**ON Semiconductor** 

Is Now

# Onsemi

To learn more about onsemi<sup>™</sup>, please visit our website at <u>www.onsemi.com</u>

onsemi and ONSEMI: and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product factures, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application is the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application. Buyer shall indemnify and hold ons

Preferred Device

# **Triacs**

# **Silicon Bidirectional Thyristors**

Designed primarily for full-wave ac control applications, such as solid-state relays, motor controls, heating controls and power supplies; or wherever full-wave silicon gate controlled solid-state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied main terminal voltage with positive or negative gate triggering.

- Blocking Voltage to 800 Volts
- All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability
- Small, Rugged, Thermowatt Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Gate Triggering Guaranteed in Four Modes
- **%** Indicates UL Registered File #E69369
- Device Marking: Logo, Device Type, e.g., MAC15A6FP, Date Code

#### **MAXIMUM RATINGS** (T<sub>.1</sub> = 25°C unless otherwise noted)

| Rating                                                                                                                                                                    | Symbol                                | Value             | Unit             | ] | $\sim$ .C                   |                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------|------------------|---|-----------------------------|-----------------------|
| Peak Repetitive Off–State Voltage <sup>(1)</sup><br>(T <sub>J</sub> = -40 to +125°C, Sine Wave 50 to<br>60 Hz, Gate Open) MAC15A6FP<br>MAC15A8FP<br>MAC15A10FP            | V <sub>DRM,</sub><br>V <sub>RRM</sub> | 400<br>600<br>800 | Volts            | B | SEMIC                       | RIM                   |
| On-State RMS Current $(T_C = +80^{\circ}C)^{(2)}$<br>Full Cycle Sine Wave 50 to 60 Hz<br>$(T_C = +95^{\circ}C)$                                                           | I <sub>T(RMS)</sub>                   | 15<br>12          | Amps             |   | SRI                         | 1                     |
| Peak Nonrepetitive Surge Current<br>(One Full Cycle Sine Wave,<br>$60 \text{ Hz}, \text{ T}_{\text{C}} = +80^{\circ}\text{C}$ )<br>Preceded and followed by rated current | Ітѕм                                  | 150               | Amps             |   | ISO                         | 23<br>LATED TO<br>CAS |
| Circuit Fusing (t = 8.3 ms)                                                                                                                                               | l <sup>2</sup> t                      | 93                | A <sup>2</sup> s | ] |                             | ST                    |
| Peak Gate Power<br>( $T_C = +80^{\circ}C$ , Pulse Width = 2.0 $\mu$ s)                                                                                                    | Р <sub>GM</sub>                       | 20                | Watts            |   | 1                           | PIN ASS               |
| Average Gate Power<br>(T <sub>C</sub> = +80°C, t = 8.3 ms)                                                                                                                | P <sub>G(AV)</sub>                    | 0.5               | Watt             |   | 2                           |                       |
| Peak Gate Current<br>(Pulse Width $\leq 1.0 \mu\text{sec}; T_C = 80^{\circ}\text{C}$ )                                                                                    | I <sub>GM</sub>                       | 2.0               | Amps             |   | 3                           |                       |
| Peak Gate Voltage<br>(Pulse Width $\leq 1.0 \mu\text{sec}; T_{\text{C}} = 80^{\circ}\text{C}$ )                                                                           | V <sub>GM</sub>                       | 10                | Volts            |   | ORD                         | ERING                 |
| RMS Isolation Voltage ( $T_A = 25^{\circ}C$ ,<br>Relative Humidity $\leq 20^{\circ}$ ) ( <b>%</b> )                                                                       | V <sub>(ISO)</sub>                    | 1500              | Volts            |   | Device<br>MAC15A6FP         | ISOLA                 |
| Operating Junction Temperature                                                                                                                                            | TJ                                    | -40 to<br>+125    | °C               |   | MAC15A8FP                   | ISOLA                 |
| Storage Temperature Range                                                                                                                                                 | T <sub>stg</sub>                      | -40 to<br>+150    | °C               |   | MAC15A10FP Preferred device | ISOLA                 |



#### **ON Semiconductor**

http://onsemi.com

# ISOLATED TRIAC (9) **15 AMPERES RMS** 400 thru 800 VOLTS



#### ISOLATED TO-220 Full Pack CASE 221C STYLE 3

| PIN ASSIGNMENT |                 |  |  |  |  |
|----------------|-----------------|--|--|--|--|
| 1              | Main Terminal 1 |  |  |  |  |
| 2              | Main Terminal 2 |  |  |  |  |
| 3              | Gate            |  |  |  |  |

#### **ORDERING INFORMATION**

| Device     | Package          | Shipping |
|------------|------------------|----------|
| MAC15A6FP  | ISOLATED TO220FP | 500/Box  |
| MAC15A8FP  | ISOLATED TO220FP | 500/Box  |
| MAC15A10FP | ISOLATED TO220FP | 500/Box  |

Preferred devices are recommended choices for future use and best overall value.

(1) V<sub>DRM</sub> and V<sub>RRM</sub> for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

(2) The case temperature reference point for all T<sub>C</sub> measurements is a point on the center lead of the package as close as possible to the plastic body.

#### THERMAL CHARACTERISTICS

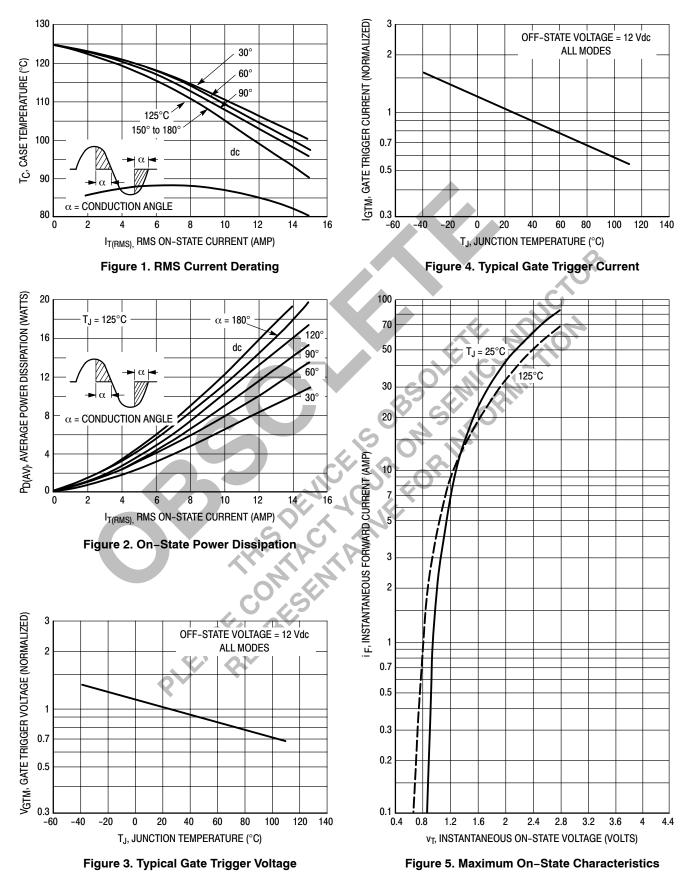
| Characteristic                                                                | Symbol                | Max       | Unit |
|-------------------------------------------------------------------------------|-----------------------|-----------|------|
| Thermal Resistance, Junction to Case                                          | $R_{	extsf{	heta}JC}$ | 2.0       | °C/W |
| Thermal Resistance, Case to Sink                                              | $R_{\theta CS}$       | 2.2 (typ) | °C/W |
| Thermal Resistance, Junction to Ambient                                       | $R_{\theta JA}$       | 60        | °C/W |
| Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds | ΤL                    | 260       | °C   |

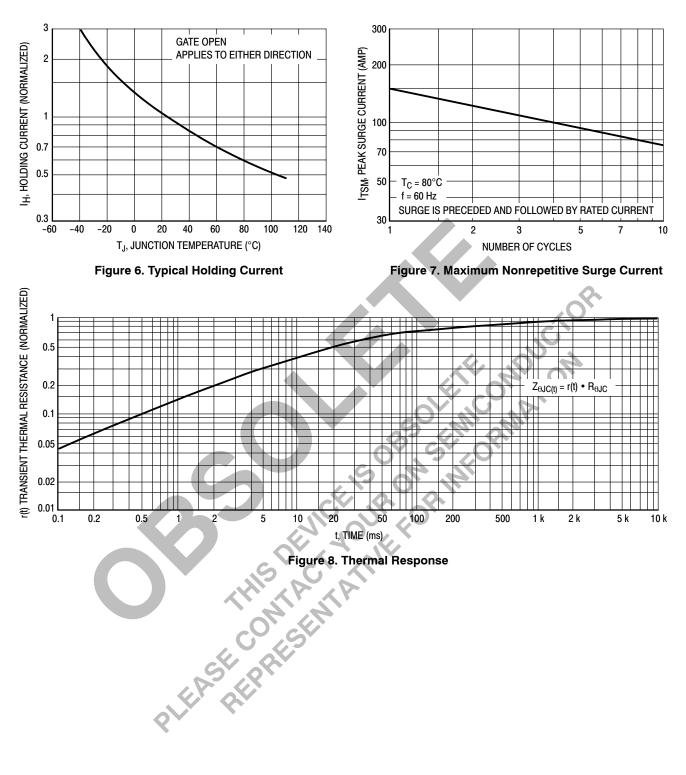
**ELECTRICAL CHARACTERISTICS** ( $T_C = 25^{\circ}C$  unless otherwise noted; Electricals apply in both directions)

| Characteristic                                                                                                                                                      |                                             | Symbol                                 | Min          | Тур                      | Max                      | Unit     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|--------------|--------------------------|--------------------------|----------|
| DFF CHARACTERISTICS                                                                                                                                                 |                                             | <u>_</u>                               |              | •                        | •                        |          |
| Peak Repetitive Blocking Current<br>(V <sub>D</sub> = Rated V <sub>DRM</sub> , V <sub>RRM</sub> ; Gate Open)                                                        | $T_J = 25^{\circ}C$<br>$T_J = 125^{\circ}C$ | I <sub>DRM</sub> ,<br>I <sub>RRM</sub> | _            |                          | 10<br>2.0                | μA<br>mA |
| ON CHARACTERISTICS                                                                                                                                                  |                                             |                                        |              |                          |                          |          |
| Peak On-State Voltage <sup>(1)</sup><br>(I <sub>TM</sub> = ±21 A Peak                                                                                               |                                             | V <sub>TM</sub>                        | _            | 1.3                      | 1.6                      | Volts    |
| Gate Trigger Current (Continuous dc)<br>(Main Terminal Voltage = 12 Vdc, R <sub>L</sub> = 100 Ohms)<br>MT2(+), G(+)<br>MT2(+), G(-)<br>MT2(-), G(-)<br>MT2(-), G(+) |                                             | IGT                                    |              |                          | 50<br>50<br>50<br>75     | mA       |
| Gate Trigger Voltage (Continuous dc)<br>(Main Terminal Voltage = 12 Vdc, $R_L$ = 100 Ohms)<br>MT2(+), G(+)<br>MT2(+), G(-)<br>MT2(-), G(-)<br>MT2(-), G(+)          | 50                                          | Var                                    | ORNI<br>ORNI | 0.9<br>0.9<br>1.1<br>1.4 | 2.0<br>2.0<br>2.0<br>2.5 | Volts    |
| Gate Non-Trigger Voltage<br>(Main Terminal Voltage = Rated $V_{DRM}$ , $R_L$ = 100 $\Omega$ , $T_J$ = +<br>All 4 Quadrants                                          | -110°C)                                     | VGD                                    | 0.2          | _                        | _                        | Volts    |
| Holding Current<br>(Main Terminal Voltage = 12 Vdc, Gate Open,<br>Initiating Current = ±200 mA)                                                                     | T TINE                                      | Гн                                     |              | 6.0                      | 40                       | mA       |
| Turn-On Time<br>( $V_D$ = Rated $V_{DRM}$ , $I_{TM}$ = 17 A, $I_{GT}$ = 120 mA,<br>Rise Time = 0.1 µs, Pulse Width = 2 µs)                                          | MA                                          | t <sub>gt</sub>                        |              | 1.5                      |                          | μs       |
| DYNAMIC CHARACTERISTICS                                                                                                                                             |                                             |                                        |              | -                        | -                        | -        |
|                                                                                                                                                                     |                                             |                                        |              | 1                        | 1                        |          |

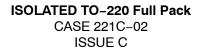
| Critical Rate of Rise of Commutation Voltage                                           | dv/dt(c) | _ | 5.0 |  | V/µs |
|----------------------------------------------------------------------------------------|----------|---|-----|--|------|
| ( $V_D$ = Rated $V_{DRM}$ , $V_{RRM}$ , $I_{TM}$ = 21 A, Commutating di/dt = 7.6 A/ms, |          |   |     |  |      |
| Gate Unenergized, T <sub>C</sub> = 80°C)                                               |          |   |     |  |      |

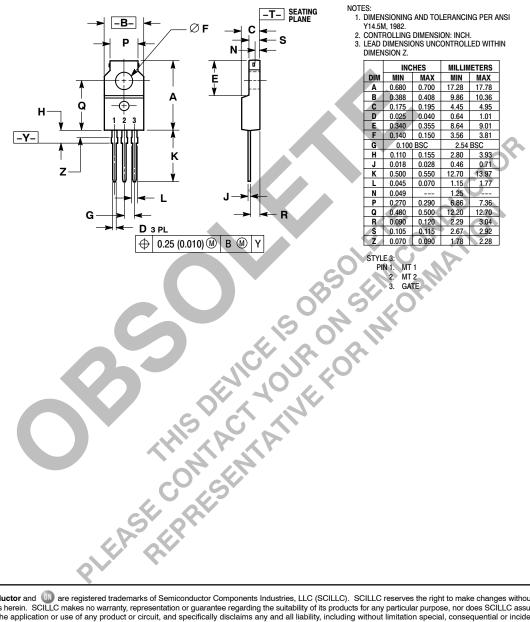
(1) Pulse Test: Pulse Width  $\leq$  2.0 ms, Duty Cycle  $\leq$  2%.


#### Voltage Current Characteristic of Triacs (Bidirectional Device)


|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + Current                                                                                                                                                                 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol           | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Quadrant 1<br>V <sub>TM</sub> MainTerminal 2 +                                                                                                                            |
| -                | Peak Repetitive Forward Off State Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T VIM                                                                                                                                                                     |
| / <sub>DRM</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on state                                                                                                                                                                  |
| DRM              | Peak Forward Blocking Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I <sub>BRM</sub> at V <sub>BRM</sub>                                                                                                                                      |
| / <sub>RRM</sub> | Peak Repetitive Reverse Off State Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                           |
| RRM              | Peak Reverse Blocking Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                           |
| / <sub>TM</sub>  | Maximum On State Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Gff state / + Voltag                                                                                                                                                      |
| H                | Holding Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Quadrant 3<br>MainTerminal 2 – VTM –                                                                                                                                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIOR                                                                                                                                                                      |
|                  | Quadran                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Definitions for a Triac                                                                                                                                                   |
|                  | Quadrant II<br>$(-) I_{GT}$<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>GATE<br>G | T2 POSITIVE<br>itive Half Cycle)<br>+<br>(+) MT2<br>(+) MT2<br>Quadrant I<br>GATE<br>MT1<br>REF<br>+ $I_{GT}$<br>(-) MT2<br>(+) $I_{GT}$<br>Quadrant IV<br>GATE<br>F<br>C |

All polarities are referenced to MT1.


With in-phase signals (using standard AC lines) quadrants I and III are used.


#### **TYPICAL CHARACTERISTICS**





#### PACKAGE DIMENSIONS





ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use personal and such angeging and fees and/or specifications and gingent transformance may can be expressed. SCILLC is an Equal Opportunit//Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5773–3850 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative