

N-Channel RF Amplifier MMBF5484, MMBF5485, MMBF5486

This device is designed primarily for electronic switching applications such as low On Resistance analog switching. Sourced from Process 50.

ABSOLUTE MAXIMUM RATINGS* (T_A = 25°C unless otherwise noted)

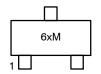
Symbol	Rating	Value	Unit
V_{DG}	Drain-Gate Voltage	25	V
V _{GS}	Gate-Source Voltage	-25	V
I _{GF}	Forward Gate Current	10	mA
T _J , T _{stg}	Operating and Storage Junction Temperature Range	–55 to +150	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

- 1. These rating are based on a maximum junction temperature of 150°C.
- 2. These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

THERMAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

		Max	
Symbol	Characteristic	*MMBF5484-5486	Unit
P _D	Total Device Dissipation Derate above 25°C	225 1.8	mW mW/°C
$R_{ heta JC}$	Thermal Resistance, Junction to Case	-	°C/W
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	556	°C/W


^{*}Device mounted on FR-4 PCB 1.6" x 1.6" x 0.06".

NOTE: Source & Drain are interchangeable

SOT-23 CASE 318-08

MARKING DIAGRAM

6x = Device Code (x = B, M, H)

M = Date Code

ORDERING INFORMATION

Device	Package	Shipping [†]
MMBF5484	SOT-23	3000 Tape &
MMBF5484	(Pb-Free)	Reel
MMBF5484		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}These rating are limiting values above which the serviceability of any semiconductor device may be impaired.

ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
OFF CHAF	RACTERISTICS			I			
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = -1.0 \mu\text{A}, V_{DS} = 0$		-25	-	-	V
I _{GSS}	Gate Reverse Current	$V_{GS} = -20 \text{ V}, V_{DS} = 0$ $V_{GS} = -20 \text{ V}, V_{DS} = 0, T_A = 100^{\circ}\text{C}$		- -	- -	-1.0 -0.2	nA μA
V _{GS(off)}	Gate-Source Cutoff Voltage	V _{DS} = 15 V, I _D = 10 nA	5484 5485 5486	-0.3 -0.5 -2.0	- - -	-3.0 -4.0 -6.0	V V V
ON CHAR	ACTERISTICS		<u></u>	I	I		
I _{DSS}	Zero-Gate Voltage Drain Current*	V _{DS} = 15 V, V _{GS} = 0	5484 5485 5486	1.0 4.0 8.0	- - -	5.0 10 20	mA mA mA
SMALL SI	GNAL CHARACTERISTICS		•				•
9fs	Forward Transfer Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$	5484 5485 5486	3000 3500 4000	- - -	6000 7000 8000	μmhos μmhos μmhos
Re ₍ y _{is)}	Input Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz	5484	-	_	100	μmhos
		V _{DS} = 15 V, V _{GS} = 0, f = 400 kHz	5485 / 5486	-	-	1000	μmhos
9os	Output Conductance	$V_{DS} = 15 \text{ V}, V_{GS} = 0, f = 1.0 \text{ kHz}$	5484 5485 5486	- - -	- - -	50 60 75	μmhos μmhos μmhos
Re ₍ y _{os)}	Output Conductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz	5484	-	_	75	μmhos
		V _{DS} = 15 V, V _{GS} = 0, f = 400 MHz	5485 / 5486	_	_	100	μmhos
Re ₍ y _{fs)}	Forward Transconductance	V _{DS} = 15 V, V _{GS} = 0, f = 100 MHz	5484	2500	_	-	μmhos
		V _{DS} = 15 V, V _{GS} = 0, f = 400 MHz	5485 5486	3000 3500	_ _	- -	μmhos μmhos
C _{iss}	Input Capacitance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz		-	-	5.0	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz		-	-	1.0	pF
C _{oss}	Output Capacitance	V _{DS} = 15 V, V _{GS} = 0, f = 1.0 MHz		-	-	2.0	pF
NF	Noise Figure	V_{DS} = 15 V, R_G = 1.0 k Ω , f = 100 MHz	5484	-	-	3.0	dB
		$V_{DS} = 15 \text{ V}, R_G = 1.0 \text{ k}\Omega, f = 400 \text{ MHz}$	5484	-	4.0	_	dB
		V_{DS} = 15 V, R_G = 1.0 k Ω , f = 100 MHz	5485 / 5486	-	_	2.0	dB
		V_{DS} = 15 V, R_G = 1.0 k Ω , f = 400 MHz	5485 / 5486	-	-	4.0	dB

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS

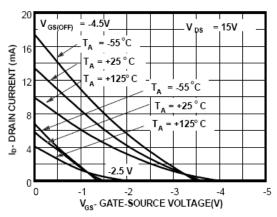


Figure 1. Transfer Characteristics

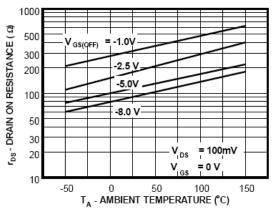


Figure 2. Channel Resistance vs. Temperature

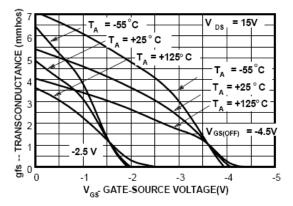


Figure 3. Transconductance Characteristics

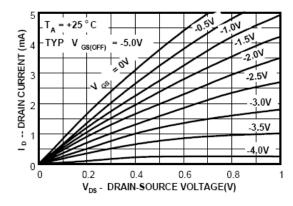


Figure 4. Common Drain-Source Characteristics

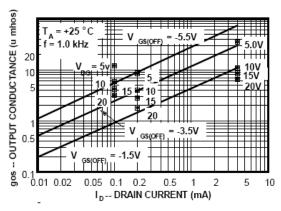


Figure 5. Output Conductance vs. Drain Current

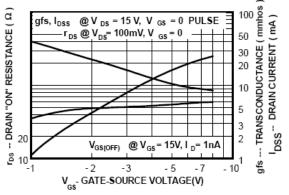


Figure 6. Transconductance Parameter Interactions

TYPICAL CHARACTERISTICS (continued)

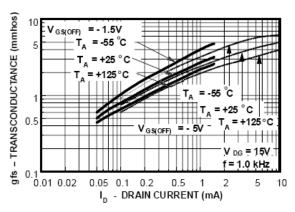


Figure 7. Transconductance vs. Drain Current

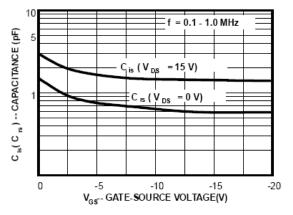


Figure 9. Capacitance vs. Voltage

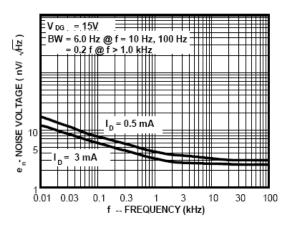


Figure 8. Noise Voltage vs. Frequency

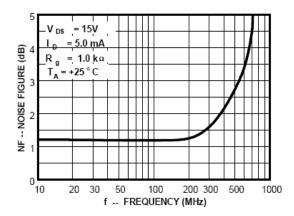


Figure 10. Noise Figure Frequency

COMMON SOURCE CHARACTERISTICS

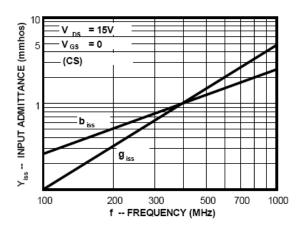


Figure 11. Input Admittance

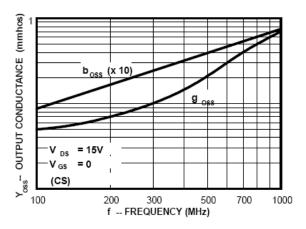


Figure 12. Output Admittance

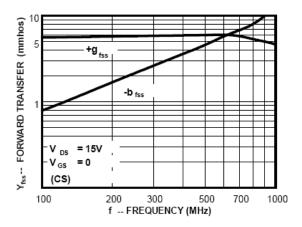


Figure 13. Forward Transadmittance

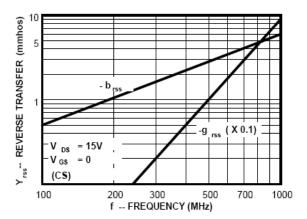


Figure 14. Reverse Transadmittance

COMMON GATE CHARACTERISTICS

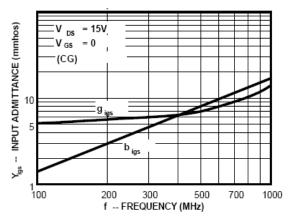


Figure 15. Input Admittance

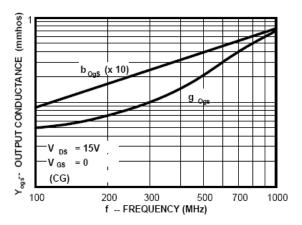


Figure 16. Output Admittance

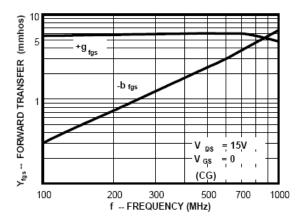


Figure 17. Forward Transadmittance

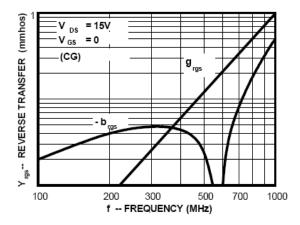
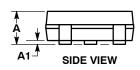
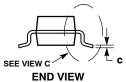
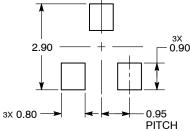


Figure 18. Reverse Transadmittance


SOT-23 (TO-236) CASE 318-08 **ISSUE AS**

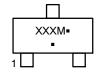

DATE 30 JAN 2018

SCALE 4:1 D Ε - 3X b


TOP VIEW

RECOMMENDED SOLDERING FOOTPRINT

DIMENSIONS: MILLIMETERS


3. ANODE

NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH.
 MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL
- 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.89	1.00	1.11	0.035	0.039	0.044	
A1	0.01	0.06	0.10	0.000	0.002	0.004	
b	0.37	0.44	0.50	0.015	0.017	0.020	
С	0.08	0.14	0.20	0.003	0.006	0.008	
D	2.80	2.90	3.04	0.110	0.114	0.120	
E	1.20	1.30	1.40	0.047	0.051	0.055	
е	1.78	1.90	2.04	0.070	0.075	0.080	
L	0.30	0.43	0.55	0.012	0.017	0.022	
L1	0.35	0.54	0.69	0.014	0.021	0.027	
HE	2.10	2.40	2.64	0.083	0.094	0.104	
Т	O۰		10°	O۰		10°	

GENERIC MARKING DIAGRAM*

XXX = Specific Device Code

= Date Code

= Pb-Free Package

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

STYLE 1 THRU 5: CANCELLED	STYLE 6: PIN 1. BASE 2. EMITTER 3. COLLECTOR	STYLE 7: PIN 1. EMITTER 2. BASE 3. COLLECTOR	STYLE 8: PIN 1. ANODE 2. NO CONNECTION 3. CATHODE		
STYLE 9: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 10: PIN 1. DRAIN 2. SOURCE 3. GATE	STYLE 11: PIN 1. ANODE 2. CATHODE 3. CATHODE-ANODE	STYLE 12: PIN 1. CATHODE 2. CATHODE 3. ANODE	STYLE 13: PIN 1. SOURCE 2. DRAIN 3. GATE	STYLE 14: PIN 1. CATHODE 2. GATE 3. ANODE
STYLE 15: PIN 1. GATE 2. CATHODE 3. ANODE	STYLE 16: PIN 1. ANODE 2. CATHODE 3. CATHODE	STYLE 17: PIN 1. NO CONNECTION 2. ANODE 3. CATHODE	STYLE 18: PIN 1. NO CONNECTION 2. CATHODE 3. ANODE	STYLE 19: PIN 1. CATHODE 2. ANODE 3. CATHODE-ANODE	STYLE 20: PIN 1. CATHODE 2. ANODE 3. GATE
STYLE 21: PIN 1. GATE 2. SOURCE 3. DRAIN	STYLE 22: PIN 1. RETURN 2. OUTPUT 3. INPUT	STYLE 23: PIN 1. ANODE 2. ANODE 3. CATHODE	STYLE 24: PIN 1. GATE 2. DRAIN 3. SOURCE	STYLE 25: PIN 1. ANODE 2. CATHODE 3. GATE	STYLE 26: PIN 1. CATHODE 2. ANODE 3. NO CONNECTION
STYLE 27: PIN 1. CATHODE 2. CATHODE	STYLE 28: PIN 1. ANODE 2. ANODE				

DOCUMENT NUMBER:	98ASB42226B	Electronic versions are uncontrolled except when accessed directly from the Document Reported versions are uncontrolled except when stamped "CONTROLLED COPY" in red.		
DESCRIPTION:	SOT-23 (TO-236)		PAGE 1 OF 1	

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

3. CATHODE

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

onsemi Website: www.onsemi.com

TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support:

Phone: 00421 33 790 2910

For additional information, please contact your local Sales Representative