

ML144110 ML144111 Digital-to-Analog Converters with Serial Interface

CMOS LSI

Legacy Device: Motorola/Freescale MC144110, MC144111

The ML144110 and ML144111 are low–cost 6–bit D/A converters with serial interface ports to provide communication with CMOS microprocessors and microcomputers. The ML144110 contains six static D/A converters; the ML144111 contains four converters.

Due to a unique feature of these DACs, the user is permitted easy scaling of the analog outputs of a system. Over a 5 to 15 V supply range, these DACs maybe directly interfaced to CMOS MPUs operating at 5 V.

- Direct R–2R Network Outputs
- Buffered Emitter–Follower Outputs
- Serial Data Input
- Digital Data Output Facilitates Cascading
- Direct Interface to CMOS µP
- Wide Operating Voltage Range: 4.5 to 15 V
- Wide Operating Temperature Range: $T_A = 0$ to $85^{\circ}C$
- Software Information is Contained in Document M68HC11RM/AD

Page 1 of 8

PIN ASSIGNMENTS

ML1	4411	0VP
-----	------	-----

1			1
D _{in} [1●	18	D V _{DD}
Q1 Out [2	17	D _{out}
R1 Out	3	16	R6 Out
Q2 Out	4	15	Q6 Out
R2 Out	5	14] R5 Out
Q3 Out [6	13	Q5 Out
R3 Out	7	12	R4 Out
ENB [8	11	Q4 Out
v _{ss} D	9	10	ОСГК

ML144110-6P					
D _{in} [1•	20	D v _{DD}		
Q1 Out	2	19] D _{out}		
R1 Out [3	18	R6 Out		
Q2 Out	4	17	Q6 Out		
R2 Out	5	16	R5 Out		
Q3 Out	6	15	Q5 Out		
R3 Out	7	14	R4 Out		
enb [8	13	Q4 Out		
v _{ss} [9	12	🛛 СLК		
NC [10	11	лс		

ML144111CP

D _{in} [1•	14	Dv _{DD}
Q1 Out [2	13] D _{out}
R1 Out [3	12	R4 Out
Q2 Out	4	11	Q4 Out
R2 Out	5	10	R3 Out
ENB [6	9	Q3 Out
v _{ss} [7	8	ОСЬК

ML144111-5P

D _{in} [1•	16	D V _{DD}
Q1 Out	2	15	D _{out}
R1 Out	3	14	R4 Out
Q2 Out	4	13	Q4 Out
R2 Out	5	12	R3 Out
ENB [6	11	Q3 Out
v _{ss} [7	10	О СГК
NC [8	9	П ис

NC = NO CONNECTION

MAXIMUM RATINGS* (Voltages referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage	V _{DD}	- 0.5 to + 18	V
Input Voltage, All Inputs	V _{in}	– 0.5 to V _{DD} + 0.5	V
DC Input Current, per Pin	I	± 10	mA
$ \begin{array}{l} \mbox{Power Dissipation (Per Output)} \\ T_{A} = 70 \ C, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Рон	30 50 10 20	mW
Power Dissipation (Per Package) $T_A = 70 \text{ C}, \text{ MC144110}$ MC144111 $T_A = 85 \text{ C}, \text{ MC144110}$ MC144111	PD	100 150 25 50	mW
Storage Temperature Range	T _{stg}	- 65 to + 150	С

This device contains protection circuitry to guard against damage due to high static voltages or electric fields; however, it is advised that precautions be taken to avoid application of voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation it is recommended that V_{in} and V_{out} be constrained to the range V_{SS} \leq (V_{in} or V_{out}) \leq V_{DD}. Unused inputs must always be tied to an

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{\mbox{SS}}$ or $V_{\mbox{DD}}).$

* Maximum Ratings are those values beyond which damage to the device may occur.

ELECTRICAL CHARACTERISTICS	(Voltages referenced to VSS,	$T_A = 0$ to 85 C unless otherwise indicated)
----------------------------	------------------------------	---

Symbol	Parameter	Test Conditions	V _{DD}	Min	Max	Unit
VIH	High–Level Input Voltage (D _{in} , ENB, CLK)		5 10 15	3.0 3.5 4		V
VIL	Low–Level Input Voltage (D _{in} , ENB, CLK)		5 10 15		0.8 0.8 0.8	V
Iон	High–Level Output Current (D _{out})	$V_{out} = V_{DD} - 0.5 V$	5	- 200		А
IOL	Low–Level Output Current (D _{out})	V _{out} = 0.5 V	5	200		А
IDD	Quiescent Supply Current ML144110 ML144111	I _{out} = 0 A	15 15		12 8	mA
l _{in}	Input Leakage Current (D _{In} , ENB, CLK)	V _{in} = V _{DD} or 0 V	15	_	± 1	А
V _{nonl}	Nonlinearity Voltage (Rn Out)	See Figure 1	5 10 15		100 200 300	mV
V _{step}	Step Size (Rn Out)	See Figure 2	5 10 15	19 39 58	137 274 411	mV
Voffset	Offset Voltage from V _{SS}	D _{in} = \$00, See Figure 1	_	—	1	LSB
١E	Emitter Leakage Current	V _{Rn Out} = 0 V	15	_	10	A
hFE	DC Current Gain	$I_E = 0.1$ to 10.0 mA $T_A = 25$ C	_	40	_	-
V _{BE}	Base-to-Emitter Voltage Drop	I _E = 1.0 mA	_	0.4	0.7	V

SWITCHING CHARACTERISTICS

(Voltages referenced to V_{SS}, $T_A = 0$ to 85 C, $C_L = 50$ pF, Input $t_r = t_f = 20$ ns unless otherwise indicated)

Symbol	Parameter	V _{DD}	Min	Max	Unit
^t wH	Positive Pule Width, CLK (Figures 3 and 4)	5 10 15	2 1.5 1		S
t _{wL}	Negative Pulse Width, CLK (Figure 3 and 4)	5 10 15	5 3.5 2		S
^t su	Setup Time, ENB to CLK (Figures 3 and 4)	5 10 15	5 3.5 2	 	s
t _{su}	Setup Time, D _{in} to CLK (Figures 3 and 4)	5 10 15	1000 750 500	 	ns
th	Hold Time, CLK to ENB (Figures 3 and 4)	5 10 15	5 3.5 2	 	s
th	Hold Time, CLK to D _{in} (Figures 3 and 4)	5 10 15	5 3.5 2	 	S
t _r , t _f	Input Rise and Fall Times	5 – 15	—	2	S
C _{in}	Input Capacitance	5 – 15	_	7.5	pF

Figure 1. D/A Transfer Function

Figure 2. Definition of Step Size

Figure 3. Serial Input, Positive Clock

Figure 4. Serial Input, Negative Clock

INPUTS

Din

Data Input

Six-bit words are entered serially, MSB first, into digital data input, D_{in} . Six words are loaded into the ML144110 during each D/A cycle; four words are loaded into the ML144111.

PIN DESCRIPTIONS

The last 6-bit word shifted in determines the output level of pins Q1 Out and R1 Out. The next-to-last 6-bit word affects pins Q2 Out and R2 Out, etc.

ENB

Negative Logic Enable

The $\overline{\text{ENB}}$ pin must be low (active) during the serial load. On the low-to-high transition of $\overline{\text{ENB}}$, data contained in the shift register is loaded into the latch.

CLK

Shift Register Clock

Data is shifted into the register on the high-to-low transition of CLK. CLK is fed into the D-input of a transparent latch, which is used for inhibiting the clocking of the shift register when ENB is high.

The number of clock cycles required for the ML144110 is usually 36. The ML144111 usually uses 24 cycles. SeeTable 1 for additional information.

OUTPUTS

D_{out} Data Output

The digital data output is primarily used for cascading the DACs and may be fed into D_{in} of the next stage.

R1 Out through Rn Out Resistor Network Outputs

These are the R–2R resistor network outputs. These outputs may be fed to high–impedance input FET op amps to bypass the on–chip bipolar transistors. The R value of the resistor network ranges from 7 to 15 k Ω .

Q1 Out through Qn Out NPN Transistor Outputs

Buffered DAC outputs utilize an emitter–follower configuration for current–gain, thereby allowing interface to low–impedance circuits.

SUPPLY PINS

VSS

Negative Supply Voltage

This pin is usually ground.

VDD

Positive Supply Voltage

The voltage applied to this pin is used to scale the analog output swing from 4.5 to 15 V p–p.

Number of Channels Required	Number of Clock Cycles	Outputs Used on ML144110	Outputs Used on ML144111
1	6	Q1/R1	Q1/R1
2	12	Q1/R1, Q2/R2	Q1/R1, Q2/R2
3	18	Q1/R1, Q2/R2, Q3/R3	Q1/R1, Q2/R2, Q3/R3
4	24	Q1/R1, Q2/R2, Q3/R3, Q4/R4	Q1/R1, Q2/R2, Q3/R3, Q4/R4
5	30	Q1/R1, Q2/R2, Q3/R3, Q4/R4, Q5/R5	Not Applicable
6	36	Q1/R1, Q2/R2, Q3/R3, Q4/R4, Q5/R5, Q6/R6	Not Applicable

Table 1. Number of Channels vs Clocks Required

OUTLINE DIMENSIONS

P DIP 18 = VP(ML144110VP) PLASTIC DIP CASE 707-02

SO 20W = -6P

 POSITIONAL TOLERANCE OF LEADS (D),
 SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 10 Å B DIMENSION B DOES NOT INCLUDE MOLD FLASH. 9 ¥ Ļ ι,
 MILLIMETERS
 INCHES

 MIN
 MAX
 MIN
 MAX

 22:22
 23:24
 0.875
 0.915
 DIM A B
 6.10
 6.60
 0.240
 0.260

 3.56
 4.57
 0.140
 0.180
 С С
 0.36
 0.56
 0.014
 0.022

 1.27
 1.78
 0.050
 0.070

 2.54
 BSC
 0.100
 BSC
 D G
 2.54
 BSC
 0.100
 BSC

 1.02
 1.52
 0.040
 0.060

 0.20
 0.30
 0.008
 0.012

 2.92
 3.43
 0.115
 0.135

 7.62
 BSC
 0.300
 BSC

 0
 15
 0
 15

 0
 15
 0
 15
 н κ J М Κ SEATING L M

(ML144110-6P) SOG PACKAGE CASE 751D-04 -A-A A A A A A F| 11 20 H H H \$ -B-10X P ⊕ 0.010 (0.25) (0) ΒM Ф 10 1 F Н Н Н F Н 20X D ⊕ 0.010 (0.25) M T A S B S **R** X 45 ° ¥. С -T- SEATING PLANE 4 18X G Κ

Ν 0.51

NOTES:

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER.

1.02 0.020 0.040

- CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE.

(0.006) PEH SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

-				
	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	12.65	12.95	0.499	0.510
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27	BSC	0.050	BSC
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
Μ	0 °	7 °	0 °	7 °
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

18 \cap ι,

- H

D

G

OUTLINE DIMENSIONS

P DIP 14 = CP(ML144111CP) PLASTIC DIP CASE 646-06

NOTES:

LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM

MATERIAL CONDITION. DIMENSION L TO CENTER OF LEADS WHEN 2.

FORMED PARALLEL. DIMENSION B DOES NOT INCLUDE MOLD 3. FI ASH

4. ROUNDED CORNERS OPTIONAL

	INCHES		MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.715	0.770	18.16	19.56
В	0.240	0.260	6.10	6.60
С	0.145	0.185	3.69	4.69
D	0.015	0.021	0.38	0.53
F	0.040	0.070	1.02	1.78
G	0.100 BSC		2.54 BSC	
н	0.052	0.095	1.32	2.41
J	0.008	0.015	0.20	0.38
κ	0.115	0.135	2.92	3.43
L	0.300	BSC	7.62 BSC	
M	0 °	10°	0°	10°
Ν	0.015	0.039	0.39	1.01

DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD

PROTRUSION

MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE

DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
Α	10.15	10.45	0.400	0.411
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27 BSC		0.050 BSC	
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
Μ	0 °	7 °	0 °	7 °
P	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

Lansdale Semiconductor reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Lansdale does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. "Typical" parameters which may be provided in Lansdale data sheets and/or specifications can vary in different applications, and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts. Lansdale Semiconductor is a registered trademark of Lansdale Semiconductor, Inc.

Downloaded from Arrow.com.