Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Annular PNPN devices designed for high volume consumer applications such as relay and lamp drivers, small motor controls, gate drivers for larger thyristors, and sensing and detection circuits. Supplied in an inexpensive plastic TO-92/TO-226AA package which is readily adaptable for use in automatic insertion equipment.

- Sensitive Gate Trigger Current 200 μA Maximum
- Low Reverse and Forward Blocking Current 50 μA Maximum, $T_C = 110$ °C
- Low Holding Current 5 mA Maximum
- Passivated Surface for Reliability and Uniformity
- These are Pb-Free Devices

MAXIMUM RATINGS (T, I = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
$\begin{tabular}{lll} Peak Repetitive Off-State Voltage (Note 1) \\ (T_J = -40 to 110 ^{\circ}C, Sine Wave, \\ 50 to 60 Hz, R_{GK} = 1 k \Omega) & 2N5060 \\ 2N5061 & 2N5062 \\ 2N5064 & 2N5064 \\ \end{tabular}$	V _{DRM,} V _{RRM}	30 60 100 200	V
On-State Current RMS (180 $^{\circ}$ Conduction Angles; $T_C = 80^{\circ}C$)	I _{T(RMS)}	0.8	Α
*Average On-State Current (180° Conduction Angles) $ (T_C = 67^\circ C) $ $ (T_C = 102^\circ C) $	I _{T(AV)}	0.51 0.255	Α
*Peak Non-repetitive Surge Current, T _A = 25°C (1/2 cycle, Sine Wave, 60 Hz)	I _{TSM}	10	Α
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	0.4	A ² s
*Average On-State Current (180° Conduction Angles) $(T_C = 67^{\circ}C)$ $(T_C = 102^{\circ}C)$	I _{T(AV)}	0.51 0.255	Α
*Forward Peak Gate Power (Pulse Width \leq 1.0 μ sec; $T_A = 25^{\circ}C$)	P_{GM}	0.1	W
*Forward Average Gate Power (T _A = 25°C, t = 8.3 ms)	P _{G(AV)}	0.01	W
*Forward Peak Gate Current (Pulse Width $\leq 1.0 \mu sec; T_A = 25^{\circ}C)$	I _{GM}	1.0	Α
*Reverse Peak Gate Voltage (Pulse Width ≤ 1.0 μsec; T _A = 25°C)	V_{RGM}	5.0	V
*Operating Junction Temperature Range	TJ	-40 to +110	°C
*Storage Temperature Range	T _{stg}	-40 to +150	°C

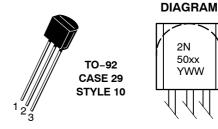
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

*Indicates JEDEC Registered Data.

ON Semiconductor®

http://onsemi.com


SILICON CONTROLLED **RECTIFIERS** 0.8 A RMS, 30 - 200 V

MARKING

2N 50xx

YWW

50xx Specific Device Code

= Year WW = Work Week

PIN ASSIGNMENT				
1	Cathode			
2	Gate			
3	Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

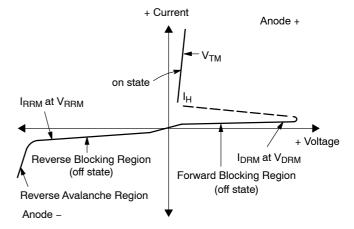
THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
*Thermal Resistance, Junction-to-Case (Note 2)	$R_{ heta JC}$	75	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{ heta JA}$	200	°C/W

^{2.} This measurement is made with the case mounted "flat side down" on a heatsink and held in position by means of a metal clamp over the curved surface.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		•	•	•		
*Peak Repetitive Forward or Reverse Blocking Curr (V _{AK} = Rated V _{DRM} or V _{RRM})	rent (Note 3) T _C = 25°C T _C = 110°C	I _{DRM} , I _{RRM}	- -	- -	10 50	μ Α μ Α
ON CHARACTERISTICS						
*Peak Forward On-State Voltage (Note 4) (I _{TM} = 1.2 A peak @ T _A = 25°C)		V _{TM}	-	_	1.7	V
Gate Trigger Current (Continuous DC) (Note 5) $*(V_{AK} = 7.0 \text{ Vdc}, R_L = 100 \Omega)$	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	I _{GT}	- -	- -	200 350	μΑ
Gate Trigger Voltage (Continuous DC) (Note 5) *(V_{AK} = 7.0 Vdc, R_L = 100 Ω)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	V _{GT}	-	- -	0.8 1.2	V
*Gate Non-Trigger Voltage $(V_{AK} = Rated V_{DRM}, R_L = 100 \Omega) T_C = 110^{\circ}C$		V _{GD}	0.1	-	-	V
Holding Current (Note 3) *(V _{AK} = 7.0 Vdc, initiating current = 20 mA)	$T_C = 25^{\circ}C$ $T_C = -40^{\circ}C$	lн	- -	- -	5.0 10	mA
Turn-On Time Delay Time Rise Time $(I_{GT}=1.0 \text{ mA, } V_D=\text{Rated } V_{DRM},$ Forward Current = 1.0 A, di/dt = 6.0 A/ μ s		t _d t _r	-	3.0 0.2	- -	μs
Turn-Off Time (Forward Current = 1.0 A pulse, Pulse Width = 50 μ s, 0.1% Duty Cycle, di/dt = 6.0 A/ μ s, dv/dt = 20 V/ μ s, I _{GT} = 1 mA) 2N5060, 2N5062,		tq	_ _	10 30	- -	μs
DYNAMIC CHARACTERISTICS	2.10001			""	<u> </u>	
Critical Rate of Rise of Off–State Voltage (Rated V _{DRM} , Exponential, R _{GK} = 1 kΩ)		dv/dt	-	30	_	V/μs


^{*}Indicates JEDEC Registered Data.

^{*}Indicates JEDEC Registered Data.

^{3.} R_{GK} = 1000 Ω is included in measurement. 4. Forward current applied for 1 ms maximum duration, duty cycle \leq 1%. 5. R_{GK} current is not included in measurement.

Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak on State Voltage
I _H	Holding Current

CURRENT DERATING

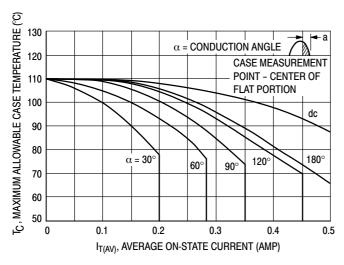


Figure 1. Maximum Case Temperature

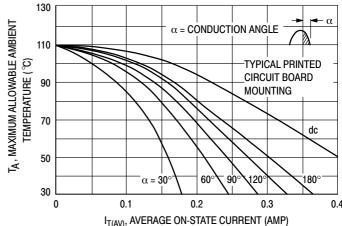


Figure 2. Maximum Ambient Temperature

CURRENT DERATING

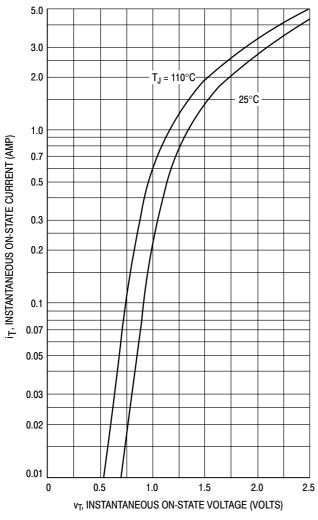


Figure 3. Typical Forward Voltage

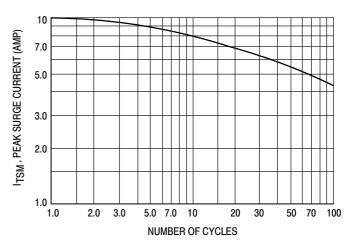


Figure 4. Maximum Non-Repetitive Surge Current

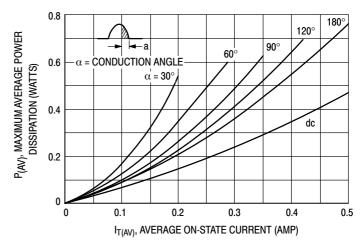


Figure 5. Power Dissipation

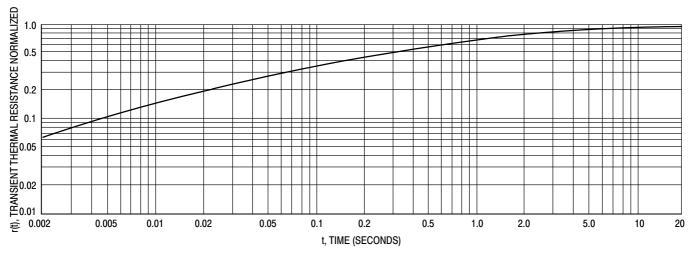
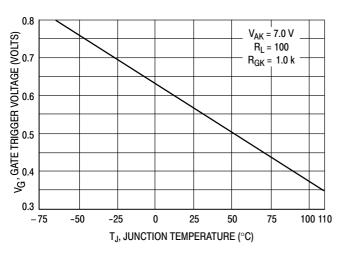



Figure 6. Thermal Response

TYPICAL CHARACTERISTICS

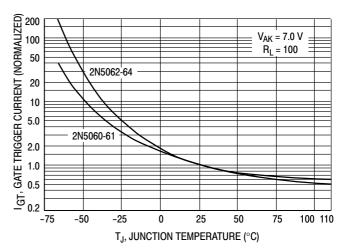


Figure 7. Typical Gate Trigger Voltage

Figure 8. Typical Gate Trigger Current

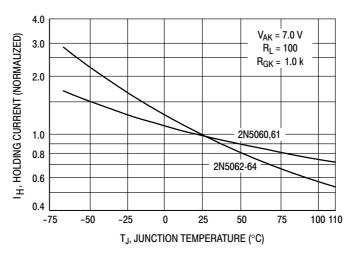
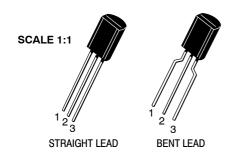
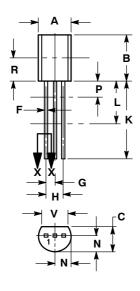



Figure 9. Typical Holding Current

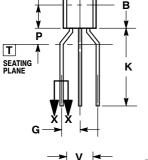
ORDERING INFORMATION

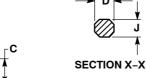

Device	Package	Shipping [†]
2N5060G	TO-92 (Pb-Free)	5000 Units / Box
2N5060RLRA	TO-92	2000 / Tape & Reel
2N5060RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5060RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N5061G	TO-92 (Pb-Free)	5000 Units / Box
2N5061RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5062G	TO-92 (Pb-Free)	5000 Units / Box
2N5062RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5064RLRMG	TO-92 (Pb-Free)	2000 / Ammo Pack
2N5064RLRAG	TO-92 (Pb-Free)	2000 / Tape & Reel
2N5064G	TO-92 (Pb-Free)	5000 Units / Box

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

TO-92 (TO-226) 1 WATT CASE 29-10 **ISSUE A**

DATE 08 MAY 2012




STRAIGHT LEAD

BENT LEAD

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI

- DIMENSIONING AND TOLEHANCING PEH ANSI
 Y14.5M, 1994.
 CONTROLLING DIMENSION: INCHES.
 CONTOUR OF PACKAGE BEYOND DIMENSION R IS
 UNCONTROLLED.
 DIMENSION F APPLIES BETWEEN DIMENSIONS P
 AND L DIMENSIONS D AND J APPLY BETWEEN DIMENSIONS L AND K MINIMUM. THE LEAD
 DIMENSIONS ARE UNCONTROLLED IN DIMENSION
 AND BEYOND DIMENSION K MINIMUM. P AND BEYOND DIMENSION K MINIMUM.

	INC	HES	MILLIM	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.175	0.205	4.44	5.21
В	0.290	0.310	7.37	7.87
С	0.125	0.165	3.18	4.19
D	0.018	0.021	0.46	0.53
F	0.016	0.019	0.41	0.48
G	0.045	0.055	1.15	1.39
Н	0.095	0.105	2.42	2.66
J	0.018	0.024	0.46	0.61
K	0.500		12.70	
L	0.250		6.35	
N	0.080	0.105	2.04	2.66
Р		0.100		2.54
R	0.135	-	3.43	
٧	0.135		3.43	

NOTES:

- NOTES.

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCHES.

 3. CONTOUR OF PACKAGE BEYOND DIMENSION R IS

- UNCONTROLLED.

 DIMENSION F APPLIES BETWEEN DIMENSIONS P
 AND L. DIMENSIONS D AND J APPLY BETWEEN
 DIMENSIONS L AND K MINIMUM. THE LEAD
 DIMENSIONS ARE UNCONTROLLED IN DIMENSION
 P AND BEYOND DIMENSION K MINIMUM.

		INC	HES	MILLIN	IETERS
	DIM	MIN	MAX	MIN	MAX
	Α	0.175	0.205	4.44	5.21
	В	0.290	0.310	7.37	7.87
	С	0.125	0.165	3.18	4.19
	D	0.018	0.021	0.46	0.53
	G	0.094	0.102	2.40	2.80
	J	0.018	0.024	0.46	0.61
	K	0.500		12.70	
	N	0.080	0.105	2.04	2.66
	P		0.100		2.54
	R	0.135		3.43	
ı	٧	0.135		3.43	

STYLES ON PAGE 2

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repos Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 1 OF 2	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

TO-92 (TO-226) 1 WATT CASE 29-10

ISSUE A

DATE 08 MAY 2012

STYLE 1: PIN 1. 2. 3.	EMITTER BASE COLLECTOR	STYLE 2: PIN 1. 2. 3.	BASE EMITTER COLLECTOR	STYLE 3: PIN 1. 2. 3.	ANODE ANODE CATHODE	STYLE 4: PIN 1. 2. 3.	CATHODE CATHODE ANODE	STYLE 5: PIN 1. 2. 3.	DRAIN SOURCE GATE
	GATE	PIN 1. 2.	SOURCE DRAIN	PIN 1. 2.		PIN 1.	BASE 1 EMITTER	STYLE 10: PIN 1. 2. 3.	CATHODE
2.	ANODE CATHODE & ANODE CATHODE	STYLE 12: PIN 1. 2. 3.	MAIN TERMINAL 1 GATE MAIN TERMINAL 2	STYLE 13: PIN 1. 2. 3.	ANODE 1 GATE CATHODE 2	STYLE 14: PIN 1. 2. 3.	EMITTER COLLECTOR BASE	STYLE 15: PIN 1. 2. 3.	ANODE 1 CATHODE ANODE 2
PIN 1. 2.	ANODE GATE	PIN 1. 2.	COLLECTOR BASE	PIN 1. 2.		PIN 1. 2.	GATE ANODE CATHODE	2.	NOT CONNECTED
PIN 1. 2.	COLLECTOR	STYLE 22: PIN 1. 2. 3.	SOURCE GATE DRAIN	PIN 1. 2.	GATE	PIN 1. 2.		PIN 1. 2.	MT 1
	V _{CC}	PIN 1. 2.		PIN 1. 2.	CATHODE	PIN 1. 2.	NOT CONNECTED ANODE CATHODE	PIN 1. 2.	
	GATE	PIN 1. 2.			RETURN	2.			

DOCUMENT NUMBER:	98AON52857E	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	TO-92 (TO-226) 1 WATT		PAGE 2 OF 2	

ON Semiconductor and all are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any product prevent. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer specimications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative