\text{det(act-idle)}} $	active to idle detection time difference (absolute value)	Normal mode; on bus pins; $V_{cm} = 2.5 \text{ V}$	[3]	-	-	150	ns
ERRN signaling	3						
t _{det(L)(SCLK)}	LOW-level detection time on pin SCLK	Normal or Standby mode with no undervoltage on pin V _{IO}		95	-	310	μS
t _{ERRNL(min)}	minimum ERRN LOW time	simple error indication mode; Normal or Standby mode		2	-	10	μS
t _{d(errdet-ERRNL)}	delay time from error detection to ERRN LOW	all modes		-	-	100	μS
SPI							
t _d (SCSNHL-SDOL)	SCSN falling edge to SDO LOW-level delay time	$V_{uvd(VIO)} < V_{IO} < 5.5 \text{ V};$ 4.45 V < $V_{CC} < 5.5 \text{ V};$ $C_{SDO} = 50 \text{ pF}$	[10]	-	-	250	ns
t _d (SCLKLH-SDODV)	SCLK rising edge to SDO data valid delay time	$V_{uvd(VIO)} < V_{IO} < 5.5 \text{ V};$ 4.45 V < $V_{CC} < 5.5 \text{ V};$ $C_{SDO} = 50 \text{ pF}$	[10]	-	-	200	ns
t _d (SCSNLH-SDOZ)	SCSN rising edge to SDO three-state delay time	$V_{uvd(VIO)} < V_{IO} < 5.5 \text{ V};$ $4.45 \text{ V} < V_{CC} < 5.5 \text{ V};$ $C_{SDO} = 50 \text{ pF}$	[10]	-	-	500	ns
T _{SCLK}	SCLK period	$V_{uvd(VIO)} < V_{IO} < 5.5 \text{ V};$ 4.45 V < $V_{CC} < 5.5 \text{ V};$ $C_{SDO} = 50 \text{ pF}$	[10]	0.5	-	100	μS

TJA1083G

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors TJA1083G

FlexRay node transceiver

Table 12. Dynamic characteristics ... continued

All parameters are guaranteed for $V_{CC}=4.45$ V to 5.25 V; $V_{IO}=2.55$ V to 5.25 V; $T_{vj}=-40$ °C to +150 °C; $R_{bus}=40$ Ω and $C_{bus}=100$ pF unless otherwise specified. All voltages are defined with respect to ground; positive currents flow into the IC.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
t _{SPILEAD}	SPI enable lead time	$V_{\text{uvd(VIO)}} < V_{\text{IO}} < 5.5 \text{ V};$ $4.45 \text{ V} < V_{\text{CC}} < 5.5 \text{ V};$ $C_{\text{SDO}} = 50 \text{ pF}$	[10]	250	-	-	ns
t _{SPILAG}	SPI enable lag time	$V_{\text{uvd(VIO)}} < V_{\text{IO}} < 5.5 \text{ V};$ $4.45 \text{ V} < V_{\text{CC}} < 5.5 \text{ V};$ $C_{\text{SDO}} = 50 \text{ pF}$	[10]	250	-	-	ns
RXD							
t _r	rise time	20 % to 80 %; C _{RXD} = 15 pF	[6]	-	-	9	ns
		20 % to 80 %; C _{RXD} = 25 pF	[6]	-	-	10.75	ns
t _f	fall time	80 % to 20 %; C _{RXD} = 15 pF	[6]	-	-	9	ns
		80 % to 20 %; C _{RXD} = 25 pF	[6]	-	-	10.75	ns
$\Delta t_{(r-f)}$	difference between rise and fall time	C _{RXD} = 15 pF	[6]	-	-	5	ns
		C _{RXD} = 25 pF	[6]	-	-	5	ns
		C _{RXD} = 10 pF; simulated	[6][11]	-	-	5	ns
t _(r+f)	sum of rise and fall time	C _{RXD} = 15 pF	[6]	-	-	13	ns
		C _{RXD} = 25 pF	[6]	-	-	16.5	ns
		C _{RXD} = 10 pF; simulated	[6][11]	-	-	16.5	ns
Bus error flag							
t _{d(norm-stb)}	normal mode to standby delay time	bus error flag set		3	-	10	μS
t _{d(stb-norm)}	standby to normal mode delay time	bus error flag set		3	-	10	μS
Miscellaneous							
t _{detCL(TXEN)}	TXEN clamp detection time			650	-	2600	μS
t _{detCL(BGE)}	BGE clamp detection time			650	-	2600	μS
$t_{d(TXENH-RXDH)}$	delay time from TXEN HIGH to RXD HIGH	idle loop delay; Normal mode; TXD = LOW; V _{cm} = 2.5 V; C _{RXD} = 25 pF	[3]	-	-	300	ns

^[1] Sum of TXD rise and fall times (20 % to 80 %); $t_{r(TXD)}$ + $t_{f(TXD)}$ = max. 9 ns.

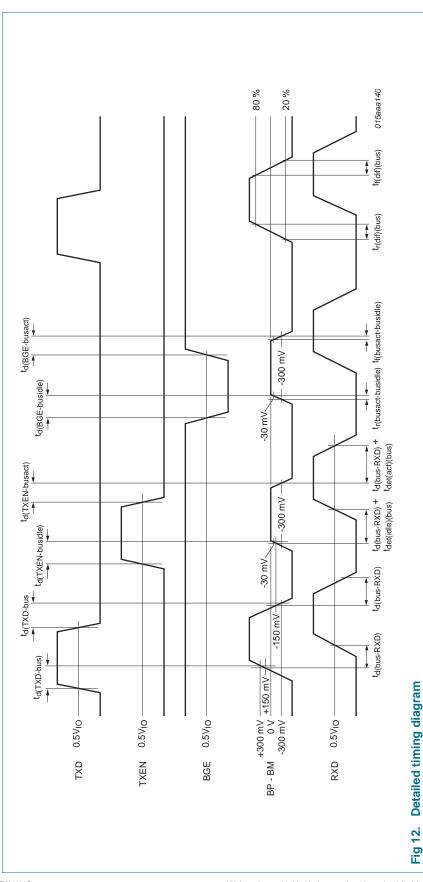
[11] Load at end of 50 Ω microstrip with a propagation delay of 1 ns; 20 % to 80 % and 80 % to 20 %.

^[2] See <u>Figure 13</u>.

^[3] V_{cm} is the BP/BM common mode voltage.

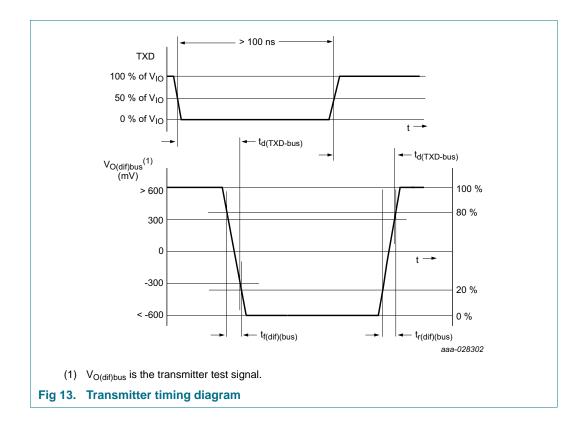
^[4] See Figure 14.

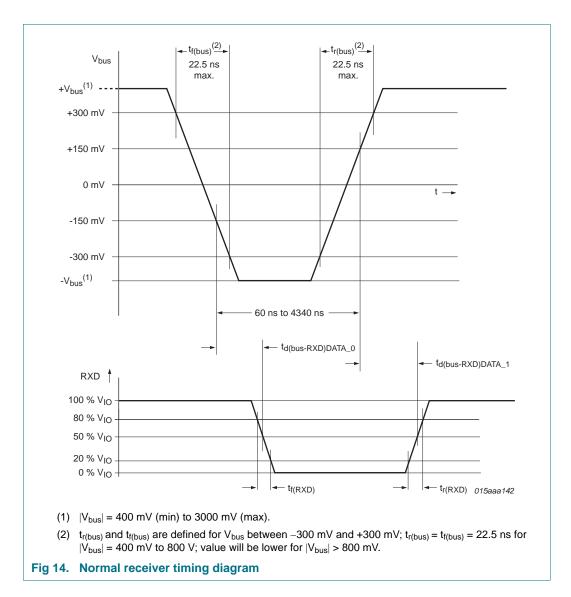
^[5] See <u>Figure 13</u>.


^[6] Guaranteed by design.

^[7] $V_{dif} = V_{BP} - V_{BM}$.

^[8] See Figure 8.


^[9] See Figure 9.


^[10] See Figure 11.

TJA1083G

All information provided in this document is subject to legal disclaimers.

11. Application information

Further information on the application of the TJA1083G can be found in NXP application hints AH1101 TJA1083/TJA1083G FlexRay node transceiver (Ref. 4).

12. Test information

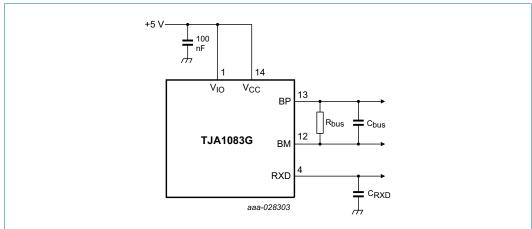
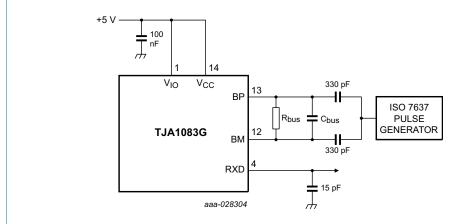



Fig 15. Test circuit for measuring dynamic characteristics

The waveforms of the applied transients are in accordance with ISO 7637, test pulses 1, 2a, 3a and 3b.

Test conditions:

Normal mode: bus idle

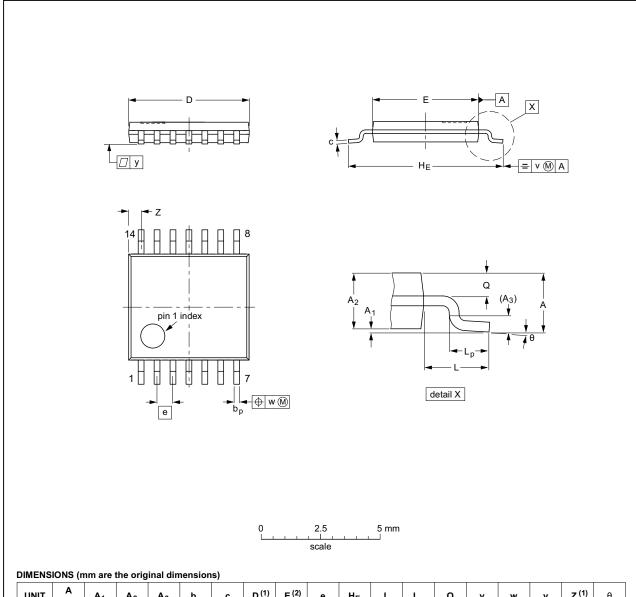

Normal mode: bus active; TXD at 5 MHz and TXEN at 1 kHz

Fig 16. Test circuit for measuring automotive transients

13. Package outline

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	C	D ⁽¹⁾	E (2)	e	HE	L	Lp	Q	>	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	RENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT402-1		MO-153			-99-12-27 03-02-18
SOT402-1		MO-153			<u></u>

Fig 17. Package outline SOT402-1 (TSSOP14)

.1083G All information provided in this document is subject to legal disclaimers.

14. Soldering of SMD packages

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365* "Surface mount reflow soldering description".

14.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

14.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus SnPb soldering

14.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- Solder bath specifications, including temperature and impurities

14.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 18</u>) than a SnPb process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 13 and 14

Table 13. SnPb eutectic process (from J-STD-020D)

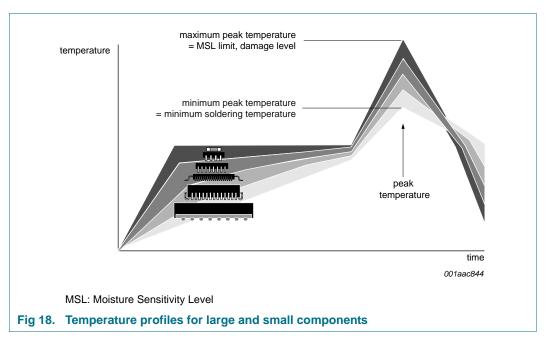

Package thickness (mm)	Package reflow temperature (°C)
	Volume (mm³)	
	< 350	≥ 350
< 2.5	235	220
≥ 2.5	220	220

Table 14. Lead-free process (from J-STD-020D)

Package thickness (mm)	Package reflow temp	erature (°C)	
	Volume (mm ³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 18.

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

15. Appendix

15.1 Differences between TJA1083 and TJA1083G

The main differences between the TJA1083 and the TJA1083G are:

- The TJA1083 is JASPAR compliant (minimum transmitter output voltage of 900 mV) whereas the TJA1083G is not (minimum transmitter output voltage of 600 mV).
- The TJA1083G has improved EMC behavior.

15.2 Implementation of EPL 3.0.1 requirements in the TJA1083G

Table 15. EPL 3.0.1 implementation in TJA1083G

EPL 3.0.1				TJA1083G			
	Min	Max	Unit	Symbol	Min	Max	Unit
dBDRxAsym	-	5	ns	$ \Delta t_{\text{d(bus-RXD)}} $	0	5	ns
dBDRx10	-	75	ns	t _{d(bus-RXD)}	-	75	ns
dBDRx01	-	75	ns	t _{d(bus-RXD)}	-	75	ns
dBDRxai	50	275	ns	$t_{det(idle)(bus)} + t_{d(bus-RXD)}$	100	275	ns
dBDRxia	100	325	ns	t _{det(act)(bus)} + t _{d(bus-RXD)}	100	325	ns
dBDTxAsym	-	4	ns	$ \Delta t_{d(TXD\text{-bus})} $	0	4	ns
dBDTx10	-	75	ns	t _{d(TXD-bus)}	-	60	ns
dBDTx01	-	75	ns	t _{d(TXD-bus)}	-	60	ns
dBDTxai	-	75	ns	t _{d(TXEN-busidle)}	-	75	ns
dBDTxia	-	75	ns	t _{d(TXEN-busact)}	-	75	ns
dBusTxai	-	30	ns	t _{r(bus)(act-idle)}	-	30	ns
dBusTxia	-	30	ns	t _{f(bus)(idle-act)}	-	30	ns
dBusTx01	6	18.75	ns	$t_{r(dif)(bus)}$	6	18.75	ns
dBusTx10	6	18.75	ns	$t_{f(dif)(bus)}$	6	18.75	ns
uBDTx _{active}	600	2000	mV	$V_{OH(dif)}$	600	2000	mV
uBDTx _{idle}	0	30	mV	$ V_{o(idle)(dif)} $	0	25	mV
uV _{DIG-OUT-HIGH}	80	100	%	$V_{OH(RXD)}$	$V_{IO}-0.4$	V_{IO}	V
				V _{OH(ERRN)}	$V_{IO}-0.4$	V_{IO}	V
$uV_{DIG-OUT-LOW}$	-	20	%	$V_{OL(RXD)}$	-	0.4	V
				V _{OL(ERRN)}	-	0.4	V
uV _{DIG-IN-HIGH}	-	70	%	V _{IH(TXEN)}	0.7V _{IO}	5.5	V
				$V_{IH(STBN)}$	$0.7V_{IO}$	5.5	V
				$V_{IH(BGE)}$	0.7V _{IO}	5.5	V
uV _{DIG-IN-LOW}	30	-	%	V _{IL(TXEN)}	-0.3	+0.3V _{IO}	V
				V _{IL(STBN)}	-0.3	+0.3V _{IO}	V
				$V_{IL(BGE)}$	-0.3	+0.3V _{IO}	V
uData0	-300	-150	mV	$V_{IL(dif)}$	-300	-150	mV
uData1	150	300	mV	$V_{IH(dif)}$	150	300	mV
uData1- uData0	-30	30	mV	$ \Delta V_{i(dif)(H-L)} $	-	30	mV
dBDActivityDetection	100	250	ns	t _{det(act)(bus)}	100	250	ns
dBDIdleDetection	50	200	ns	t _{det(idle)(bus)}	100	200	ns
R _{CM1} , R _{CM2}	10	40	kΩ	R _{i(BP)} , R _{i(BM)}	10	40	kΩ
uCM	-10	15	V	V _{cm} [1]	-10	+15	V
iBM _{GNDShortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	mΑ
iBP _{GNDShortMax}	-	60	mA	I _{O(sc)(BP)}	-	60	mΑ
iBM _{BAT48ShortMax}	-	72	mA	I _{O(sc)(BM)}	-	60	mΑ
iBP _{BAT48ShortMax}	-	72	mA	I _{O(sc)(BP)}	-	60	mΑ
iBM _{BAT27ShortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	mΑ

TJA1083G

All information provided in this document is subject to legal disclaimers.

Table 15. EPL 3.0.1 implementation in TJA1083G

EPL 3.0.1				TJA1083G			
	Min	Max	Unit	Symbol	Min	Max	Uni
iBP _{BAT27ShortMax}	-	60	mA	$ I_{O(sc)(BP)} $	-	60	mΑ
uBias, non low-power modes	1800	3200	mV	$V_{o(idle)(BP)}, V_{o(idle)(BM)}$ [2]	1800	3150	mV
uBias, low-power modes	-200	200	mV	$V_{o(idle)(BP)}, V_{o(idle)(BM)}^{\boxed{3}}$	-0.1	+0.1	V
dWU _{0Detect}	1	4	μS	t _{det(wake)DATA_0}	1	4	μS
dWU _{IdleDetect}	1	4	μS	t _{det(wake)idle}	1	4	μS
dWU _{Timeout}	48	140	μS	t _{det(wake)tot}	50	115	μS
uBDUVV _{CC}	4	-	V	$V_{uvd(VCC)}$	4.45	4.729	V
dBDUVV _{CC}	-	1000	ms	t _{det(uv)(VCC)}	2	100	μS
iBP _{Leak}	-	25	μΑ	I _{LI(BP)}	-5	+5	μΑ
iBM _{Leak}	-	25	μΑ	I _{LI(BM)}	-5	+5	μΑ
Functional class 'bus driver logic level adaptation'				implemented; see Section 2.4			
Functional class 'bus driver - bus guardian interface'				implemented; see Section 2.4			
Device qualification according to AEC-Q100 (Rev. F)				see Section 2.1			
T _{AMB_Class1}	-40	125	°C	T _{amb}	-40	+125	°C
dBDTxDM	-50	50	ns	$\Delta t_{d(TXEN-bus)}$	-50	50	ns
iBM _{-5VshortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	m/
iBP _{-5VshortMax}	-	60	mΑ	I _{O(sc)(BP)}	-	60	m/
iBM _{BPShortMax}	-	60	mA	I _{O(sc)(BM)}	-	60	m/
iBP _{BMShortMax}	-	60	mΑ	I _{O(sc)(BP)}	-	60	m/
iBM _{BAT60} ShortMax	-	90	mΑ	I _{O(sc)(BM)}	-	60	mΑ
iBP _{BAT60ShortMax}	-	90	mΑ	I _{O(sc)(BP)}	-	60	mΑ
uUV _{IO}	2	-	V	$V_{uvd(VIO)}$	2.55	2.774	V
dBDUVV _{IO}	-	1000	ms	t _{det(uv)(VIO)}	5	100	μS
dBDWakeupReaction _{remote}	-	100	μS	t _{d(wake-ERRN)} , t _{d(wake-RXD)}	-	100	μS
dBDTxActiveMax	650	2600	μS	t _{detCL(TXEN)}	650	2600	μS
dBDModeChange	100	100	μS	t _{d(norm-stb)} , t _{d(stb-norm)}	3	10	μS
dBDERRN _{Stable}	1	10	μS	t _{ERRN(min)}	2	10	μS
dReactionTime _{ERRN}	-	100	μS	t _{d(errdet-ERRNL)}	-	100	μS
uData0_LP	-400	-100	mV	$V_{IL(dif)}$	-400	-100	m۱
dWU _{Interrupt}	0.13	1	μS	t _{sup(int)wake}	130	1000	ns
uBDLogic_1	-	60	%	$V_{IH(TXD)}$	0.6V _{IO}	5.5	V
uBDLogic_0	40	-	%	$V_{IL(TXD)}$	-0.3	$0.4V_{IO}$	V
dBDRV _{CC}	-	10	ms	t _{rec(uv)(VCC)}	2	100	μS
dBDRV _{IO}	-	10	ms	t _{rec(uv)(VIO)}	5	100	μS
iBP _{LeakGND}	-	1600	μΑ	I _{LI(BP)}	-1600	1600	μΑ
iBM _{LeakGND}	-	1600	μΑ	I _{LI(BM)}	-1600	1600	μΑ
Functional class 'bus driver remote wakeup'				implemented; see Section 2.4			

TJA1083G

All information provided in this document is subject to legal disclaimers.

Table 15. EPL 3.0.1 implementation in TJA1083G

EPL 3.0.1				TJA1083G			
	Min	Max	Unit	Symbol	Min	Max	Unit
uESD _{Ext}	6	-	kV	$ V_{\mbox{\footnotesize{ESD}}} $: HBM on pins BP and BM to GND	-	8	kV
uESD _{Int}	2	-	kV	$ V_{\text{ESD}} $: HBM on any other pin	-	4	kV
uESD _{IEC}	6	-	kV	V _{ESD} : IEC61000-4-2 on pins BP and BM to GND	-	8	kV
$dBDRxD_{R15} + dBDRxD_{F15}$	-	13	ns	$\sum t_{(r+f)}$ (pin RXD; 15 pF load)	-	13	ns
$ dBDRxD_{R15} - dBDRxD_{F15} $	-	5	ns	$ \Delta t_{(r-f)} $ (pin RXD; 15 pF load)	-	5	ns
C_BDTxD	-	10	pF	$C_{i(TXD)}$	-	10	pF
dBDTxRxai	-	325	ns	t _{d(TXENH-RXDH)}	-	300	ns
uV _{DIG-OUT-UV}	-	500	mV	V _{O(UVVIO)RXD}	-	500	mV
				V _{O(UVVIO)ERRN}	-	500	mV
				V _{O(UVVIO)SDO}	-	500	mV
uV _{DIG-OUT-OFF} product specific		V _{OL(RXD)} [4]	$V_{IO}-500$	V_{IO}	mV		
				V _{OL(ERRN)} [4]	-	500	mV
				V _{OL(SDO)} [4]	-	500	mV
R _{BDTransmitter}	product	specific		$Z_{o(TX)(eq)}$	35	100	Ω
RxD signal sum of rise and fall time at TP4_CC	-	16.5	ns	\sum t _(r+f) (pin RXD; 10 pF load; simulated)	-	16.5	ns
dBDRxD _{R25} + dBDRxD _{F25}	-	16.5	ns	$\sum t_{(r+f)}$ (pin RXD; 25 pF load)	-	16.5	ns
dBDRxD _{R25} – dBDRxD _{F25}	-	5	ns	$ \Delta t_{(r-f)} $ (pin RXD; 25 pF load)	-	5	ns
dBusTxDif	-	3	ns	$ \Delta t_{(r-f)(dif)} $	-	3	ns
RxD signal difference of rise and fall time at TP4_CC	-	5	ns	$ \Delta t_{(r-f)} $ (pin RXD; 10 pF load; simulated)	-	5	ns

^[1] V_{cm} is the BP/BM common mode voltage, (V_{BP} + V_{BM}) / 2, and is specified in conditions column of parameters V_{IH(dif)} and V_{IL(dif)} for pins BP and BM; see <u>Table 11</u>. V_{cm} is tested on a receiving bus driver with a transmitting bus driver that has a ground offset voltage in the range –12.5 V to +12.5 V and transmits a 50/50 pattern.

^[2] Min. value: $V_{o(idle)(BP)} = V_{o(idle)(BM)} = 0.4V_{CC} = 0.4 \times 4.5 \text{ V} = 1800 \text{ mV}$; max value: $V_{o(idle)(BP)} = V_{o(idle)(BM)} = 0.6V_{CC} = 0.6 \times 5.25 \text{ V} = 3150 \text{ mV}$; the nominal voltage is 2500 mV.

^[3] The normal voltage is 0 mV.

^[4] Power-off mode.

16. Abbreviations

Table 16. Abbreviations

Abbreviation	Description
CDM	Charged Device Model
ECU	Electronic Control Unit
EMC	ElectroMagnetic Compatibility
EME	ElectroMagnetic Emission
EMI	ElectroMagnetic Immunity
ESD	ElectroStatic Discharge
НВМ	Human Body Model
JASPAR	Japan Automotive Software Platform Architecture
MM	Machine Model
PWON	Power-on Power-on

17. References

- [1] EPL FlexRay Communications System Electrical Physical Layer Specification Version 3.0.1
- [2] ISO 17458-4:2013 Road vehicles FlexRay communications system Part 4: Electrical physical layer specification
- [3] TJA1083 FlexRay transceiver data sheet, www.nxp.com
- [4] AH1101 TJA1083/TJA1083G FlexRay node transceiver application hints, available from NXP Semiconductors

NXP Semiconductors TJA1083G

FlexRay node transceiver

18. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
TJA1083G v.1	20180118	Product data sheet	-	-

19. Legal information

19.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

19.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for

Suitability for use in automotive applications — This NXP

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the

specified use without further testing or modification.

inclusion and/or use of NXP Semiconductors products in such equipment or

applications and therefore such inclusion and/or use is at the customer's own

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

TJA1083G

All information provided in this document is subject to legal disclaimers.

NXP Semiconductors TJA1083G

FlexRay node transceiver

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

19.4 Licenses

NXP ICs with FlexRay functionality

This NXP product contains functionality that is compliant with the FlexRay specifications.

These specifications and the material contained in them, as released by the FlexRay Consortium, are for the purpose of information only. The FlexRay Consortium and the companies that have contributed to the specifications shall not be liable for any use of the specifications.

The material contained in these specifications is protected by copyright and other types of Intellectual Property Rights. The commercial exploitation of the material contained in the specifications requires a license to such Intellectual Property Rights.

These specifications may be utilized or reproduced without any modification, in any form or by any means, for informational purposes only. For any other purpose, no part of the specifications may be utilized or reproduced, in any form or by any means, without permission in writing from the publisher.

The FlexRay specifications have been developed for automotive applications only. They have neither been developed nor tested for non-automotive applications.

The word FlexRay and the FlexRay logo are registered trademarks.

19.5 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

21. Contents

1	General description
2	Features and benefits
2.1	Optimized for time triggered communication systems
2.2	Low-power management
2.3	Diagnosis and robustness 2
2.4	Functional classes according to FlexRay
2.7	Electrical Physical Layer specification V3.0.1 2
3	Ordering information
4	Block diagram 3
5	Pinning information 4
5.1	Pinning
5.2	Pin description 4
6	Functional description 4
6.1	Power modes 4
6.1.1	Normal mode 5
6.1.1.1	Bus activity and idle detection 7
6.1.2	Standby mode 7
6.1.3	Power-off mode
6.1.4	State transitions
6.2	Power-up and power-down behavior 9
6.2.1	Power-up
6.2.2	Power-down
6.3 6.3.1	Remote wake-up
6.3.2	Bus wake-up via wake-up pattern
	11
6.4	Bus error detection
6.5	Fail silent behavior
6.6	TJA1083G flags
6.7 6.8	TJA1083G status register
6.8.1	Error signaling 14 SPI mode 15
6.8.2	Simple error indication mode
6.9	SPI interface
7.	Limiting values
8	Thermal characteristics
9	Static characteristics
9 10	Dynamic characteristics
11	Application information
12	Test information
13	Package outline
14	_
	gpg
14.1 14.2	Introduction to soldering
14.4	Wave and reflow soldering

Wave soldering	31
Reflow soldering	32
Appendix	33
Differences between TJA1083 and TJA1083G	33
Implementation of EPL 3.0.1 requirements in the	ne
TJA1083G	34
Abbreviations	37
References	37
Revision history	38
Legal information	39
Data sheet status	39
Definitions	39
Disclaimers	39
Licenses	40
Trademarks	40
Contact information	40
Contents	11

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2018.

14.3 14.4 **15** 15.1 15.2

16 17 18 19 19.1 19.2 19.3 19.4 19.5 20 21

All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesad

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 January 2018

Document identifier: TJA1083G