INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT139Dual 2-to-4 line decoder/demultiplexer

Product specification
File under Integrated Circuits, IC06

September 1993

Philips Semiconductors

74HC/HCT139

FEATURES

- · Demultiplexing capability
- Two independent 2-to-4 decoders
- · Multifunction capability
- · Active LOW mutually exclusive outputs
- Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT139 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT139 are high-speed, dual 2-to-4 line decoder/multiplexers. This device has two independent decoders, each accepting two binary weighted inputs (nA₀ and nA₁) and providing four mutually exclusive active LOW outputs (n \overline{Y}_0 to n \overline{Y}_3). Each decoder has an active LOW enable input (n \overline{E}).

When $n\overline{E}$ is HIGH, every output is forced HIGH. The enable can be used as the data input for a 1-to-4 demultiplexer application.

The "139" is identical to the HEF4556 of the HE4000B family.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

CVMDOL	PARAMETER	CONDITIONS	TYP	LINUT		
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	nA_n to $n\overline{Y}_n$		11	13	ns	
	$n\overline{E}_3$ to $n\overline{Y}_n$		10	13	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per multiplexer	notes 1 and 2	42	44	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

 f_0 = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

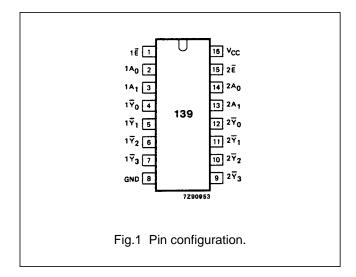
C_I = output load capacitance in pF

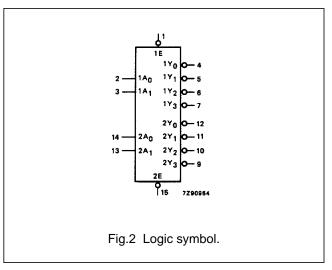
V_{CC} = supply voltage in V

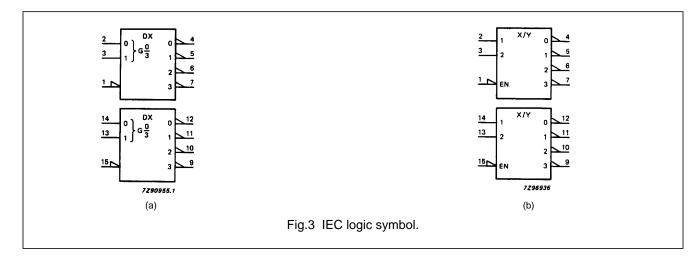
2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

APPLICATIONS

- · Memory decoding or data-routing
- Code conversion

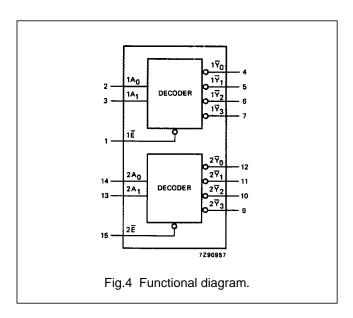

ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".


74HC/HCT139

PIN DESCRIPTION

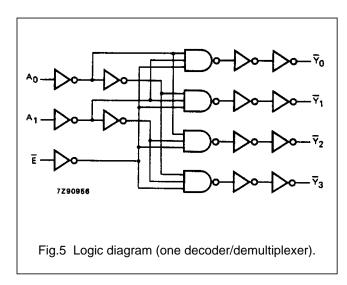
PIN NO.	SYMBOL	NAME AND FUNCTION
1, 15	1Ē, 2Ē	enable inputs (active LOW)
2, 3	1A ₀ , 1A ₁	address inputs
4, 5, 6, 7	$1\overline{Y}_0$ to $1\overline{Y}_3$	outputs (active LOW)
8	GND	ground (0 V)
12, 11, 10, 9	$2\overline{Y}_0$ to $2\overline{Y}_3$	outputs (active LOW)
14, 13	2A ₀ , 2A ₁	address inputs
16	V _{CC}	positive supply voltage



Philips Semiconductors Product specification

Dual 2-to-4 line decoder/demultiplexer

74HC/HCT139



FUNCTION TABLE

	INPUTS	,	OUTPUTS						
ηĒ	nA ₀	nA ₁	n₹ ₀	n₹ ₁	n\overline{Y}_2	n₹₃			
Н	Х	Х	Н	Н	Н	Н			
L	L	L	L	Н	Н	Н			
L	Н	L	Н	L	Н	H			
L	L	Н	Н	Н	L	Н			
L	Н	Н	Н	Н	Н	L			

Notes

- 1. H = HIGH voltage level
 - L = LOW voltage level
 - X = don't care

74HC/HCT139

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									WAVEFORMS
STIVIBUL		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA_n to \overline{Y}_n		39 14 11	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay nE to nYn		33 12 10	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

74HC/HCT139

DC CHARACTERISTICS FOR HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

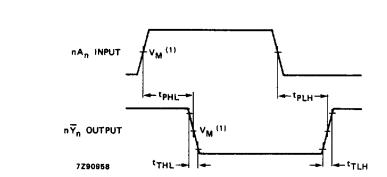
Output capability: standard

I_{CC} category: MSI

Note to HCT types

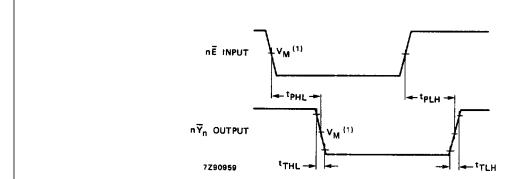
The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD	COEFFICIENT
1A _n	0.70	
2 <u>A</u> n n <u>E</u>	0.70	
nĒ	1.35	


AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_f = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HCT									WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORIUS
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA_n to \overline{Y}_n		16	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay $n\overline{E}$ to $n\overline{Y}_n$		16	34		43		51	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7


74HC/HCT139

AC WAVEFORMS

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.6 Waveforms showing the address input (nA_n) to output $(n\overline{Y}_n)$ propagation delays and the output transition times.

(1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V.

Fig.7 Waveforms showing the enable input $(n\overline{E})$ to output $(n\overline{Y}_n)$ propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".