
© 2016 NXP B.V.

Contents
1 Introduction .. 2
2 Hardware and sensors ... 2

2.1 Interacting with sensors .. 2
2.2 Subscription options ... 3

2.2.1 Native subscriptions and explicit converts ..3
2.2.2 Any sensor versus all sensors ..5

2.3 Using Device Messaging directly .. 5
2.4 Configuring the Generic Analog Sensor Adapter... 6

2.4.1 Modifying ISF for an unsupported analog sensor...7
2.5 Interrupt-driven sensor subscriptions .. 7

2.5.1 FXLS8952C in interrupt driven mode ...7
2.5.2 Manually converting a sensor adapter to an interrupt-driven adapter ..8

2.6 Using Register-Level Interface (RLI) ... 8
2.7 Using KIT tool for RLI.. 9
2.8 General serial programming against the RLI app .. 9
2.9 Creating your own sensor adapter .. 15

3 Using ISF features in your code .. 16
3.1 Bus Manager .. 16
3.2 Event Handler ... 17

4 Communicating with the PC .. 18
4.1 Using streams ... 18

4.1.1 Reference set of host command sequences ... 19
4.1.2 Calling StreamUpdate() in App1_ProcessData()... 27
4.1.3 Working with datasets and multiple streams ... 29
4.1.4 Starting streams automatically from the application .. 31

4.2 Creating custom commands ... 31
5 Main application flow ... 35

5.1 Embedded app ... 35
5.2 Basic app .. 36
5.3 Integrating ISF into your own application .. 37

6 Working with Processor Expert .. 37
6.1 Moving away from provided apps ... 37
6.2 Using FreeRTOS .. 38
6.3 Creating an ISF v2.2 project from scratch ... 39

7 References ... 40
8 Revision History ... 40

NXP Semiconductors Document Number: ISF2P2_UG
User Guide Rev. 1.0, 2/2016

Intelligent Sensing Framework v2.2
User Guide
For the Kinetis Family of Microcontrollers

Downloaded from Arrow.com.

http://www.arrow.com

Introduction

2 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

1 Introduction
This User Guide is intended to provide answers to practical questions about the use of the Intelligent
Sensing Framework (ISF) along with example code snippets that demonstrate the functionality
discussed. It is not designed to be read cover-to-cover, but is intended to be a browsable reference for
developers.

Section 2 discusses the overall hardware environment and the sensors operating with ISF.

Section 3 discusses the direct use of some ISF Components such as the Bus Manager and Event
Handler.

Section 4 discusses communications with a PC using the ISF Command Interpreter.

Section 5 discusses the main application flow and some alternate ways to code a main sensor loop
including using either of the provided application components or integrating ISF into a user’s existing
MQX™ or FreeRTOS-based application.

Section 6 discusses how to use Processor Expert in conjunction with ISF and covers concepts such as:

• Generating an initial code base and then modifying it manually
• Logical device drivers versus the Kinetis Software Development Kit
• Configuring and using FreeRTOS
• Differences between MQX and FreeRTOS

Note: The code examples in this document use both Operation System Abstraction (OSA) and MQX
function calls interchangeably. It is left to the reader to adopt their preferred method. ISF v2.2 uses the
OSA layer exclusively.

2 Hardware and sensors
2.1 Interacting with sensors
There are four ways to interact with sensors using ISF. One way is from a remote host and three ways
are with an embedded app.

• The Register Level Interface (RLI) component can be used to send read/write sensor register
commands over the MCU’s serial interface.
The RLI interface component adds the ability to listen for sensor read/write register commands
from a remote host. Upon receiving a command over the serial interface, the RLI component
executes the requested command and returns the result to the remote host. Commands are
supported for:
— Selecting the I2C slave address to use
— Reading one or more bytes from a specified register offset
— Writing one or more bytes to a specified register offset
— Executing the most recent read command periodically at a specified rate and returning the

results.

Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 3
NXP Semiconductors

Kinetis Interface Tool (KIT) PC GUI provides a tab that implements the remote host side of the RLI
protocol. This allows simple register level access to any connected I2C sensor without any
programming required. One advantage of the RLI interface is that it can be used to interact with
sensors that are otherwise not supported by ISF.

• An embedded application can subscribe to sensors using the interfaces declared in
isf_dsa_direct.h:

int32 init_sensor();
int32 configure_sensor();
int32 start_sensor();
int32 stop_sensor();
int32 shutdown_sensor();
int32 convert_sensor_data();

The Digital Sensor Abstraction (DSA) direct APIs provide a thin, but convenient wrapper around
the native Sensor Adapter DSA compliant interface. The wrapper handles proper initialization of
the isf_SensorHandle_t data structure and simplifies access to the underlying Sensor Adapter
interface functions.

• An embedded application can use a sensor adapter directly using the interfaces declared in
isf_dsa_adapter.h.
For an example of how to use these interfaces, look at the isf_dsa_direct.c code in the
Generated_Code/ISF/Core/Source directory of an ISF project.

• An embedded application can use the Device Messaging APIs to directly read or write to a sensor.
The Device Messaging (DM) APIs provide for talking to sensor devices over I2C or SPI. Succinctly,
the DM provides a common interface for reading and writing sensors using either I2C or SPI
protocols.
For an example of DM usage, look at the rli_project.c in the Generated_Code/ISF/RLI/Source
directory.

2.2 Subscription options
2.2.1 Native subscriptions and explicit converts
ISF Sensor Adapters are designed to provide direct control of the sensor. An application subscribes to
a sensor and configures that sensor using the adapter’s Configure method, either directly or via the
isf_dsa_direct configure_sensor() API. These configuration parameters are written to the sensor
as a result. If an application subscribes to the same sensor multiple times each subsequent
subscription overwrites the previous subscription’s configuration. A developer might run into this
situation when dealing with combination sensors, such as the FXOS8700C (accelerometer +
magnetometer) and MPL3115A2 (pressure/altimeter + temperature).

When multiple subscriptions are configured for the same sensor, the following actions occur internally:

• The sensor configurations are both written to the sensor such that the last one written takes
precedence.

• Multiple periodic callbacks are registered with the Bus Manager’s periodic timer function to read
sensor data. This is inefficient because not only does it force two separate bus transactions, but
managing the additional callback adds unnecessary overhead to the Bus Manager as well.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Hardware and sensors

4 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

The most efficient solution in this situation is to use a single subscription that returns both sensor
quantities together. This is easily done by configuring the sensor subscription in Processor Expert to
use a Sensor Data Format of Raw Sensor Format and a Sensor Data Type of Native Sensor
Output.

To retrieve the desired individual sensor quantities from this native sample, the Sensor Adapter’s
Convert() method is used. Each Sensor Adapter’s Convert() method takes in a native sample, a
requested data type and format, and returns a converted sample in the format requested.

If coding by hand, this might look like:

isf_SubscriptionSettings_t mySettings;
isf_SensorHandle_t mySensorHandle;
uint8 mySensorId = 1;
LWEVENT_STRUCT mySensorEvent;
uint32 myEventField = 1;
mpl3115_DataBuffer_t myRawSampleData;

_lwevent_create(&mySensorEvent, LWEVENT_AUTO_CLEAR);

init_sensor(mySensorId, &mySensorHandle & mySensorEvent, myEventField);

mySettings.resultType = TYPE_NATIVE_SENSOR_DATA_TYPE;
mySettings.nSamplePeriod = 10000; // 100 Hz in microseconds period
mySettings.nFifoDepth = 1;

configure_sensor(
 &mySensorHandle,
 &mySettings,
 &myRawSampleData
);

start_sensor(&mySensorHandle);

for (;;)
{
 isf_KiloPascals1D_float_t myPressureSample;
 isf_DegreesCelsius1D_float_t myTemperatureSample;

 _lwevent_wait_for(&mySensorEvent, myEventField, FALSE, NULL);

 convert_sensor_data(

&mySensorHandle,
TYPE_PRESSURE,
DSA_RESULT_TYPE_ENG_FLOAT,
&myPressureSample,
&myRawSampleData

);
 convert_sensor_data(

&mySensorHandle,
TYPE_TEMPERATURE,
DSA_RESULT_TYPE_ENG_FLOAT,
&myTemperatureSample,
&myRawSampleData

);
}

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 5
NXP Semiconductors

2.2.2 Any sensor versus all sensors
When entering the _lwevent_wait_for() loop in the embedded application’s main loop, there is a
choice between waiting for all event flags to be set or waiting for any individual event flag in the event
group to be set. Addition information is available in the reference manual for the underlying RTOS.

With respect to ISF and waiting for sensor data, this translates to waiting for all sensors to have new
data available or coming out of the loop when any single sensor has new data available.

Consider the example where we have subscribed to accelerometer, magnetometer, and gyroscope
data and would like to know there is new data for each of these sensors before calling the sensor
computation routines. Of course, this works best when all three sensor subscriptions are at the same
rate and we just want to wait for all sensor data to arrive for that period before starting the
computations. In that case, we can configure the Sensor Signaling Method in the Main Application
Settings group of the EmbeddedApp component in Processor Expert, to a value of AllSensors.

This generates a call to _lwevent_wait_for() with the EventFlags for all the sensor subscriptions
OR’d together.

If, however, we have subscribed to sensors at different rates and wish to handle each sensor’s data as
it appears, we can configure the Sensor Signaling to a value of AnySensor. This causes the boolean
flag passed to lwevent_wait() to be set to FALSE. This means wait for any bit in bit_mask to be set.

To determine which flag (or flags- if more than one flag is set at one time) the function
_lwevent_get_signalled() can be called to determine which code to execute.

2.3 Using Device Messaging directly
To use Device Messaging, a device channel must be initialized. A channel corresponds to a physical
connection instance in the device. For instance, if there are two I2C buses, and one SPI bus, then there
would be three channels configured in isf_sysconf_comms.c. To work with a channel, a channel
descriptor is required. To obtain a channel descriptor, allocate a dm_ChannelDescriptor_t variable
and pass it, along with the channel ID of the channel to be used, to the dm_channel_init() function.

dm_ChannelDescriptor_t myChannelDescriptor;
uint32 channelID = 1;

dm_channel_init(channelID, &myChannelDescriptor);

Once the channel is open, the dm_device_open() function can be used to select a device on that
channel for the communication.

i2c_device_t deviceInfo = {0};
dm_DeviceDescriptor_t myDeviceDescriptor;

deviceInfo.address = 0x1E; //FXOS8700 7-bit I2C address

dm_device_open(&myChannelDescriptor, &deviceInfo, &myDeviceDescriptor);

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Hardware and sensors

6 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

The device descriptor can now be used to read and write to the device.

dm_device_write(
&myDeviceDescriptor, startAddress, apWriteBuffer, aNbyteWrite, aNbyteWrite

);

dm_device_read(&myDeviceDescriptor, startAddress, apReadBuffer, aNbyteRead, aNbyteRead);

The code in the RLI component is a good example demonstrating many of the features discussed in
this User Guide. To view this code, generate a project with the RLI component added. The code is in
the Generated_Code/ISF/RLI/Source/rli_project.c file.

2.4 Configuring the Generic Analog Sensor Adapter
The Generic Analog Sensor Adapter component is designed to support a number of analog sensors by
using GPIOs to control signal inputs and the Analog-to-Digital converter (ADC) to sample the analog
signals from the sensor. In general, the Generic Analog Sensor Adapter supports analog
accelerometers (for example, the FXLN83xx family of 3-axis accelerometers) and pressure sensors (for
example, the MPXV5004DP).

The Generic Analog Sensor Adapter, or ISF_KSDK_Sensor_Generic_Analog_Adapter, is brought into
an ISF Processor Expert (PEx) project like any other Sensor Adapter (via the System Sensor
Configuration in the ISF_KSDK_Core component). The Generic Analog Sensor Adapter component
provides a pull-down list of analog sensor types, which are the currently supported sensors. Selecting
one of those sensors causes additional automated inclusion of the GPIOs for the specific control
signals for the chosen sensor. Subscription to the sensors by the ISF_KSDK_EmbApp is also
consistent with other sensors (although the sensor type is Analog).

The Generic Analog Sensor Adapter component allocates the KSDK fsl_adc16 driver through an
inherited component. This is the driver interface to the ADC, which is used by the generated code.

Code for the Generic Analog Sensor Adapter is created in the Sources directory. Typically, it is named
fsl_Sensor_<Component Name>_Functions.c and fsl_Sensor_<Component Name>_Functions.h.
These files provide the mapping between the generic adapter and the specific sensor selected. One
example of this is the generation of the apply_sensor_specific_configurations() function.
This function tailors the configuration table for the specific mapping between the ADC outputs and the
acceleration or pressure units. It is called from the Sensor Adapter Configure() function.

NOTE:
Files in the Sources directory are not necessarily deleted or updated properly if the Generic Analog
Sensor Adapter component sensor type is changed. In that case, the user should manually delete
these files associated with the component and regenerate code.

The target sensor is sampled based on an arbitrary sampling period in the sensor subscription. The
callback initiates a sampling by the ADC, reads the results, converts them to the desired units, and then
pushes them into the software FIFO.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 7
NXP Semiconductors

2.4.1 Modifying ISF for an unsupported analog sensor
It is possible to start with one of the supported sensors (for example, FXLN83xxQ), generate the code
via PEx, then manually modify the resulting application to work with an otherwise unsupported sensor.

The basic steps to do this are:

1. Select the sensor type that is closest to the desired sensor
2. Modify the ADC and GPIO configurations to match the pin configurations of the sensor
3. Generate code using Processor Expert.
4. Modify the conversion factors in the apply_sensor_specific_configurations() function to

match the expected output ranges of the sensor.

2.5 Interrupt-driven sensor subscriptions
This section describes the FXLS8952C Sensor Adapter (ISF_KSDK_Sensor_FXLS8952_Accelerometer),
the infrastructure it uses in ISF and the KSDK to support interrupt-driven sensor reading, and then how
the user could extend a given sensor to be interrupt-driven by manually utilizing the same infrastructure.

2.5.1 FXLS8952C in interrupt driven mode
ISF v2.2 supports the FXLS8952C1 through either polled or interrupt-driven sensor data reading. In the
PEx component, there is a Use Interrupts property which can be set to TRUE to enable interrupt-
driven reading. This action creates an inherited fsl_gpio PEx component, which has to be manually
initialized to the pin associated with the INT1 from the FRDM-STBC-AGM02 shield board. In addition,
the configuration enables the Event Handler Service in the ISF_KSDK_Core. Plus, the user needs to
update the fsl_gpio component to generate the PORTD IRQ (which is the port associated with INT1)
handler, enable the installation of the ISR, and then manually add the call in Sources/Events.c as
follows:

void ExtInt1_PORTD_IRQHandler(void)
{
 PORT_HAL_ClearPortIntFlag(PORTD_BASE_PTR);
 ExtInt1_IRQHandler();
}

By tracing through the generated ISF code, it is easy to see the code involved with sensor interrupt
handling. During system initialization, the interrupt handler is installed by this code in Cpu.c:

/*! ExtInt1 Auto initialization start */
OSA_InstallIntHandler(PORTD_IRQn, ExtInt1_PORTD_IRQHandler);
GPIO_DRV_Init(ExtInt1_InpConfig0,NULL);
/*! ExtInt1 Auto initialization end */

1 This part will be released in the future.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Hardware and sensors

8 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

During sensor configuration, the FXLS8952C Sensor Adapter registers its periodic callback, which
reads the sensor data, with the Event Handler service.

isf_EventHandler_RegisterEvent(&fsl_fxls8952_i2c_3D_accel_PeriodicCallback,
pSensorHandle);

Once the sensor is configured and running, it generates an interrupt signal every time a sample is
ready to be read. The microcontroller vectors that interrupt to the ExtInt1_PORTD_IRQHandler,
which clears the interrupt and calls the ExtInt1_IRQHandler (i.e., the ISF generated handler). This
ISF handler sends an OSA Event signal to the Event Handler to notify the previously registered
callback. The Event Handler task waits on these events and calls the corresponding registered
callback.

2.5.2 Manually converting a sensor adapter to an interrupt-driven adapter
In addition, any of the existing Sensor Adapters can be manually configured to run in an interrupt-driven
mode, as described for the FXLS8952C in Section 2.5.1. This section outlines the steps involved with
using the FXOS8700C as an example.

1. Instantiate the FXOS8700C in the default project through the ISF_KSDK_Core and
ISF_KSDK_EmbApp components as normal.

2. Add the fsl_gpio PEx component to the project and configure for the specific port/pin assigned to
the interrupt pin from the FXOS8700C sensor.
a. Select the desired pin. For example, there is a defined pin called FXOS8700CQ_INT2 that

maps to PTC13 on the FRDM-K64F.
b. In the Events section, select code generation for the corresponding IRQ handler and select

Install Interrupts.
3. Generate the code and compile to make sure there are no errors.
4. Edit Events.c to add an interrupt handler which sends a unique signal to the Event Handler service.

The interrupt handler is modelled after ExtInt1_IRQHandler(), as shown in Section 2.5.1.
5. In the fsl_FXOS8700_i2c_3D_accel.c file and the Configure() function, replace the call to

bm_register_periodic_callback with a registration to the Event Handler for the equivalent
callback using the selected, unique signal identified in step 4.

6. Update the register configuration in the FXOS8700_1.c file,
FXOS8700C_1_Sensor_Specific_Config to enable the generation of the interrupt.

2.6 Using Register-Level Interface (RLI)
The ISF Register-Level Interface is used to read and write arbitrary sensor registers for any connected
I2C sensor.

RLI is implemented as an ISF application that defines two custom commands, one implementing a read
command and the other a write command.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 9
NXP Semiconductors

2.7 Using KIT tool for RLI
The Kinetis Interface Tool (KIT) PC GUI provides a tab that allows use of the commands to select a
sensor device as well as read and write registers. For example, the FXAS21002C gyroscope has an
I2C 7–bit slave address of 0x20. On the KIT’s RLI tab, enter 20 in the Choose part-enter part slave
address field, and then press Choose.

To read the part’s WHO_AM_I register (FXAS21002 WHO_AM_I is 0x0C), enter # of Bytes to Read
as 1, with Start Address as C, and then select Read Register(s).
The read response displays in the Register Responses text box.

1 Registers read
D7

2.8 General serial programming against the RLI app
RLI is not limited for use with the KIT only. Anything capable of reading and writing serial data can also
be used.

The protocol is as follows:

• All ISF packets are encapsulated between 0x7E bytes.
• The first byte after the 0x7E in a packet determines the packet protocol type. 0x01 is the

Command/Response Protocol. The RLI commands use the Command/Response protocol.
• The next byte in a packet is the AppID. This is used by the ISF Command Interpreter to direct the

packet to the correct application. Typically, an ISF executable image contains a mailbox app with
AppID = 1, and an EmbeddedApp with AppID = 2. If an RLI component is used, the RLI app has
AppID = 3.

Note, though, the AppIDs are assigned in their order of addition to the project. If a developer adds
the RLI component to their Processor Expert project prior to adding their Embedded App
component, then the AppIDs are assigned as RLIApp = 2, and EmbApp = 3.

• Following the AppID byte in the packet is a Command byte. The commands are enumerated in
isf_ci.h.

typedef enum
{
 CI_CMD_READ_VERSION = 0,
 CI_CMD_READ_CONFIG,
 CI_CMD_WRITE_CONFIG,
 CI_CMD_READ_APP_DATA,
 CI_CMD_UPDATE_QUICKREAD,
 CI_CMD_READ_APP_STATUS,
 CI_CMD_RESET_APP,
 CI_CMD_DEVICE_WRITE,
 CI_CMD_DEVICE_READ,
 CI_CMD_GET_APP_SUBSCRIPTION,
 CI_CMD_WRITE_SREC_FLASH,
 CI_CMD_MAX = 128
} ci_commands_enum;

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Hardware and sensors

10 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

The RLI App uses the CI_WRITE_CONFIG command to configure the slave address for
communication.

The CI_CMD_WRITE_CONFIG command takes an offset into the configuration register, a number of
bytes to write, and the actual bytes to write.

NOTE:
All register values are expressed in hexadecimal notation.

Therefore, the command packet that must be sent to the RLI to choose the slave address is:
7E 01 03 02 00 02 20 00 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
02 CI_CMD_WRITE_CONFIG
00 Configuration register, offset zero
02 Writing two bytes
20 16-bit device address LSB
00 16-bit device address MSB
7E End of packet

The RLI app responds with:

7E 01 03 80 02 02 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
80 Cmd status value
02 Command word echo
02 Number of bytes written
7E End of packet

The Command status value consists of a Command-Complete bit in bit 7 (MSBit) and a status value in
bits 0–6, where a zero status value indicates SUCCESS/NO_ERROR.

Once the slave address has been successfully selected, sensor read/write operations can be
performed. To read the WHO_AM_I value from the FXAS21002C, a 1-byte read from register 0x0C
must be performed.

The command the RLI App uses to perform device read operations is CI_CMD_DEVICE_READ with
value of 8.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 11
NXP Semiconductors

In order to read from an I2C device, it is necessary to write the address/register-offset from which to
read to the device so it can fetch the value and return it. There the register read command requires a 1
byte write followed by an N-byte read.

Therefore, the command that must be sent is:

7E 01 03 08 01 01 0C 7E

Value Description

7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
08 CI_CMD_DEVICE_READ
01 Number of I2C bytes to write
01 Number of I2C bytes to read
0C The byte to write (the register offset to read from)
7E End of packet

The RLI app responds with:

7E 01 03 80 01 01 D7 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
80 Cmd status value
01 Number of bytes requested
01 Number of bytes returned
D7 The register value read
7E End of packet

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Hardware and sensors

12 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

To write a register, the CI_CMD_DEVICE_WRITE command is used.

The read and write commands use the same command format. The write command is accomplished by
sending an N-byte write followed by a 0 byte read. To write the value 0x02 to the CTRL_REG1 register
at 0x13 using the CI_CMD_DEVICE_WRITE command, with enum value of 7, the command is:

7E 01 03 07 02 00 13 02 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
07 CI_CMD_DEVICE_WRITE
02 Number of I2C bytes to write
00 Number of I2C bytes to read
13 The first byte to write (the register offset to write to)
02 The register value to write
7E End of packet

The RLI app responds with:

7E 01 03 80 00 00 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
80 Cmd status value
00 Number of bytes requested
00 Number of bytes returned
7E End of packet

As mentioned previously, this serial communication can be performed by any capable connected
device.

The following example contains a simple Python 2.7 program that performs the reads and writes
described in this section. Note that this is not intended to be production-quality code, but merely gives
an example of using the PySerial module in Python to interact with the RLI app. It is important to note
that the full packet escaping logic is not implemented in this example. Full escaping would require
checking each byte transmitted to ensure that a raw 0x7E is not included as part of a packet’s payload.
Any 0x7E bytes occurring in the data must be escaped by sending a 0x7D before the byte and by
clearing bit 6 in the byte. Any 0x7D in the payload must be escaped in the same manner. When reading
bytes from the ISF Command Interpreter including data from the RLI app, incoming bytes must be
checked for escaped characters by removing any 0x7Ds received in the input stream and by setting bit
6 in the following byte.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 13
NXP Semiconductors

import serial
import time
import binascii

def signed16(msb, lsb):
 v = (msb<<8) + lsb
 return -(v & 0x8000) | (v & 0x7FFF)

def get_packet() :
 t=0
 r=bytearray()

 while True:
 n = ser.inWaiting()
 if n>0 :
 r += ser.read(n)
 t += n
 if (t > 2) and (r[t-1] == 0x7E):
 break
 return bytearray(r)

selectSlave = bytearray(b'\x7E\x01\x03\x02\x00\x02\x20\x00\x7E')
readWhoAmI = bytearray(b'\x7E\x01\x03\x08\x01\x01\x0C\x7E')
writeActive = bytearray(b'\x7E\x01\x03\x07\x02\x00\x13\x02\x7E')
readData = bytearray(b'\x7E\x01\x03\x08\x01\x06\x01\x7E')

ser = serial.Serial(port='COM53',baudrate=115200)

ser.flushInput()

print "Setting RLI Slave"
ser.write(selectSlave)

b = get_packet()
print "Slave Set returned: ",binascii.hexlify(b)

print "Reading WHO AM I value"
ser.write(readWhoAmI)
b = get_packet()
print "WHO AM I returned: 0x%02x" % b[6]

print "Setting device to active"
ser.write(writeActive)
b = get_packet()
print "Active command returned ", binascii.hexlify(b)

print "Reading XYZ data"
ser.write(readData)
b = get_packet()
print "Read:", signed16(b[6],b[7]), signed16(b[8],b[9]), signed16(b[10],b[11])

print "Done."
ser.close()

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Hardware and sensors

14 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

The RLI app supports two additional commands, which have command values 0x0B and 0x0C,
hexadecimal values for 11 and 12.

These two commands provide a periodic read capability. Sending command 0x0B requests that the
most recently executed CI_CMD_DEVICE_READ command be executed at the requested frequency.

Command 0x0C requests that the periodic reads be discontinued.

The Start Periodic Reads command requires specification of the read period in microseconds and the
Command Interpreter Stream number in which to return the data.

The Start Periodic Reads command is composed as follows:

7E 01 03 0B 00 05 00 00 27 10 01 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
0B Start periodic reads via Command = CONFIGURE_PERIODIC_READS (0B)

00 Offset
05 Length
00 32 bit period MSB
00 32 bit period MCB
27 32 bit period LCB
10 32 bit period LSB
01 Stream number to use
7E End of packet

The command is asking to repeat the previous read command at a rate of 100 Hz
(0x0000 2710 microseconds period) using Stream 1.

Table 1. Example Start Periodic Read commands at various periods/frequencies for Stream 1

Command
RLI Period

(µs)
RLI Frequency

(Hz)
Decimal Hex

7E 01 03 0B 00 05 00 00 04 E2 01 7E 1250 (0x0000 04E2) 800
7E 01 03 0B 00 05 00 00 09 C4 01 7E 2500 (0x0000 09C4) 400
7E 01 03 0B 00 05 00 00 13 88 01 7E 5000 (0x0000 1388) 200
7E 01 03 0B 00 05 00 00 27 10 01 7E 10,000 (0x0000 2710) 100
7E 01 03 0B 00 05 00 00 4E 20 01 7E 20,000 (0x0000 4E20) 50
7E 01 03 0B 00 05 00 00 9C 40 01 7E 40,000 (0x0000 9C40) 25
7E 01 03 0B 00 05 00 01 38 80 01 7E 80,000 (0x0001 3880) 12.5
7E 01 03 0B 00 05 00 02 71 00 01 7E 160,000 (0x0020 7100) 6.25

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Hardware and sensors

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 15
NXP Semiconductors

To discontinue performing periodic reads, the following command is sent:

7E 01 03 0C 00 00 7E

Value Description
7E Start of packet
01 Command/Response protocol
03 AppID 3 – RLI App
0C Stop periodic reads
00 Offset
00 Length
7E End of packet

2.9 Creating your own sensor adapter
Often, it is easier to use the Device Messaging interface to talk directly to new or unsupported sensors,
but you can also create a full ISF Sensor Adapter for any sensor.

The easiest way to create your own Sensor Adapter for a new or unsupported sensor, is to start with
one of the provided adapters that most closely matches the new sensor. In other words, if a new I2C
accelerometer is to be integrated, choose one of the existing accelerometer adapters to copy and
modify. To find this code, generate a project that includes the adapter to be copied. After Processor
Expert code generation is complete, the adapter code can be found in the
Generated_Code/ISF/Sensor-Specific directory.

The adapters are implemented using the ISF Digital Sensor Abstraction interface as defined in
isf_dsa_adapter.h and consist of routines to be called for initialization, configuration, start, periodic
read, stop, and shutdown.

Initialization should contain code to perform any one-time, initial processing. This typically includes
initialization of internal data structures. In addition, it may sometimes include some interrogation of the
sensor itself to determine available feature sets or to retrieve trim information, and so forth.

The Configuration method should contain code to configure a sensor based on the requested
subscription settings.

If the sensor has Active and Standby states, the StartData function should set the sensor to its active
state and enable interrupts, if using interrupt notifications. Alternatively, if the Bus Manager is used for
polling, the function tells the BM to start servicing the callback.

The EndData function can put the sensor back to its Standby mode and stop the BM callbacks or
disable the sensor’s external interrupt.

The Shutdown function can set the sensor to its lowest configurable power state.

The Calibrate function is unused by ISF and can be safely left unimplemented.

The Convert function should take in a native data sample from the sensor and convert it to any
supported standard sensor type.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Using ISF features in your code

16 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

3 Using ISF features in your code
3.1 Bus Manager
The Bus Manager (BM) service provided by the ISF Core is available for application-level timing of
periodic or oneshot timing events down to the microsecond level. This section shows both scenarios
and explains the steps for using the BM in the application.

The BM callback functions registered by the user are executed at the BM task priority level sequentially,
thus the real-time requirements of the callback function should be considered when using this feature.

A periodic callback can be registered to the BM as follows:

#include “isf_bm.h”

bm_callback_token_t token;
uint32 period;

token = bm_register_periodic_callback(period, (bm_callback_t *)callback ,
(void *)&userData);

where:

• token is the identifier of the registered callback
• period is the time between callbacks in microseconds
• callback is a function as follows:
typedef void (bm_callback_t)(void *)

• userData is a pointer to any state data required by the callback (NULL is fine).

This call sets up the service, but does not start the callback. That is done as follows:

bm_start(false, token);

Once the bm_start() is called, the BM schedules the period to elapse. When it expires, the callback
is executed in the order that it was registered.

One example of what can be done in a callback is to flash an LED using KSDK GPIO driver:

void callback(uint32* pLEDState)
{

 // Toggle the LED
 GPIO_DRV_WritePinOutput(LED_BLUE, *pLEDState);
 *pLEDState += 1;
}

When it is time to terminate the callback, the user can execute the following:

bm_stop(token);
callbackRet = bm_unregister_callback(token);

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Using ISF features in your code

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 17
NXP Semiconductors

In order to do a oneshot, the callback must execute the above code itself. For example:

void callback(bm_callback_token_t *pToken)
{

 // Do something once

 // terminate the callback

bm_stop(token);
callbackRet = bm_unregister_callback(token);

}

3.2 Event Handler
The Event Handler (EH) service, provided by the ISF Core, provides the capability to execute
registered callback routines when events occur. Callback execution occurs on the EventHandler’s task
allowing the application to proceed with its other processing and letting the OS handle the task
preemption according to each task’s configured priority.

The Bus Manager currently executes its callback in the Bus Manager task itself. This is acceptable
when the registered callback is very short, non-blocking and deterministic. However, if a long-running
task is registered with the Bus Manager, its execution could cause unwanted consequences to the
timely execution of other registered callbacks. In this case, an approach might be to simply set an event
in the BM callback and register the long running call with the EventHandler instead. This allows the BM
to process the periodic timer callback very quickly. It just sets the event flag and returns. The event flag
causes the EH to come out of its event wait and performs the callback in its task instead of the BM’s. It
is important to note that the same problem exists with a long-running callback in the EH causing other
EH callbacks to wait until it is finished. The EH still must be used with care, but it does allow several
non-interfering application functions to share a single thread rather than each taking its own.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

18 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

4 Communicating with the PC
4.1 Using streams
In ISF v2.0, a more convenient streaming protocol called CI Streaming was introduced.

This is a brief discussion of CI streaming, including examples. The full details of the CI streaming
protocol including programming APIs can be found in Section 4 of the ISF v2.2 Software Reference
Manual.

An ISF embedded application project by default contains three host-addressable applications.

Table 2. ISF_KSDK_EmbApp Project Application IDs

AppID Name Description
0 Device Info ISF Built-in: Returns Device Information
1 ISF Command/Response (C/R) App ISF Built-in: Manages Mailbox register configuration
2 ISF Embedded App The main application

APPID 0 – Device Info
The Device Info application responds to a single, non-standard command.

7E 01 00 00 00 00 7E

The application returns the Device Info record. The contents of the Device Info record are described by
the device_info_t type in isf.h.

APPID 1 – The Mailbox App
The mailbox application implements a deprecated Streaming Protocol (previously known as Quick-
Read). Use the Streaming Protocol discussed in Section 4.1.1.1, CI Streaming examples, to stream
data from the device.

APPID 2 – ISF_KSDK_EmbApp
An embedded application, by default, contains two sets of data that are accessible by the host: the
configuration data and the sensor data. The configuration data is readable/writable and is used to set
the available features of the application. The host can access the configuration data by using the ISF
Command Interpreter (CI) CI_CMD_READ_CONFIG and CI_CMD_WRITE_CONFIG commands.

The sensor output data contains the timestamp when the data sample was taken along with the sensor
data for each sensor subscription. The host can access the information by using the CI
CI_CMD_READ_APP_DATA command. Note: if the host has set the application to streaming mode, the
application sends back the sensor data asynchronously at the prescribed sample rate.

See Table 3 for the application’s data layout and description.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 19
NXP Semiconductors

Table 3. ISF EmbApp (AppID 2) – typical sensor output data layout

Byte
Offset Name Description

0
1
2
3

ISFEmbApp_APP_TS_BITS_31_24
ISFEmbApp_APP_TS_BITS_23_16
ISFEmbApp_APP_TS_BITS_15_8
ISFEmbApp_APP_TS_BITS_7_0

TimeStamp tickCount[0] (MSB)
TimeStamp tickCount[1]
TimeStamp tickCount[2]
TimeStamp tickCount[3] (LSB)

32-bit timestamp value in microseconds. This is
the recorded time when the sensor data sample
is taken. The time value comes from a
continuously running timer counter that started
at system power up.

4
5
6
7

ISFEmbApp_APP_X_ACCEL_BITS_31_24
ISFEmbApp_APP_X_ACCEL_BITS_23_16
ISFEmbApp_APP_X_ACCEL_BITS_15_8
ISFEmbApp_APP_X_ACCEL_BITS_7_0

X data[0] (MSB)
X data[1]
X data[2]
X data[3] (LSB)

8
9
10
11

ISFEmbApp_APP_Y_ACCEL_BITS_31_24
ISFEmbApp_APP_Y_ACCEL_BITS_23_16
ISFEmbApp_APP_Y_ACCEL_BITS_15_8
ISFEmbApp_APP_Y_ACCEL_BITS_7_0

Y data[0] (MSB)
Y data[1]
Y data[2]
Y data[3] (LSB)

12
13
14
15

ISFEmbApp_APP_Z_ACCEL_BITS_31_24
ISFEmbApp_APP_Z_ACCEL_BITS_23_16
ISFEmbApp_APP_Z_ACCEL_BITS_15_8
ISFEmbApp_APP_Z_ACCEL_BITS_7_0

Z data[0] (MSB)
Z data[1]
Z data[2]
Z data[3] (LSB)

Notes:
• The sensor output data fields for any ISF_KSDK_EmbApp are documented in App1_types.h in the

App1SensorData_t type definition.

• In general, the layout consists of the sensor output data for each subscription laid out in subscription order. This data
is usually a 4-byte timestamp plus four bytes of either fixed or floating point data for each axis supported by the
sensor, when the subscription is configured to use fixed point or floating point.

• The layout could also be a native sensor output structure as defined in the corresponding Sensor Adapter Include file
as defined in the corresponding standard types file in the Generated Code/SensorGeneric project directory

4.1.1 Reference set of host command sequences
4.1.1.1 Example ISF_KSDK_EmbApp app host commands
Note that the commands shown here represent only the payload portion of the packet sent over the
serial port. When using the Kinetis Interface Tool (KIT) included in the ISF installer, the 0x7E or 7E
packet start and end bytes are added automatically and do not have to be entered explicitly.

Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

20 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

For example, to reset AppID 2, entering 01 02 06 00 00 in KIT’s Command Interface tab Bytes to
Write field results in 7E 01 02 06 00 00 7E being sent to the MCU.

Reset application (CI_CMD_RESET_APP)

Send: 01 02 06 00 00

Write application configuration (CI_CMD_WRITE_CONFIG)

State Value
Unsubscribed 01 02 02 00 01 00

Subscribed 01 02 02 00 01 01

Oneshot 01 02 02 00 01 02

Streaming 01 02 02 00 01 03

CI Streaming example
In Streaming Mode, the application sends data back to the host whenever new sensor data is available.
This example assumes that an Embedded App has been configured with three sensors. Subscription 1
is for accelerometer data, subscription 2 is for gyroscope data and subscription 3 is for pressure sensor
data. The subscriptions are all returning engineering fixed data which means that sample data consists
of a 4-byte timestamp followed by four bytes per axis of sensor data.

Suppose the following sample rates are configured in the Embedded App:

Sensor type Frequency
Accelerometer 100 Hz
Gyroscope 200 Hz
Pressure sensor 1 Hz

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 21
NXP Semiconductors

In Processor Expert, setting Embedded App Control Register Initial State to STARTED_SUBSCRIBED
is convenient as well. See Figure 1.

Figure 1. PEx properties GUI setting Embedded App Control Register state

After generating code, building and executing the application, the following example command
sequence can be used:

1. Reset application.
a. Reset the Command/Response application.

Send: 01 01 06 00 00
Receive: 01 01 80 00 00

 Value Description
Send 01 Protocol ID = 1

01 AppID = 1
06 Command = CI_CMD_RESET_APP
00 Offset = 0
00 Length = 0

Receive 01 Protocol ID = 1
01 AppID = 1
80 Command Complete with status 0
00 NULL
00 NULL

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

22 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

b. Reset the Embedded application (AppID 2)
Send: 01 02 06 00 00
Receive: 01 02 80 00 00

 Value Description
Send 01 Protocol ID = 1

02 AppID = 2
06 Command = CI_CMD_RESET_APP
00 Length Requested = 0
00 Offset = 0

Receive 01 Protocol ID = 1
02 AppID = 2
80 Command Complete with status 0
00 NULL
00 NULL

2. Define three streams for sensor data.

a. Set up Stream ID A1 to return accelerometer data.
Send: 02 03 A1 01 01 01 00 10 00 00
Receive: 02 80 03 00 00

 Value Description
Send 02 Protocol ID = 2

03 Create Stream command (3)
A1 Stream ID = 1
01 Only one stream element in this stream
01 Trigger bitmask = 1. This message is sent whenever Element 1 is updated.
01 First element is from Dataset ID 1 (Subscription 1/accelerometer data)

00 10 Length = 16
00 00 Offset = 0

Receive 02 Protocol ID = 2
80 Command Complete with status 0
03 Create Stream command (3)
00 Length MSB
00 Length LSB

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 23
NXP Semiconductors

b. Set up Stream ID A2 to return gyroscope data.
Send: 02 03 A2 01 01 02 00 10 00 00
Receive: 02 80 03 00 00

 Value Description
Send 02 Protocol ID = 2

03 Create Stream command (3)
A2 Stream ID = A2
01 Only one stream element in this stream
01 Trigger bitmask = 1. This message is sent whenever Element 1 is updated.
02 First element is from Dataset ID 2 (Subscription 2/gyroscope data)

00 10 Length = 16
00 00 Offset = 0

Receive 02 Protocol ID = 2
80 Command Complete with status = 0
03 Create stream command (3)
00 Length MSB
00 Length LSB

c. Set up Stream ID A3 to return pressure data.

Send: 02 03 A3 01 01 03 00 08 00 00
Receive: 02 80 03 00 00

 Value Description
Send 02 Protocol ID = 2

03 Create Stream command (3)
A3 Stream ID = A3
01 Only one stream element in this stream
01 Trigger bitmask = 1. This message is sent whenever Element 1 is updated.
03 First element is from Dataset ID 3 (Subscription 3/pressure data)

00 08 Length = 8.
Note: Length is only 8 bytes because there is only one axis for pressure/altitude.

00 00 Offset = 0
Receive 02 Protocol ID = 2

80 Command Complete with status 0
03 Create stream command (3)
00 Length MSB
00 Length LSB

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

24 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

3. Enable CI Streaming.
Send: 02 01
Receive: 02 80 01 00 00

 Value Description
Send 02 Protocol ID = 2

01 CI_CMD_STREAM_ENABLE_DATA_UPDATE command
Receive 02 Protocol ID = 2

80 Command Complete with status 0
01 CI_CMD_STREAM_ENABLE_DATA_UPDATE command
00 Length MSB
00 Length LSB

4. Stop streaming.

Send: 02 02
Receive: 02 80 02 00 00

 Value Description
Send 02 Protocol ID = 2

02 CI_CMD_STREAM_DISABLE_DATA_UPDATE command

Receive 02 Protocol ID = 2
80 Command Complete with status 0
02 CI_CMD_STREAM_DISABLE_DATA_UPDATE command
00 Length MSB
00 Length LSB

5. Delete a stream (Stream ID 2 – gyroscope data).

Send: 02 04 A2
Receive: 02 80 04 00 00

 Value Description
Send 02 Protocol ID = 2

04 Delete Stream command (4)
A2 Stream ID to delete = A2

Receive 02 Protocol ID = 2
80 Command Complete with status = 0
04 Delete Stream command (4)
00 Length MSB
00 Length LSB

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 25
NXP Semiconductors

6. Delete all streams and reset streaming.
Send: 02 00
Receive: 02 80 00 00 00

 Value Description
Send 02 Protocol ID = 2

00 Stream Reset command (0)
Receive 02 Protocol ID = 2

80 Command Complete with status 0
00 Stream Reset command (0)
00 Length MSB
00 Length LSB

7. Create a new stream (Stream ID 1) with all three sensors in one stream triggered on Gyro data

update.
Send: 02 03 01 03 02 01 00 10 00 00 02 00 10 00 00 03 00 08 00 00

Receive: 02 80 03 00 00

 Value Description
Send 02 Protocol ID = 2

03 Create Stream command (3)
01 Stream ID = 1
03 3 stream elements in this stream
02 Triggered on element 2 (bitmask)

 Element list: (dataset, 16-bit length, 16-bit offset)
01 Stream

element 1
Dataset 1

00 10 Length = 16
00 00 Offset = 0

02 Stream
element 2

Dataset 2
00 10 Length = 16
00 00 Offset = 0

03 Stream
element 3

Dataset 3
00 08 Length = 8
00 00 Offset = 0

Receive 02 Protocol ID = 2
80 Command Complete with status 0
03 Create Stream command (3)
00 Length MSB
00 Length LSB

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

26 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

8. Start streaming.
Send: 02 01
Receive: 02 80 01 00 00

 Value Field Name
Send 02 Protocol ID = 2

01 Start Streaming command (1)
Receive 02 Protocol ID = 2

80 Command Complete with status 0
01 Start streaming command (1)
00 Length MSB
00 Length LSB

9. Delete a stream (Stream ID 1 – data from all three sensors).

Send: 02 04 01

Receive: 02 80 04 00 00

 Value Field Name
Send 02 Protocol ID = 2

04 Delete Stream command (4)
01 Stream ID to delete = 1

Receive 02 Protocol ID = 2
80 Command Complete with status 0
04 Delete Stream command (4)
00 Length MSB
00 Length LSB

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 27
NXP Semiconductors

10. Create a new stream with all three sensors, but this time trigger off of pressure updates (1 Hz).
Send: 02 03 01 03 04 01 00 10 00 00 02 00 10 00 00 03 00 08 00 00

Receive: 02 80 03 00 00

 Value Field Name
Send 02 Protocol ID = 2

03 Create Stream command (3)
01 Stream ID = 1
03 3 stream elements in this stream
04 Trigger mask is 04 which is 0b000 0100 indicating that element 3 is the

trigger.
 Element list: (dataset, 16-bit length, 16-bit offset)

01 Stream
element 1

Dataset 1
00 10 Length = 16
00 00 Offset = 0

02 Stream
element 2

Dataset 2
00 10 Length = 16
00 00 Offset = 0

03 Stream
element 3

Dataset 3
00 08 Length = 8
00 00 Offset = 0

Receive 02 Protocol ID = 2
80 Command Complete with status = 0
03 Create Stream command (3)
00 Length MSB
00 Length LSB

A set of common Streaming commands is provided with the KIT. To use this file, on the Command
Interface tab, use the Command List: Open File button and choose Command Interpreter Streaming
Commands.txt.

4.1.2 Calling StreamUpdate() in App1_ProcessData()
The ISF embedded app components (ISF_KSDK_EmbApp and ISF_KSDK_BasicApp) are both very
effective at getting sensor data out to the host for graphing. But what happens when a developer wants
to perform some calculations using that sensor data and produce new and different outputs?

The Embedded App component creates a function App1_ProcessData() function in the file
App1_Functions.c file in the Sources directory.

The App1_ProcessData() function is called in the Embedded App’s sensor data loop and allows
developers to implement custom sensor data processing logic whenever new sensor data arrives.

After implementing the custom sensor code in ProcessData, it is desirable to make the results available
to the remote host via the ISF Command Interpreter’s streaming interface.

To do this, update a streaming dataset with a pointer to the computed data.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

28 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

It is important to choose a Stream ID that does not conflict with any of the sensor subscription datasets.
Each sensor subscription makes its data available in a dataset with a Dataset ID that matches its
subscription number. For example, subscription 1 publishes data in Dataset 1. Subscription 2 publishes
data in Dataset 2. Additional information explaining Stream IDs and Dataset IDs can be found in the
Streaming protocol section of the ISF Software Reference Manual.

Suppose we wish to compute the vector magnitude of the accelerometer data from subscription 1.
Assume there are no other sensor subscriptions in the Embedded App. This allows us to publish the
computed vector magnitude in Dataset 2.

We could, therefore, code an App1_ProcessData() function similar to:

void App1_ProcessData(void* pProcessedDataBuffer, int32_t signalledEvents)
{
 // Cast the void * pointer to the specific embedded application data type.
 // This new pointer should be used to access sensor data and deliver results
 // to insure type safety.
 App1SensorData_t *pProcessedData = (App1SensorData_t *)pProcessedDataBuffer;
 /******Write your code here*******/
 float vmag;
 float x,y,z;

 x = pProcessedData->rawAccelerometerData_Sub0[0].accel[0];
 y = pProcessedData->rawAccelerometerData_Sub0[0].accel[1];
 z = pProcessedData->rawAccelerometerData_Sub0[0].accel[2];

 vmag = (float)(sqrt(x*x + y*y + z*z));

 isf_ci_stream_update_data(2, sizeof(vmag), 0, (uint8 *)&vmag);
}

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 29
NXP Semiconductors

If more than one sensor subscription exists and the Sensor Signaling method is set to
AnySensor, then App1_ProcessData() is invoked whenever new data is available for any sensor.
In order to execute different code based on which sensor data has arrived, a check may be placed in
App1_ProcessData() as shown below:

void App1_ProcessData(void* pProcessedDataBuffer, int32_t signalledEvents)
{
 // Cast the void * pointer to the specific embedded application data type.
 // This new pointer should be used to access sensor data and deliver results
 // to insure type safety.
 App1SensorData_t *pProcessedData = (App1SensorData_t *)pProcessedDataBuffer;
 /******Write your code here*******/
 if (signalledEvents & App1_Accelerometer0_DATA_READY_EVENT) // Accelerometer event.
 {
 float vmag;
 float x,y,z;

 x = pProcessedData->rawAccelerometerData_Sub0[0].accel[0];
 y = pProcessedData->rawAccelerometerData_Sub0[0].accel[1];
 z = pProcessedData->rawAccelerometerData_Sub0[0].accel[2];

 vmag = (float)(sqrt(x*x + y*y + z*z));

 isf_ci_stream_update_data(2, sizeof(vmag), 0, (uint8 *)&vmag);
 }

 if (signalledEvents & App1_Gyrometer1_DATA_READY_EVENT) // Gyrometer event.
 {
 float vmag;
 float x,y,z;

 x = pProcessedData->rawGyrometerData_Sub1[0].angularVelocity[0];
 y = pProcessedData->rawGyrometerData_Sub1[0].angularVelocity[1];
 z = pProcessedData->rawGyrometerData_Sub1[0].angularVelocity[2];

 vmag = (float)(sqrt(x*x + y*y + z*z));

 // Only send a rotational vector magnitude update
 // when larger than some threshold.
 if (vmag > 50.0) {
 isf_ci_stream_update_data(3, sizeof(vmag), 0, (uint8 *)&vmag);
 }
 }
}

4.1.3 Working with datasets and multiple streams
By default, both Embedded App components (ISF_KSDK_EmbApp and ISF_KSDK_BasicApp)
maintain a one-to-one mapping of subscriptions to datasets. That is, the data from Subscription 1 is
updated as Dataset 1, the data from Subscription 2 is updated as Dataset 2. But this is purely a
convention used by these applications. In principle, an application can update as many different
datasets as desired. It is also typical for the remote host to create a stream per dataset, but this also is
only by convention. A stream can actually contain data from multiple datasets. For example, continuing
with the code in Section 4.1.2, Dataset 3 gets updated when the vector magnitude of the gyroscope
sample exceeds some threshold. Suppose the remote host wants to see the gyroscope data,
accelerometer data and the vector magnitude, but only when the magnitude exceeds the threshold. To
do so, the remote host defines a stream containing the accelerometer data from Dataset 1, the
gyroscope data from Dataset 2 and the vector magnitude from Dataset 3, and sets the stream trigger to

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

30 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

send the stream only when the vector magnitude (Dataset 3) is updated. For demonstration purposes,
have this data arrive in Stream 13. The accelerometer and gyroscope data are automatically updated
into Datasets 1 and 2, respectively, by the Embedded App.

The stream command sent from the remote host would therefore be:

7E 02 03 0D 03 04 01 00 10 00 00 02 00 10 00 00 03 00 08 00 00 7E

Bit Description
7E Start of Packet
02 Streaming protocol ID = 2 (which is the Streaming Protocol)
03 Create Stream command = 03
0D Creating stream = 13
03 The stream contains three elements
04 The Trigger mask (triggers on Element 3 0x04 = 0b00000100)
01 Stream

Element 1
Take data from Dataset 1 (accelerometer)

00 Number of bytes from Dataset 1 MSB
10 Number of bytes from Dataset 1 LSB
00 Offset within Dataset 1 MSB
00 Offset within Dataset 1 LSB
02 Stream

Element 2
Take data from Dataset 2 (gyroscope)

00 Number of bytes from Dataset 2 MSB
10 Number of bytes from Dataset 2 LSB
00 Offset within Dataset 2 MSB
00 Offset within Dataset 2 LSB
03 Stream

Element 3
Take data from Dataset 3

00 Number of bytes from Dataset 3 MSB
04 Number of bytes from Dataset 3 LSB
00 Offset within Dataset 3 MSB
00 Offset within Dataset 3 LSB
7E End of Packet

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 31
NXP Semiconductors

4.1.4 Starting streams automatically from the application
It is sometimes desirable to have an embedded application initialize and start streaming data
immediately with no intervention by the remote host. This is accomplished by creating the embedded
application with its initial state set to STARTED_SUBSCRIBED in Processor Expert. That starts the
sensor sampling as soon as the app runs without needing the remote host to command the app to the
STARTED_SUBSCRIBED state. All that remains then is to have the application automatically declare
one or more streams and initiate streaming. To do this, some streaming code can be placed in the
App1_Initialization() function, also in App1_Functions.c:

void App1_Initialization()
{
 /******Write your code here*******/
 uint8 triggerMask = 1;
 ci_stream_element_t element1;

 // Define a stream that sends the register data

 element1.datasetID = 3;
 element1.length = sizeof(float); // vmag is a float
 element1.offset = 0;

 // Create stream 5 which contains vmag from dataset 3 (accel)
 st = isf_ci_stream_create(5, 1, &triggerMask, &element1);

 element1.datasetID = 4;
 // Create stream 6 which contains vmag from dataset 4 (gyro)
 st = isf_ci_stream_create(6, 1, &triggerMask, &element1);

 //Now start streaming automatically
 isf_ci_stream_set_stream_enable();
}

4.2 Creating custom commands
It is usually possible to implement all remote host interface function by adding fields to the embedded
applications configuration structure and then writing and setting those fields via the
CI_CMD_WRITE_CONFIG command. However, it is sometimes convenient to define a new command
for the application. Defining a new command is simply a matter of adding a new case to the switch
statement in the application App1_ci_app_callback() function. This is done in Processor Expert by
incrementing the User Defined Host Commands counter in the Host Interface section of the
ISF_KSDK_EmbApp component configuration.

By default, the first callback generated is named HCICB1_Callback() and skeleton code is
generated in the Events.c file in the Sources directory. Code within sections of this file identified by
/******Write your code here*******/ are not overwritten when Processor Expert regenerates
code.

The Command Interpreter invokes the HCICB1_Callback() with two parameters:

void HCICB1_Callback(void* pHostPacket, void* pAppPacket)

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

32 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

The pHostPacket contains the information sent to the app from the remote host. The pAppPacket
allows the embedded application to return information to the remote host.

The pHostPacket is a pointer to a structure defined as:

typedef struct
{
 uint8 appId; /*! Application ID */
 uint8 cmd; /*! Host command */
 uint16 offset; /*! Offset into the application's data */
 uint8 byte_cnt; /*! Number of bytes to read/write */
 } ci_host_cmd_packet_t;

And the pAppPacket points to a structure of type:

typedef struct
{
 ci_rw_enum rw; /*! Data transfer direction wrt to the app (CI_RW_READ, CI_RW_WRITE)
 uint8 bytes_xfer; /*! Number of bytes actually read from or written to the host */
 uint8 bytes_left; /*! Number of bytes left to read from or write to the host */
} ci_app_resp_packet_t;

To retrieve the incoming information from the remote host, the isf_ci_app_read() function is used:

bytesRead = isf_ci_app_read(pHostPacket->appId, pHostPacket->byte_cnt, &readBuffer);

To send data back to the remote host, the isf_ci_app_write() function is used:

bytesXfer = isf_ci_app_write(pHostPacket->appId, numBytes, &dataBuffer);

In either case, the pAppPacket structure must always be updated to reflect the action taken by setting
the pAppPacket->rw value, and the pAppPacket->bytes_xfer value. In the case of reading data
from the remote host using the isf_ci_app_read() function, the pAppPacket->rw value must be
set to CI_RW_READ, and the pAppPacket->bytes_xfer must be set to the number of bytes read.
Conveniently, this value is returned by isf_ci_app_read() making the idiomatic code:

pAppPacket->rw = CI_RW_READ;
pAppPacket->bytes_xfer = isf_ci_app_read(pHostPacket->appId,
pHostPacket->byte_cnt, &readBuffer);

Or for writing data to the remote host:

pAppPacket->rw = CI_RW_WRITE;
pAppPacket->bytes_xfer = isf_ci_app_write(pHostPacket->appId, numBytes,
&dataBuffer);

As an example, suppose we are running the App1_ProcessData() function but wish to make the
detection threshold for the vmag stream update settable by the remote host. This can be accomplished
in two ways.

First, the threshold value could be added to the app configuration data structure and use the standard
CI_CMD_WRITE_CONFIG command.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Communicating with the PC

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 33
NXP Semiconductors

The current App1AppSettings_t is defined in App1_types.h as:
typedef struct {
 uint8 control; /* Current application state */
 isf_SubscriptionSettings_t AccelerometerSettings_Sub0; /* Sensor subscription data */
 isf_SubscriptionSettings_t GyrometerSettings_Sub1; /* Sensor subscription data */
} App1AppSettings_t;

Add the extra configuration value to the bottom:

typedef struct {
 uint8 control; /* Current application state */
 isf_SubscriptionSettings_t AccelerometerSettings_Sub0; /* Sensor subscription data */
 isf_SubscriptionSettings_t GyrometerSettings_Sub1; /* Sensor subscription data */
 float magReportThreshold;

} App1AppSettings_t;

And update our App1_ProcessData() function:

extern App1AppInstance_t App1AppInstance;

void App1_ProcessData(void* pProcessedDataBuffer, int32_t signalledEvents)
{
 // Cast the void * pointer to the specific embedded application data type.
 // This new pointer should be used to access sensor data and deliver results
 // to insure type safety.
 App1SensorData_t *pProcessedData = (App1SensorData_t *)pProcessedDataBuffer;
 /******Write your code here*******/
 if (signalledEvents & App1_Accelerometer0_DATA_READY_EVENT) // Accelerometer event.
 {
 float vmag;
 float x,y,z;

 x = pProcessedData->rawAccelerometerData_Sub0[0].accel[0];
 y = pProcessedData->rawAccelerometerData_Sub0[0].accel[1];
 z = pProcessedData->rawAccelerometerData_Sub0[0].accel[2];

 vmag = (float)(sqrt(x*x + y*y + z*z));

 isf_ci_stream_update_data(2, sizeof(vmag), 0, &vmag);
 }

 if (signalledEvents & App1_Gyrometer1_DATA_READY_EVENT) // Gyrometer event.
 {
 float vmag;
 float x,y,z;

 x = pProcessedData->rawGyrometerData_Sub1[0].angularVelocity[0];
 y = pProcessedData->rawGyrometerData_Sub1[0].angularVelocity[1];
 z = pProcessedData->rawGyrometerData_Sub1[0].angularVelocity[2];

 vmag = (float)(sqrt(x*x + y*y + z*z));

 // Only send a rotational vector magnitude update
 // when larger than some threshold.
 if (vmag > App1AppInstance.settings.magReportThreshold) {
 isf_ci_stream_update_data(3, sizeof(vmag), 0, &vmag);
 }
 }
}

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Communicating with the PC

34 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

The remote host can issue a CI_CMD_WRITE_CONFIG command to offset 28 with four bytes of a
floating point value in the endianness of the embedded microprocessor to set the
magReportThreshold value.

The offset of 28 was determined by calculating the offset into the App1AppSettings_t structure of
the start of the magReportThreshold field.

One point to note is that to add the magReportThreshold field to the App1AppSettings_t
structure, it was necessary to edit the App1_Types.h file. This file will be overwritten the next time
Processor Expert generates code, thus removing the addition. This can be worked around and ways to
do this are discussed in Section 6.

Alternatively, a new command could be specifically created to set the threshold as discussed above.

The implemented callback function might look like:
extern float magReportThreshold;

typedef union {
 long lval;
 float fval;
} floatBytes_t;

void HCICB1_Callback(void* pHostPacket, void* pAppPacket)
{
/******Write your code here*******/
 uint8_t cmdBuf[10];
 isf_status_t st;
 floatBytes_t floatBytes;

 /* get real types back instead of the void * pointers */
 ci_host_cmd_packet_t *pHP = (ci_host_cmd_packet_t*)pHostPacket;
 ci_app_resp_packet_t *pAP = (ci_app_resp_packet_t*)pAppPacket;

 pAP->rw = CI_RW_READ;
 pAP->bytes_xfer =
 (uint8)isf_ci_app_read(
 pHP->appId, (uint32)pHP->byte_cnt, cmdBuf
);
 floatBytes.lval = (cmdBuf[0]<<24)|(cmdBuf[1]<<16)|(cmdBuf[2]<<8)|(cmdBuf[3]);

 magReportThreshold = floatBytes.fval;
}

The order in which the bytes of the float are sent can now be made according to preference, as long as
they are put back together properly. One could even decide to send an ASCII string containing the
value and parse that back into a float inside the HCICB1_Callback() function.

And of course the magReportThreshold variable can now be declared as a global in
App1_Functions.c:

float magReportThreshold = 0.0;

The test in App1_ProcessData() can now be modified to simply:

if (vmag > magReportThreshold) {
 isf_ci_stream_update_data(3, sizeof(vmag), 0, (uint8 *)&vmag);
}

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Main application flow

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 35
NXP Semiconductors

5 Main application flow
5.1 Embedded app
This section discusses the basic operational flow of the ISF_KSDK_EmbApp component.

The ISF_KSDK_EmbApp component generates its main code to the App1.c, App1.h, and
App1_Types.h files in the Generated_Code folder.

Each ISF_KSDK_EmbApp instance executes in a task. The OS task is configured to run
App1_Task() which invokes the isf_lib_init() function, waits for all ISF components to complete
initialization and then invokes App1_MainTask().

The file App1_Functions.c is provided to allow the developer to execute custom initialization logic. The
App1_MainTask() function calls the App1_Initialization() routine within it.

Once initialization is complete, the sensor subscriptions specified in the Processor Expert Sensor
Subscription section of the embedded application are set up.

The generated subscription settings code is executed, the event data structures are created and
initialized, the software FIFOs used to contain the subscription sample data are initialized and then
each sensor is initialized.

After sensor initialization is complete, the application moves to the subscription state specified in the
Processor Expert component configuration. By default, this is STOPPED_UNSUBSCRIBED, but may
be modified to STARTED_SUBSCRIBED, or STOPPED_SUBSCRIBED.

It then enters a forever loop waiting for new sensor samples to arrive using an OS event
synchronization mechanism. Execution continues depending on whether the event wait was configured
to wait for ANY_SENSOR or ALL_SENSORS in Processor Expert.

If the application was configured to go into a STOPPED_UNSUBSCRIBED or
STOPPED_SUBSCRIBED state, then no sensor data is received until a command from the remote
host is received to set the application state to STARTED_SUBSCRIBED.

For example, the command:
7E 01 02 02 00 01 52 7E

sets the application to SUBSCRIBED_STARTED, and is decoded as follows

Value Description
7E Start of Packet
01 Command/Response protocol
02 AppID 2– Embedded App
02 CI_CMD_WRITE_CONFIG
00 Write offset zero in the Config App’s config buffer
01 Number of bytes to write
52 The byte to write 0x52 sets the subscription state to

STARTED_SUBSCRIBED
7E End of packet

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Main application flow

36 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

When the remote host sends this command, it is received by the Command Interpreter (CI). The CI
examines the destination AppID and invokes the corresponding registered CI Callback. The EmbApp’s
callback is App1_ci_app_callback() and is found in App1.c. The registered callback list is found
in ISFCore1.c in the ci_callback[] array. The array entries are ordered by AppID.

The App1_ci_app_callback() function can then take different actions based on the command sent.
The ISF_KSDK_EmbApp implementation uses a large switch statement, based on the command.

It is suggested you browse through the App1_ci_app_callback() function to observe how it
operates. Try generating code with no User-Defined Host Commands and then with one or more
User-Defined Host Commands to see how the generated code changes.

Once the flow of sensor data has started, the event wait call returns and execution flow enters the main
sensor loop logic.

Inside the main sensor loop, the signalledEvents word is checked to determine which sensors have
new data available. For each of these sensors, the data is retrieved from its registered FIFO and its
corresponding streaming dataset is updated. This triggers the Command Interpreter to update and
potentially send a stream update packet to the remote host, for any stream containing data from that
dataset.

After these sensor subscription streams have all been updated, App1_ProcessData() is invoked
where user-specific sensor data processing is performed.

After App1_ProcessData() returns, the loop is complete and it cycles back to the event, wait at the
top of the loop, to await the arrival of new data.

5.2 Basic app
The ISF_KSDK_BasicApp component provides a much simpler, and powerful, application than does
the ISF_KSDK_EmbApp component.

The ISF_KSDK_BasicApp component organizes all its sensor subscription information in a large array
indexed by subscription number. This allows the app to iterate through the array to perform actions on
all subscriptions.

It generally operates like the ISF_KSDK_EmbApp component described in Section 5.1, as it:

1. Synchronizes on the ISF thread initializations
2. Creates and initializes the event used for sensor subscription notifications
3. Invokes the BasicApp1_Initialization() routine, where developers can place their own

custom initialization logic
4. It loops through app configured sensor subscriptions calling:

a. isf_fifo_init()
b. init_sensor()
c. configure_sensor()

At this point, where the ISF_KSDK_EmbApp calls App1_GotoState(), the ISF_KSDK_BasicApp
simply starts the sensors by calling start_sensor() for all subscriptions and then enters the main
sensor loop. Processing of sensor data coming out of the event wait is similar to the
ISF_KSDK_EmbApp processing. For each sensor with new data available, the ISF_KSDK_BasicApp
updates the corresponding stream dataset. Instead of invoking the user-defined
App1_ProcessData() once, at the bottom of the loop, the ISF_KSDK_BasicApp invokes the
BasicApp1_OnAnySensor_Data_Ready() function once for each sensor with new data available.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Working with Processor Expert

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 37
NXP Semiconductors

Parameters are passed to the function. The function is able to determine which sensor caused the
invocation and which other sensors also have data currently available.

Unlike the ISF_KSDK_EmbApp with its subscription state machine and fully implemented Command-
Interpreter callback, the ISF_KSDK_BasicApp provides a simpler Command Interpreter callback routine
in the BasicApp1_Functions.c file. This file resides in the Sources directory and can thus be modified
without fear of being overwritten during subsequent code generation operations. New commands, using
switch cases, can be added directly by the developer without the need to configure additional
commands in Processor Expert.

5.3 Integrating ISF into your own application
Besides the two application components, it is also possible to use ISF functionality from existing MQX
or FreeRTOS applications. Instead of including either of the embedded application components in your
project, add the ISF calls directly into the code of the existing project. You must ensure that
isf_lib_init(0) is executed somewhere at the beginning of the application. For example, in the
application’s init routine, ensure that the ISF service tasks are properly created with task priorities that
work with the rest of the application’s tasks. At that point, it is okay to begin making sensor calls. The
typical order might be:

1. Create an event to use for sensor data notification (OSA_EventCreate())
2. Initialize a FIFO (isf_fifo_init())
3. Initialize a sensor (init_sensor())
4. Configure the sensor (configure_sensor())
5. Start the sensor sampling (start_sensor())
6. Wait for sensor data (OSA_EventWait())
7. Work with sensor data
8. If applicable, pause the sensors whenever sensor data is not needed (stop_sensor())
9. Shut down the sensor when the application is finished executing (shutdown_sensor()).

As a best practice, take the code from the BasicApp component and cut and paste as necessary into
your own application.

6 Working with Processor Expert
6.1 Moving away from provided apps
A savvy developer can treat the Processor Expert generated code as simply a starting point for further
development. After initial PEx code generation, the generated code can be copied out of the
Generated_Code directory and into the Sources directory. Then, the files in the Generated_Code
directory can be disabled or excluded from the build. This allows the code to be modified in any way the
developer would like, without concerns for the code being overwritten if the code is regenerated, such
as if a pin mux setting needs to be changed.

For example, if the Dataset ID being used for a particular sensor subscription needed to be changed in
Generated_Code/App1.c, a developer could copy App1.c from Generated_Code to the Sources
directory and then modify the code as needed. The Dataset ID character being changed is shown in the
following code excerpts.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Working with Processor Expert

38 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

Change
isf_ci_stream_update_data(1,sizeof(App1AppInstance.data.rawAccelerometerData
_Sub0[0]), 0, (uint8 *)pData);

To
isf_ci_stream_update_data(6,sizeof(App1AppInstance.data.rawAccelerometerData
_Sub0[0]), 0, (uint8 *)pData);

Note: Characters in the previous code examples are boxed and highlighted for emphasis.

Files in the Generated_Code directory can be excluded from the build, to ensure KDS does not try to
compile the same file twice. This can be done by selecting the file in KDS, right clicking for Properties,
and checking the Exclude resource from build box in the Build Settings. See Figure 2.

Figure 2. KDS BasicApp1.c – Exclude Resource from Build checkbox

6.2 Using FreeRTOS
ISF v2.2 supports both MQX RTOS and FreeRTOS through the fsl_os_abstraction PEx component
provided with the Kinetis SDK. The selection of RTOS is done through the OS property drop-down
menu. Selection of FreeRTOS creates the free_rtos component through Component Development
Environment (CDE) inheritance. This component must be configured to work correctly with ISF. In the
Configuration parameters (FreeRTOSConfig.h), two Heap memory configuration values must be
changed.

1. Set the default Memory scheme to Alloc/Free. (The default value is Malloc, which is the C stdlib
implementation.)

2. Increase the Total heap size to 12 KB. The default Total heap size is 8 KB but FreeRTOS allocates
all the task stacks on the heap, as a result, this needs to be increased to 12 KB.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

 Working with Processor Expert

Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016 39
NXP Semiconductors

It is important to note that FreeRTOS uses the upper 8 bits of all Events as internal flags. Therefore, the
upper 8 bits are not available for user applications, and should be avoided.

6.3 Creating an ISF v2.2 project from scratch
ISF v2.2 provides example projects for a variety of NXP Freedom (FRDM) boards. However, it may
become necessary for a user to create an ISF v2.2 project for a Kinetis MCU on a FRDM platform that
does not have an example project. This section outlines the steps involved to get started with this
process.

1. In KDS 3.0, go to File->New->Kinetis Project. Give the project a name, then click Next.

2. Select from the boards supported for the desired Kinetis MCU. Note: If the board is not supported

by KDS 3.0, then this process becomes much more complicated. Select a board, click Next. There
should be an option to select the KSDK 1.x version for the board, Select the Processor Expert
option, then click Finished.

3. After the project is created, bring in the ISF_KSDK_Core in the normal way.

4. As Comm Channels (I2C, SPI, UART) are added, consult the schematics for the target board to

configure the underlying KSDK PEx components correctly.

When you have a working project, please consider posting to the ISF Community page for others to
benefit from your efforts.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

References

40 Intelligent Sensing Framework v2.2 User Guide, 1.0, 2/2016
 NXP Semiconductors

7 References
Resource Description Link

FRDM-STBC-AGM021 Tool Summary Page nxp.com/FRDM-STBC-AGM02
FXAS21002C

Product Summary Page nxp.com/FXAS21002C
 FXLN83xxQ Product Summary Page nxp.com/FXLN83XXQ

FXLS8952C1

Product Summary Page nxp.com/FXLS8952C
FXOS8700C

Product Summary Page nxp.com/FXOS8700CQ
MPL3115A2 Product Summary Page nxp.com/MPL3115A2
MPXV5004DP Product Summary Page nxp.com/MPXV5004DP
ISF v2.1 website Tool Summary Page nxp.com/ISF-2.2-KINETIS
ISF v2.2 installer Software nxp.com/ISF-2.2-KINETIS
ISF v2.2 training videos Training nxp.com/ISF-2.2-KINETIS (Training tab)
ISF v2.2 Release Notes Documentation nxp.com/ISF-2.2-KINETIS
ISF v2.2 Software Reference Manual Documentation nxp.com/ISF-2.2-KINETIS
ISF v2.2 website Tool Summary Page nxp.com/ISF-2.2-KINETIS
Kinetis SDK website Tool Summary Page nxp.com/KSDK

 Processor Expert website Tool Summary Page nxp.com/PROCESSOREXPERT
1. These products are not available at the time of the ISF v2.2 release.

8 Revision History

Rev. No. Date Description
1.0 2/2016 Initial public release

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

Document Number: ISF2P2_UG
Revision 1.0, 02/2016

How to Reach Us:
Home Page:
NXP.com
Web Support:
NXP.com/support

Information in this document is provided solely to enable system and
software implementers to use NXP products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any
integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products
herein.

NXP makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does NXP assume
any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in
different applications, and actual performance may vary over time. All
operating parameters, including “typicals,” must be validated for each
customer application by customer's technical experts. NXP does not
convey any license under its patent rights nor the rights of others. NXP
sells products pursuant to standard terms and conditions of sale, which
can be found at the following address:
NXP.com/SalesTermsandConditions.

NXP and the NXP logo are trademarks of NXP B.V., Reg. U.S. Pat. & Tm.
Off. All other product or service names are the property of their respective
owners.

© 2016 NXP B.V.

Downloaded from Arrow.com.

http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com
http://www.arrow.com

