

TDA9989

150 MHz pixel rate HDMI 1.3a transmitter with 3 \times 8-bit video inputs and CEC support

Rev. 02 — 11 June 2009

Product data sheet

1. General description

The TDA9989 is a very low power and very small size High-Definition Multimedia Interface (HDMI) 1.3a transmitter. It is backward compatible DVI 1.0 and can be connected to any DVI 1.0 and HDMI sink.

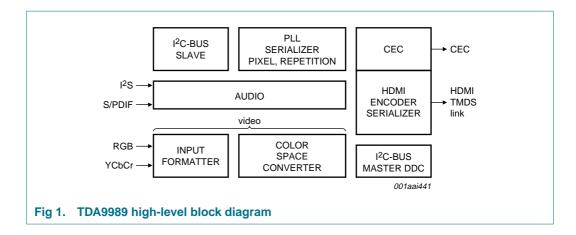
This device is primarily intended for mobile applications like Digital Video Camera (DVC), Digital Still Camera (DSC), Portable Multimedia Player (PMP), Mobile Phone and Ultra Mobile Personal Computer (UM PC) where size and very low power are mandatory for battery autonomy.

It allows mixing 3×8 -bit RGB or YCbCr video stream with a pixel rate up to 150 MHz together with one S/PDIF or one I²S-bus audio streams with an audio sampling rate up to 192 kHz.

In order to be compatible with most applications, the TDA9989 integrates a full programmable input formatter and color space conversion block. The video input formats accepted are YCbCr 4:4:4 (up to 3×8 -bit), YCbCr 4:2:2 semi-planar (up to 2×12 -bit) and YCbCr 4:2:2 compliant with ITU656 (up to 1×12 -bit). In case of ITU656-like format, the input pixel clock can be made active on one (SDR mode) or both edges (DDR mode).

This device provides additional embedded feature like CEC (Consumer Electronic Control). CEC is a single bidirectional wire that transmits CEC commands (like Standby from remote control) over the home appliance network connected through this wire. This eliminates the need of any additional device to handle this feature thus improving BOM (Bill Of Materials) of the whole system and enable the connected devices (CEC enabled) to be controlled by only one remote control.

The TDA9989 supports xvYCC HDMI 1.3a feature.


It can be switched to very low power Standby or Sleep modes to save power when HDMI is not used.

The TDA9989 includes a true I^2C -bus master interface for DDC-bus communication for EDID reading.

This device can be controlled or configured via I²C-bus interface.

HDMI 1.3a transmitter with CEC support

2. **Features**

- Compliance
 - ◆ DVI 1.0
 - ◆ HDMI 1.3a
 - ◆ EIA/CEA-861B
 - ◆ CEC (HDMI 1.3a)
 - SimplayHD
- - xvYCC HDMI 1.3a feature
 - Video formats with a pixel rate up to 150 MHz:

RGB 4:4:4 YCbCr 4:4:4

YCbCr 4:2:2 semi planar YCbCr 4:2:2 ITU656

Maximum resolution:

1080p for TV

1600 × 1200 at 60 Hz for PC (UXGA60)

720p/1080i in ITU656

Programmable color space converter:

RGB to YCbCr

YCbCr to RGB

- Programmable input formatter and upsampler/interpolator allows input of any of the 4:4:4,4:2:2 semi-planar, 4:2:2 ITU656-like formats
- Horizontal synchronization, vertical synchronization and Data Enable (DE) inputs or VREF, HREF and FREF could be used for input data synchronization
- ◆ Pixel clock input can be made active on one or both edges (selectable by I²C-bus)
- Repetition of video samples as required by HDMI specification.
- Audio:
 - ◆ I²S-bus 2 channels and S/PDIF; audio data rate up to 192 kHz per input for both standards

2 of 48

System operation

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

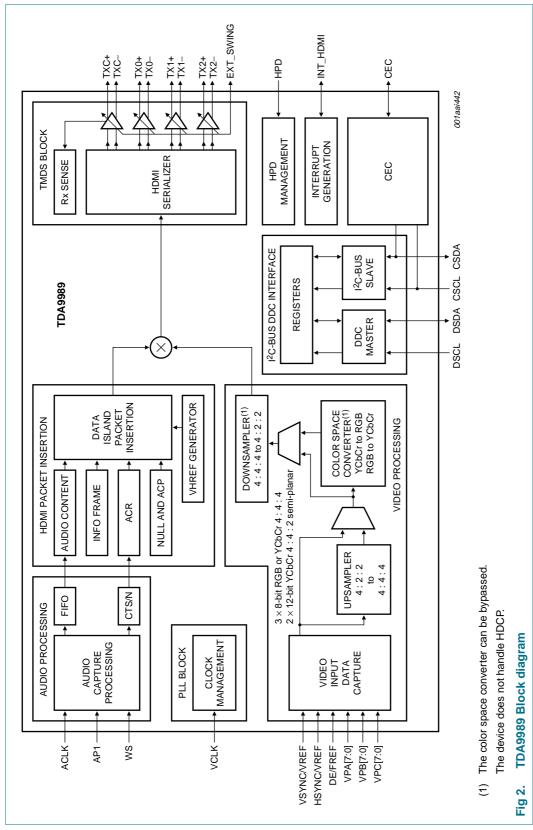
3 of 48

- Master DDC-bus interface for EDID read
- ◆ Controllable via I²C-bus
- ◆ Downstream availability through the use of hot plug (HPD) and receiver detection (RxSense)
- ◆ Deals with multiple levels of receivers and repeaters
- Package
 - **◆** TFBGA64
 - ◆ Size 4.5 × 4.5 × 0.8 mm
- Power management
 - ◆ External voltage supplies 1.8 V, 1.2 V (to support 1080p video format, the 1.2 V must be raised to 1.8 V)
 - ◆ Low power (45 mW in 480p)
 - Flexible power modes
- Miscellaneous
 - ◆ POR (Power-On Reset)
 - ◆ Audio and video inputs LV-CMOS 1.8 V compatible and LV-CMOS 3.3 V tolerant
 - ◆ 250 MHz to 1.65 GHz TMDS transmitter operation

Applications 3.

- Digital Video Camera (DVC),
- Digital Still Camera (DSC),
- Portable Multimedia Player (PMP)
- Mobile Phone
- Ultra Mobile Personal Computer (UM PC)

Ordering information 4.

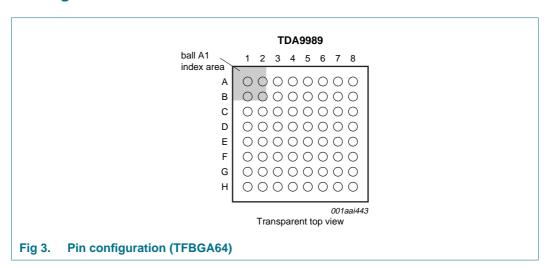

Ordering information Table 1.

Type number	Package		
	Name	Description	Version
TDA9989ET	TFBGA64	plastic thin fine-pitch ball grid array package; 64 balls	SOT962-3

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

5. **Block diagram**


© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

5 of 48

Pinning information 6.

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Type[1]	Description
ACLK	H5	I	audio clock input
AP0	G5	I	audio port 0 input
AP1	F5	I	audio port 1 input
HPD	E6	I	hot plug detect; 5 V tolerant
EXT_SWING	E7	0	TMDS output swing adjustment; place resistor (R _{EXT_SWING} = 10 k Ω ± 1 %) between this pin and analog ground.
DSDA	F6	I/O	DDC-bus data input/output; 5 V tolerant
DSCL	F7	I	DDC-bus clock input; 5 V tolerant
VCLK	D4	I	input video pixel clock
HSYNC/HREF	F4	I	input horizontal synchronization or reference input
VSYNC/VREF	G4	I	input vertical synchronization or reference input
DE/FREF	H4	I	data enable or field reference input
CSCL	B5	I	I ² C-bus clock input; 1.8 V to 3.3 V tolerant
CSDA	A5	I/O	I ² C-bus data input/output; 1.8 V to 3.3 V tolerant
INT_HDMI	B6	I/O	interrupt HDMI output (open-drain); this pin is used as Dual function pin selectable through I²C-bus. In calibration mode only this pin is used as input for 10 ms \pm 1 % calibration pulse. In operation mode this pin is used to warn the external microprocessor that a special event has occurred for HDMI or CEC
TX0-	E8	0	negative data channel 0 for TMDS output
TX0+	D8	0	positive data channel 0 for TMDS output
TX1-	C8	0	negative data channel 1 for TMDS output

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

 Table 2.
 Pin description ...continued

Symbol	Pin	Type ^[1]	Description
TX1+	B8	0	positive data channel 1 for TMDS output
TX2-	A7	0	negative data channel 2 for TMDS output
TX2+	A6	0	positive data channel 2 for TMDS output
TXC-	G8	0	negative clock channel for TMDS output
TXC+	F8	0	positive clock channel for TMDS output
CEC	H7	I/O	CEC connection (open-drain) to HDMI connector
OSC_IN	H6	l	input connected to the external oscillator circuit or external clock source
OSC_OUT	G6	0	output from the oscillator amplifier connected to the external oscillator circuit
VPA[0]	C1	I	video port A input bit 0 (LSB)
VPA[1]	B1	I	video port A input bit 1
VPA[2]	B2	I	video port A input bit 2
VPA[3]	A2	I	video port A input bit 3
VPA[4]	В3	I	video port A input bit 4
VPA[5]	А3	I	video port A input bit 5
VPA[6]	B4	I	video port A input bit 6
VPA[7]	A4	I	video port A input bit 7 (MSB)
VPB[0]	E3	I	video port B input bit 0 (LSB)
VPB[1]	E2	I	video port B input bit 1
VPB[2]	E1	I	video port B input bit 2
VPB[3]	D1	I	video port B input bit 3
VPB[4]	D2	I	video port B input bit 4
VPB[5]	D3	I	video port B input bit 5
VPB[6]	C2	I	video port B input bit 6
VPB[7]	C3	I	video port B input bit 7 (MSB)
VPC[0]	НЗ	I	video port C input bit 0 (LSB)
VPC[1]	H2	I	video port C input bit 1
VPC[2]	G3	I	video port C input bit 2
VPC[3]	G2	I	video port C input bit 3
VPC[4]	G1	I	video port C input bit 4
VPC[5]	F1	I	video port C input bit 5
VPC[6]	F2	I	video port C input bit 6
VPC[7]	F3	I	video port C input bit 7 (MSB)
V _{DDA(TMDS)(1V}	8) A8, C7	Р	TMDS analog supply voltage (1.8 V)
V _{DDD(IO)(1V8)}	E4	Р	I/O digital supply voltage (1.8 V)
V _{DDA(PLL)(1V8)}	C6	Р	PLL analog supply voltage (1.8 V), this PLL provides the clock for the serializer $$
V _{DDA(1V8)}	G7, H8	Р	analog supply voltage (1.8 V), is used for parallel-to-serial shift register and miscellaneous blocks
V _{DD(OSC)(CEC)}	E5	Р	CEC oscillator supply voltage (1.8 V)

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

Table 2. Pin description	continued
--------------------------	-----------

Symbol	Pin	Type[1]	Description
V_{DDDC}	D5	Р	core digital supply voltage[2]
V_{SSD}	B7, C4, C5	G	digital ground supply voltage, is used for digital core; I/O and CEC oscillator
V_{SSA}	D6, D7	G	analog ground supply voltage, is used for PLL; serializer, transmitter, and parallel-to-serial shift register

^[1] P = power supply, G = ground, I = input, O = output.

7. Functional description

The TDA9989 is designed to convert digital data (video and audio) provided by Set-Top Boxes (STB), Digital Video Camera (DVC), Digital Still Camera (DSC), Portable Multimedia Player (PMP) or DVD into an HDMI output, which can be used by a TV with either an HDMI or DVI input.

The TDA9989 is able to output HDMI with the formats:

• RGB 4:4:4

• YCbCr 4:4:4

• YCbCr 4:2:2

The video data input formats are:

• RGB 4:4:4

• YCbCr 4:4:4

YCbCr 4 : 2 : 2 semi-planar

YCbCr 4: 2: 2 ITU656-like

It can also handle audio formats:

- two I2S-bus channels
- one S/PDIF channel (Dolby Digital: 5.1 CH, DTS, AC3)

The TDA9989 is also designed to support CEC protocol. For more details about CEC, refer to *HDMI 1.3a specification*.

7.1 System clock

The system clock section has a PLL serializer.

It is a system clock generator which enables the stream produced by the encoder to be transmitted on the HDMI data channel at ten times, or above, the sampling rate.

7.2 Video input formatter

7.2.1 Description

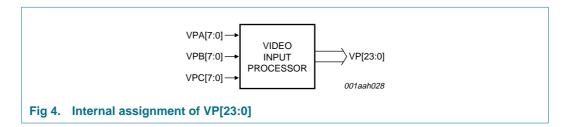
The TDA9989 has three video input ports VPA[7:0], VPB[7:0] and VPC[7:0].

^[2] To support 1080p video format, the 1.2 V supply voltage must be raised to 1.8 V.

NXP Semiconductors

HDMI 1.3a transmitter with CEC support

8 of 48


The TDA9989 can accept any of the following video input modes (see Table 6):

- RGB, with 8-bit for each component
- YCbCr 4: 4: 4, with 8-bit for each component
- YCbCr 4:2:2 semi-planar, with up to 12-bit for each component (YCbCr)
- YCbCr 4: 2: 2 ITU656, with up to 12-bit data depth

The TDA9989 can be set to latch data at either rising or falling edge, or both.

7.2.2 Internal assignment

The aim of the video input processor is to internally map the incoming data to the corresponding mode, which can be handled by the video processing. The internal signal named VP[23:0] is assigned depending on the input mode as defined below.

Internal assignment Table 3.

Internal assigni	ment			
Internal port	RGB	YCbCr 4 : 4 : 4	YCbCr 4 : 2 : 2 semi-planar	YCbCr 4 : 2 : 2 ITU656
VP[23]	G[7]	Y[7]	Y[11]	YCbCr[11]
VP[22]	G[6]	Y[6]	Y[10]	YCbCr[10]
VP[21]	G[5]	Y[5]	Y[9]	YCbCr[9]
VP[20]	G[4]	Y[4]	Y[8]	YCbCr[8]
VP[19]	G[3]	Y[3]	Y[7]	YCbCr[7]
VP[18]	G[2]	Y[2]	Y[6]	YCbCr[6]
VP[17]	G[1]	Y[1]	Y[5]	YCbCr[5]
VP[16]	G[0]	Y[0]	Y[4]	YCbCr[4]
VP[15]	B[7]	Cb[7]	Y[3]	YCbCr[3]
VP[14]	B[6]	Cb[6]	Y[2]	YCbCr[2]
VP[13]	B[5]	Cb[5]	Y[1]	YCbCr[1]
VP[12]	B[4]	Cb[4]	Y[0]	YCbCr[0]

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

9 of 48

Table 3. Internal assignment ... continued

Internal assignm	nent			
Internal port	RGB	YCbCr 4 : 4 : 4	YCbCr 4 : 2 : 2 semi-planar	YCbCr 4 : 2 : 2 ITU656
VP[11]	B[3]	Cb[3]	CbCr[11]	
VP[10]	B[2]	Cb[2]	CbCr[10]	
VP[9]	B[1]	Cb[1]	CbCr[9]	
VP[8]	B[0]	Cb[0]	CbCr[8]	
VP[7]	R[7]	Cr[7]	CbCr[7]	
VP[6]	R[6]	Cr[6]	CbCr[6]	
VP[5]	R[5]	Cr[5]	CbCr[5]	
VP[4]	R[4]	Cr[4]	CbCr[4]	
VP[3]	R[3]	Cr[3]	CbCr[3]	
VP[2]	R[2]	Cr[2]	CbCr[2]	
VP[1]	R[1]	Cr[1]	CbCr[1]	
VP[0]	R[0]	Cr[0]	CbCr[0]	

The device can swap and invert, in the event of a little endian stream, the incoming video data using I²C-bus registers VIP_CNTRL_0, VIP_CNTRL_1 and VIP_CNTRL_2 (page 00h) to match the expectation of the video processing block. Table 4 shows the behavior of SWAP_A[2:0] of VIP_CNTRL_0 register, whose function is to map the 4 MSBs VP[23:20] to the incoming video port.

Table 4. Video input swap to VP[23:20]

External assignment		SWAP_A selector	Internal a	ssignme	ent						
Pin number	Pin name	value	Internal port	RGB	YCbCr 4:4:4	YCbCr semi-p	4 : 2 : 2 lanar	YCbCr 4	4:2:2		
F3	VPC[7]	000b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
F2	VPC[6]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
F1	VPC[5]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]
G1	VPC[4]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]
G2	VPC[3]	001b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
G3	VPC[2]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
H2	VPC[1]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]
H3	VPC[0]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]
C3	VPB[7]	010b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
C2	VPB[6]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
D3	VPB[5]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]
D2	VPB[4]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]
D1	VPB[3]	011b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
E1	VPB[2]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
E2	VPB[1]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]
E3	VPB[0]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

Table 4. Video input swap to VP[23:20] ...continued

External assignmen	it	SWAP_A selector	Internal a	ssignme	ent						
Pin number	Pin name	value	Internal port	RGB	YCbCr 4:4:4	YCbCr semi-p	4 : 2 : 2 lanar	YCbCr 4	4:2:2		
A4	VPA[7]	100b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
B4	VPA[6]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
A3	VPA[5]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]
B3	VPA[4]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]
A2	VPA[3]	101b	VP[23]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
B2	VPA[2]		VP[22]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
B1	VPA[1]		VP[21]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]
C1	VPA[0]		VP[20]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]

In the same way:

- SWAP_B is used to map incoming video port to the internal port VP[19:16].
- SWAP_C is used to map incoming video port to the internal port VP[15:12].
- SWAP D is used to map incoming video port to the internal port VP[11:8].
- SWAP_E is used to map incoming video port to the internal port VP[7:4].
- SWAP_F is used to map incoming video port to the internal port VP[3:0].

The device expects to receive big endian incoming data. However, in cases where the input digital stream to the chip is little endian, the use of the mirror bit of the same register can help to re-order the input bits as described in Table 5.

TDA9989 input/output capability Table 5.

Bit setting	Internal port	To be mapped to
$MIRR_A = 1$	VP[23]	VPC[0]
SWAP_A = 1	VP[22]	VPC[1]
	VP[21]	VPC[2]
	VP[20]	VPC[3]
MIRR_B = 1	VP[19]	VPC[4]
$SWAP_B = 0$	VP[18]	VPC[5]
	VP[17]	VPC[6]
	VP[16]	VPC[7]
MIRR_C = 1	VP[15]	VPB[0]
$SWAP_C = 3$	VP[14]	VPB[1]
	VP[13]	VPB[2]
	VP[12]	VPB[3]
MIRR_D = 1	VP[11]	VPB[4]
SWAP_D = 2	VP[10]	VPB[5]
	VP[9]	VPB[6]
	VP[8]	VPB[7]

10 of 48

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

TDA9989 input/output capability ...continued Table 5.

Bit setting	Internal port	To be mapped to
MIRR_E = 1	VP[7]	VPA[4]
SWAP_E = 5	VP[6]	VPA[5]
	VP[5]	VPA[6]
	VP[4]	VPA[7]
MIRR_F = 1	VP[3]	VPA[0]
$SWAP_F = 4$	VP[2]	VPA[1]
	VP[1]	VPA[2]
	VP[0]	VPA[3]

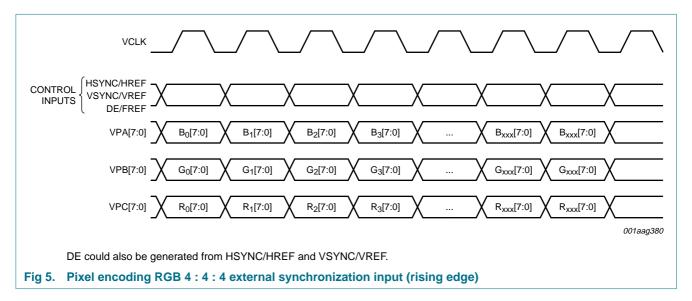
When input ports are not used, it is possible to map them to internal ground via the I²C-bus with the appropriate set of registers ENA_VP_0, ENA_VP_1 and ENA_VP_2 on page 00h.

HDMI 1.3a transmitter with CEC support

7.2.3 Input format mappings

Table 6 gives more information concerning input format supported.

Table 6.	Inputs of video input formatter	input form	atter								
Color	Format Channels		Sync type	Rising edge	Falling edge	Double edge	Transmission input format	Max. pixel clock (MHz)	Max. input format	Comments	Reference
RGB	$4:4:4:3\times 8$ -bit	ext	external	×			1	150		for 1080p video format	Section 7.2.3.1
					×		ı	150	1	1.2 V power supply	
		em	embedded	×			ı	150	ı	1.8 V	
					×		ı	150	ı		
YCbCr	$4:4:4:3\times 8$ -bit	ext	external	×			ı	150	ı		Section 7.2.3.2
					×		ı	150	ı		
		em	embedded	×			ı	150	ı		
					×		1	150	ı		
YCbCr	4:2:2		external	×			ITU656-like	54.054	480p/576p	for 720p/1080i format	Section 7.2.3.3
	ITU656-like	ke						148.5	720p/1080i	1.2 V power supply	
					×		ITU656-like	54.054	480p/576p	1.8 V	
								148.5	720p/1080i		
						×	ITU656-like	74.25	720p/1080i	double edge	Section 7.2.3.4
		em	embedded	×			ITU656-like	54.054	480p/576p	for 720p/1080i format,	Section 7.2.3.5
								148.5	720p/1080i	1.2 V power supply	
					×		ITU656-like	54.054	480p/576p	1.8 V	
								148.5	720p/1080i		
						×	ITU656-like	74.25	720p/1080i	double edge	Section 7.2.3.6
	up to 2×8 -bit		external	×			SMPTE293M	148.5	1080p	for 1080p, 1.2 V	Section 7.2.3.7
	semi-planar	nar			×		SMPTE293M	148.5	1080p	power supply must be	
		em	embedded	×			SMPTE293M	148.5	1080p		Section 7.2.3.8
					×		SMPTE293M	148.5	1080p		


A9989_2 © NXP B.V. 2009. All rights reserved.

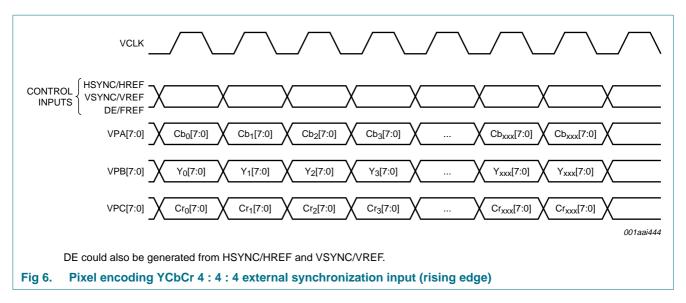
HDMI 1.3a transmitter with CEC support

7.2.3.1 RGB 4: 4: 4 external synchronization (rising edge)

Table 7. RGB (3 \times 8-bit) external synchronization input (rising edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

Video port	A	Video port B		Video port (C	Control	
Pin	RGB 4:4:4	Pin	RGB 4 : 4 : 4	Pin	RGB 4 : 4 : 4	Pin	RGB 4:4:4
VPA[0]	B[0]	VPB[0]	G[0]	VPC[0]	R[0]	HSYNC/HREF	used
VPA[1]	B[1]	VPB[1]	G[1]	VPC[1]	R[1]	VSYNC/VREF	used
VPA[2]	B[2]	VPB[2]	G[2]	VPC[2]	R[2]	DE/FREF	used
VPA[3]	B[3]	VPB[3]	G[3]	VPC[3]	R[3]		
VPA[4]	B[4]	VPB[4]	G[4]	VPC[4]	R[4]		
VPA[5]	B[5]	VPB[5]	G[5]	VPC[5]	R[5]		
VPA[6]	B[6]	VPB[6]	G[6]	VPC[6]	R[6]		
VPA[7]	B[7]	VPB[7]	G[7]	VPC[7]	R[7]		

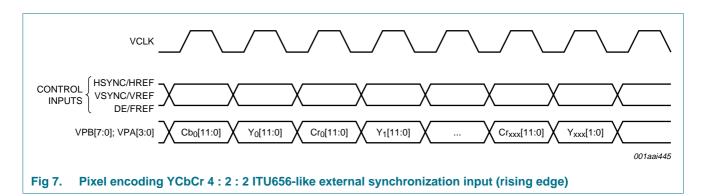
7.2.3.2 YCbCr 4: 4: 4 external synchronization (rising edge)


Table 8. YCbCr 4 : 4 : 4 (3 \times 8-bit) external synchronization input (rising edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 45h; VIP_CNTRL_2 = 01h.

Video po	ort A	Video po	ort B	Video po	ort C	Control		
Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	Pin	YCbCr 4 : 4 : 4	
VPA[0]	Cb[0]	VPB[0]	Y[0]	VPC[0]	Cr[0]	HSYNC/HREF	used	
VPA[1]	Cb[1]	VPB[1]	Y[1]	VPC[1]	Cr[1]	VSYNC/VREF	used	
VPA[2]	Cb[2]	VPB[2]	Y[2]	VPC[2]	Cr[2]	DE/FREF	used	
VPA[3]	Cb[3]	VPB[3]	Y[3]	VPC[3]	Cr[3]			
VPA[4]	Cb[4]	VPB[4]	Y[4]	VPC[4]	Cr[4]			
VPA[5]	Cb[5]	VPB[5]	Y[5]	VPC[5]	Cr[5]			
VPA[6]	Cb[6]	VPB[6]	Y[6]	VPC[6]	Cr[6]			
VPA[7]	Cb[7]	VPB[7]	Y[7]	VPC[7]	Cr[7]			

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

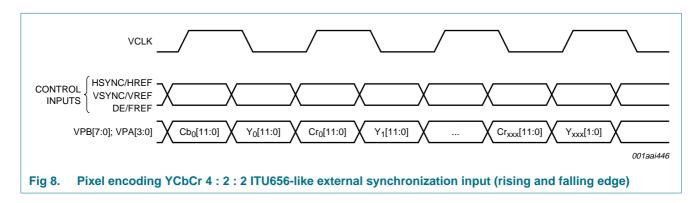

14 of 48

7.2.3.3 YCbCr 4 : 2 : 2 ITU656-like external synchronization (rising edge)

Table 9. YCbCr 4:2:2 ITU656-like external synchronization input (rising edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video p	Video port B					Control	
Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr	4:2:2	(ITU656-I	ike)	Pin	YCbCr 4 : 2 : 2	
VPA[0]	Cb[0]	$Y_0[0]$	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	used	
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	used	
VPA[2]	Cb[2]	$Y_0[2]$	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	used	
VPA[3]	Cb[3]	$Y_0[3]$	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]			
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	$Y_0[8]$	Cr[8]	Y ₁ [8]			
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]			
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]			
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]			

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009


HDMI 1.3a transmitter with CEC support

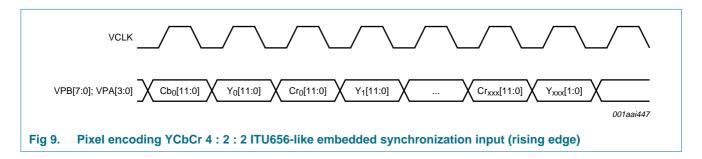
15 of 48

7.2.3.4 YCbCr 4:2:2 ITU656-like external synchronization (rising and falling edge)

Table 10. YCbCr 4: 2: 2 ITU656-like external synchronization input (rising and falling edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ideo port A					ort B			Control		
Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr 4 : 2 : 2
VPA[0]	Cb[0]	$Y_0[0]$	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	used
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	used
VPA[2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	used
VPA[3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]		
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]		
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]		
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]		
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]		

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

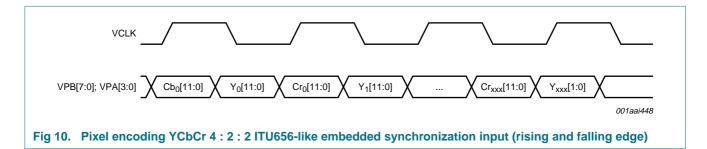

HDMI 1.3a transmitter with CEC support

16 of 48

7.2.3.5 YCbCr 4:2:2 ITU656-like embedded synchronization (rising edge)

Table 11. YCbCr 4:2:2 ITU656-like embedded synchronization input (rising edge) mappings Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video p	ort B			Control		
Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr	4:2:2	(ITU656-	·like)	Pin	YCbCr 4 : 2 : 2
VPA[0]	Cb[0]	$Y_0[0]$	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	not used
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	not used
VPA[2]	Cb[2]	$Y_0[2]$	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	not used
VPA[3]	Cb[3]	$Y_0[3]$	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]		
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	$Y_0[8]$	Cr[8]	Y ₁ [8]		
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]		
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]		
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr11]	Y ₁ [11]		

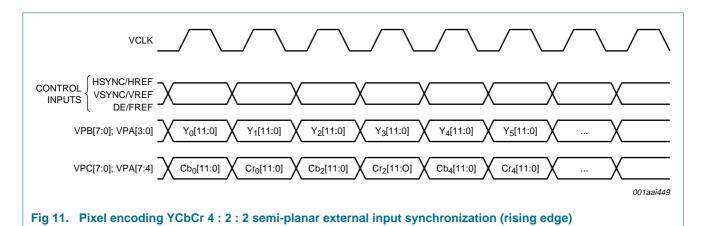

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

7.2.3.6 YCbCr 4:2:2 ITU656-like embedded synchronization (rising and falling edge)

Table 12. YCbCr 4: 2: 2 ITU656-like embedded synchronization input (rising and falling edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 00h.

Video p	ort A				Video p	Video port B					Control	
Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr	4:2:2	(ITU656-	like)	Pin	YCbCr 4 : 2 : 2	
VPA[0]	Cb[0]	$Y_0[0]$	Cr[0]	Y ₁ [0]	VPB[0]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	HSYNC/HREF	not used	
VPA[1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	VPB[1]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	VSYNC/VREF	not used	
VPA[2]	Cb[2]	$Y_0[2]$	Cr[2]	Y ₁ [2]	VPB[2]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	DE/FREF	not used	
VPA[3]	Cb[3]	$Y_0[3]$	Cr[3]	Y ₁ [3]	VPB[3]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]			
VPA[4]	-	-	-	-	VPB[4]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]			
VPA[5]	-	-	-	-	VPB[5]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]			
VPA[6]	-	-	-	-	VPB[6]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]			
VPA[7]	-	-	-	-	VPB[7]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]			


TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

7.2.3.7 YCbCr 4:2:2 semi-planar external synchronization (rising edge)

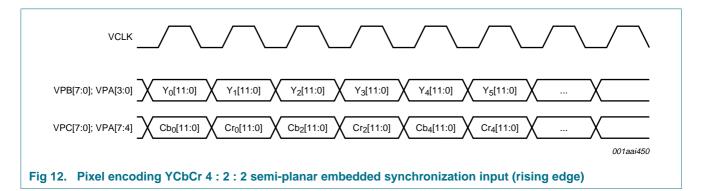
Table 13. YCbCr 4:2:2 semi-planar external synchronization input (rising edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.

Video p	ort A		Video p	ort B		Video p	ort C		Control	
Pin	YCbCr 4		Pin	YCbCr 4		Pin	YCbCr 4		Pin	YCbCr 4 : 2 : 2
VPA[0]	Y ₀ [0]	Y ₁ [0]	VPB[0]	Y ₀ [4]	Y ₁ [4]	VPC[0]	Cb[4]	Cr[4]	HSYNC/HREF	used
VPA[1]	Y ₀ [1]	Y ₁ [1]	VPB[1]	Y ₀ [5]	Y ₁ [5]	VPC[1]	Cb[5]	Cr[5]	VSYNC/VREF	used
VPA[2]	Y ₀ [2]	Y ₁ [2]	VPB[2]	Y ₀ [6]	Y ₁ [6]	VPC[2]	Cb[6]	Cr[6]	DE/FREF	used
VPA[3]	Y ₀ [3]	Y ₁ [3]	VPB[3]	Y ₀ [7]	Y ₁ [7]	VPC[3]	Cb[7]	Cr[7]		
VPA[4]	Cb[0]	Cr[0]	VPB[4]	Y ₀ [8]	Y ₁ [8]	VPC[4]	Cb[8]	Cr[8]		
VPA[5]	Cb[1]	Cr[1]	VPB[5]	Y ₀ [9]	Y ₁ [9]	VPC[5]	Cb[9]	Cr[9]		
VPA[6]	Cb[2]	Cr[2]	VPB[6]	Y ₀ [10]	Y ₁ [10]	VPC[6]	Cb[10]	Cr[10]		
VPA[7]	Cb[3]	Cr[3]	VPB[7]	Y ₀ [11]	Y ₁ [11]	VPC[7]	Cb[11]	Cr[11]		

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

Product data sheet

18 of 48


NXP Semiconductors

HDMI 1.3a transmitter with CEC support

7.2.3.8 YCbCr 4: 2: 2 semi-planar embedded synchronization (rising edge)

Table 14. YCbCr 4:2:2 semi-planar embedded synchronization input (rising edge) mapping Register VIP_CNTRL_0 = 23h; VIP_CNTRL_1 = 50h; VIP_CNTRL_2 = 14h.

Video p	ort A		Video p	ort B		Video p	ort C		Control	
Pin	YCbCr 4		Pin	YCbCr / semi-pl		Pin	YCbCr 4		Pin	YCbCr 4 : 2 : 2
VPA[0]	Y ₀ [0]	Y ₁ [0]	VPB[0]	Y ₀ [4]	Y ₁ [4]	VPC[0]	Cb[4]	Cr[4]	HSYNC/HREF	not used
VPA[1]	Y ₀ [1]	Y ₁ [1]	VPB[1]	Y ₀ [5]	Y ₁ [5]	VPC[1]	Cb[5]	Cr[5]	VSYNC/VREF	not used
VPA[2]	Y ₀ [2]	Y ₁ [2]	VPB[2]	Y ₀ [6]	Y ₁ [6]	VPC[2]	Cb[6]	Cr[6]	DE/FREF	not used
VPA[3]	Y ₀ [3]	Y ₁ [3]	VPB[3]	Y ₀ [7]	Y ₁ [7]	VPC[3]	Cb[7]	Cr[7]		
VPA[4]	Cb[0]	Cr[0]	VPB[4]	Y ₀ [8]	Y ₁ [8]	VPC[4]	Cb[8]	Cr[8]		
VPA[5]	Cb[1]	Cr[1]	VPB[5]	Y ₀ [9]	Y ₁ [9]	VPC[5]	Cb[9]	Cr[9]		
VPA[6]	Cb[2]	Cr[2]	VPB[6]	Y ₀ [10]	Y ₁ [10]	VPC[6]	Cb[10]	Cr[10]		
VPA[7]	Cb[3]	Cr[3]	VPB[7]	Y ₀ [11]	Y ₁ [11]	VPC[7]	Cb[11]	Cr[11]		

7.2.4 Synchronization

The TDA9989 can be synchronized with HSYNC/VSYNC external inputs or with extraction of the sync information from embedded sync (SAV/EAV) codes inside the video stream.

7.2.4.1 Timing extraction generator

This block can extract the synchronization signals HREF, VREF and FREF from Start Active Video (SAV) and End Active Video (EAV) in case of embedded synchronization in the data stream.

Synchronization signals can be embedded in YCbCr 4 : 2 : 2 ITU656 (up to 1×12 -bit) and YCbCr 4 : 2 : 2 semi-planar (up to 2×12 -bit).

7.2.4.2 Data enable generator

TDA9989 contains a Data Enable (DE) generator; this can generate an internal DE signal for a system which does not provide one.

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

7.3 Input and output video format

Due to the flexible video input formatter, the TDA9989 can accept a large range of input formats. This flexibility allows the TDA9989 to be compatible with the maximum possible number of MPEG decoders. Moreover, these input formats may be changed in many ways (color space converter, upsampler, downsampler) before it is transmitted across the HDMI link. Table 15 gives the possible inputs and outputs.

Table 15. Use of color space converter, upsampler and downsamp	Table 15.	Use of color space	e converter, upsan	npler and downsampler
--	-----------	--------------------	--------------------	-----------------------

Input			Output		
Color space	Format	Channels	Color space	Format	Channels
RGB	4:4:4	3×8 -bit	RGB	4:4:4	3×8 -bit
			YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2 × 12-bit
YCbCr	4:4:4	3×8 -bit	RGB	4:4:4	3×8 -bit
			YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit
YCbCr	4:2:2	up to 1×12 -bit	RGB	4:4:4	3×8 -bit
		semi-planar	YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2×12 -bit
YCbCr	4:2:2	up to 2×12 -bit	RGB	4:4:4	3×8 -bit
		semi-planar	YCbCr	4:4:4	3×8 -bit
			YCbCr	4:2:2	2 × 12-bit

7.4 Upsampler

The incoming YCbCr 4:2:2 (2×12 -bit) data stream format could be upsampled into YCbCr 4:4:4 (3×8 -bit) data stream by repeating or linearly interpolating the chrominance pixels.

7.5 Color space converter

The color space converter is used to convert input video data from one type to another color space (e.g. RGB to YCbCr and YCbCr to RGB). This block can be bypassed and each coefficient is programmable via the I²C-bus register.

$$\begin{bmatrix} Y \backslash G \\ Cr \backslash R \\ Cb \backslash B \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} \\ C_{21} & C_{22} & C_{23} \\ C_{31} & C_{32} & C_{33} \end{bmatrix} \times \begin{bmatrix} Y \\ R / Cr \\ B / Cb \end{bmatrix} + \begin{bmatrix} Oin_{G/Y} \\ Oin_{R/Cr} \\ Oin_{B/Cb} \end{bmatrix} + \begin{bmatrix} Oout_{Y \backslash G} \\ Oout_{Cr \backslash R} \\ Oout_{Cb \backslash B} \end{bmatrix}$$

$$(1)$$

7.6 Gamut-related metadata

Gamut-related metadata is an enhanced colorimetry beyond the default standard with higher definition colorimetries. Profile P0 is supported, which means that only one packet per video field is sent. Color gamut boundary data are defined the standards:

- xvYCC601 (IEC 61966-2-4 SD) (using YCbCr)
- xvYCC709 (IEC 61966-2-4 HD) (using YCbCr)

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

Remark: Gamut-related metadata is an HDMI 1.3a feature.

7.7 Downsampler

This block works only with YCbCr input format; the filters downsample the Cb and Cr signals by a factor of 2. A delay is added on the Y channel, which corresponds to the pipeline delay of the filters, to put the Y channel in phase with the Cb-Cr channel.

7.8 Audio input format

TDA9989 is compatible with the following audio features described in the HDMI 1.3a specification:

- S/PDIF
- I²S-bus up to two stereo channels

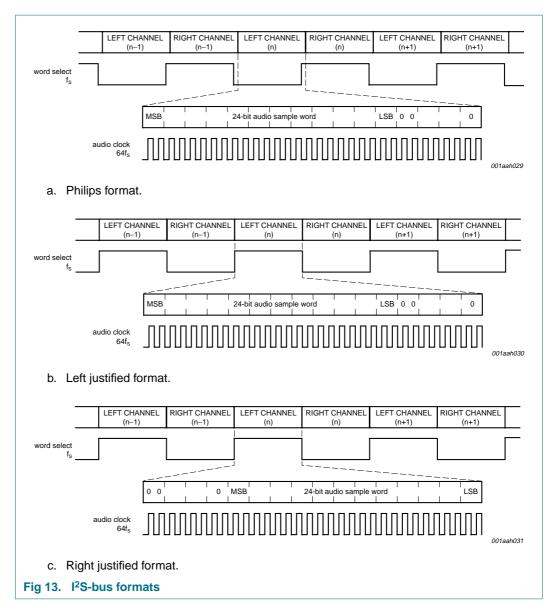
The TDA9989 can carry audio in I²S-bus format (one stereo to two stereo channels) or in S/PDIF format through one audio pin named AP1. S/PDIF or I²S-bus format can be selected via the I²C-bus. Only one audio format can be used at a time: either S/PDIF or I²S-bus. Table 16 shows the audio port allocation and Section 7.8.3 gives more details.

Table 16. Audio port configuration

Audio port	Input configuration						
	S/PDIF	I ² S-bus					
AP0	-	WS (word select)					
AP1	S/PDIF input	I ² S-bus channel 0					
ACLK	-	SCK (I ² S-bus clock)					

All audio ports are LV-CMOS 1.8 V compatible and LV-CMOS 3.3 V tolerant. It is possible to map an internally unused port to internal ground via I²C-bus with ENA_AP register on page 00h for both audio and clock inputs.

7.8.1 S/PDIF


In this format TDA9989 supports 2-channel uncompressed PCM data (IEC 60958) layout 0, or compressed bit stream up to 8 multi channels (Dolby Digital, DTS, AC3 etc.) layout 1. The TDA9989 is able to recover the original clock from the S/PDIF signal (no need of external clock).

7.8.2 I²S-bus

There is one I²S-bus stereo input, which enables 2 uncompressed audio channels to be carried. The I²S-bus input interface receives an I²S-bus signal including serial data, word select and serial clock.

Typical waveforms for the I²S-bus signals at 64f_s are given by Figure 13.

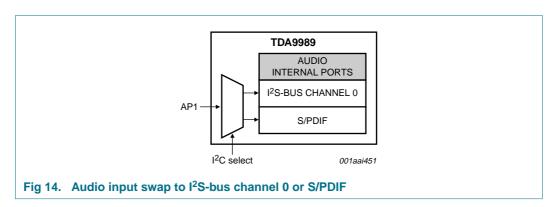
HDMI 1.3a transmitter with CEC support

The I²S-bus input interface can receive up to 24-bit wide audio samples via the serial data input with a clock frequency of at least 32 times the input sample frequency fs.

Audio samples with a precision better than 24-bit are truncated to 24-bit. If the input clock has a frequency of 32fs, only 16-bit audio-samples can be received. In this case, the 8 LSBs will be set to 0. If the input clock has a frequency of 64fs and is left justified or Philips, the audio word is truncated to 24-bit format and other bits padded with zeros. If the input clock has a frequency of 64fs and is right justified, audio sample must be strictly 24-bit length.

The serial data signal carries the serial baseband audio data, sample by sample left/right interleaved.

The word select signal indicates whether left or right channel information is transferred over the serial data line.


22 of 48

HDMI 1.3a transmitter with CEC support

23 of 48

7.8.3 Audio port internal assignment

The aim of the internal audio input assignment is to internally map any of the incoming data from the audio port AP1 to I2S-bus channel 0 or S/PDIF internal ports by setting the appropriate I²C-bus register.

7.9 Power management

The TDA9989 HDMI and CEC cores can be independently powered down by the I²C-bus register. In Standby mode all activities are reduced by switching off all PLLs, HDMI and CEC cores and disconnecting the biasing structure of the output stage. The TDA9989 has a very low power consumption, which is suitable for portable applications.

Table 17 gives the typical power consumption of the device in different configurations.

Table 17. TDA9989 typical power consumption in different configurations

Typical power	Configuration	Comment
130 μW	Standby mode:	default configuration: after power-up; PLLs
	• I ² C-bus ON	HDMI and CEC cores are OFF; can be switched ON via I ² C-bus register
500 μW	Sleep mode without CEC:	no sink connected; CEC is OFF
	 HDMI interruption (HPD, RxSense only); 	
1.4 mW	Sleep mode with CEC:	no sink connected; CEC is ON
	 HDMI interruption (HPD, RxSense only) 	
	 CEC interruption 	
60 mW	Low power 1080i mode:	sink connected; CEC is OFF
	 Video format 1080i 	
	Video input YCbCr 4: 2: 2	
	Video output YCbCr 4: 2: 2	
	No CEC	
120 mW	Full speed mode:	all blocks enabled and running
	 Video format 1080p 	

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

Product data sheet

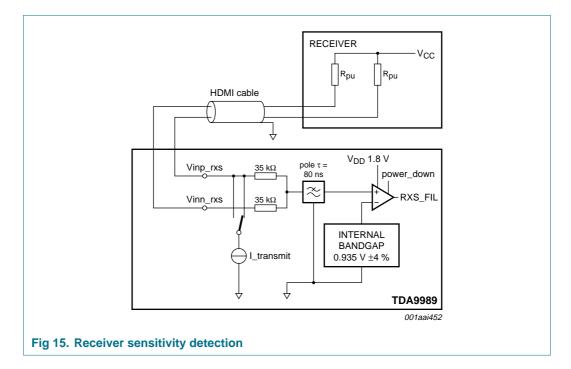
Downloaded from Arrow.com.

HDMI 1.3a transmitter with CEC support

7.10 Interrupt controller

Pin INT_HDMI is used to alert the micro controller that a critical event concerning the HDMI or CEC has occurred. The software provided with the device read a status register (I²C-bus) to determine which block between HDMI and CEC has caused the interruption before processing it. Some of theses interrupts are maskable. The interrupt types are described in Table 18.

Table 18. Interruptions


Interrupt domain	Interrupt name	Definition	Maskable feature
HPD	hpd	transition on HPD input	maskable
RxSense	rx_sense	transition on RxSense	maskable
Interrupt	sw_intsoftware	test purpose (output an interrupt signal)	maskable
EDID	edid_block_rd	EDID block read finished	maskable
CEC	cec_int	CEC message received	not maskable

7.10.1 Hot plug/unplug detect

The hot plug detect (HPD) pin is 5 V input tolerant. The HPD signal, when asserted, tells the transmitter that the receiver is connected. When changing from LOW-to-HIGH, the TDA9989 has to read the EDID of the receiver in order to select the video format that the receiver can handle.

7.10.2 Receiver sensitivity

The TDA9989 has the capability to sense the receiver connectivity and working behavior. This feature (RxSense) detects the presence of the 50 Ω pull-up resistor R_T on the TMDS clock channel of the downstream side.

TDA9989 2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

As long as the receiver is connected to the transmitter and powered-up, bit RXS_FIL is set to logic 1.

As soon as the cable is unplugged or receiver side powered off (assuming in this case that V_{CC} is switched off), the RxSense generates an interrupt inside the TDA9989, changing the value of bit RXS FIL to logic 0 (See Table 19). This allows the application to stop sending unnecessary video content.

This feature is very useful when the receiver recovers from an off-state and does not generate a HPD transition HIGH-to-LOW-to-HIGH. In this particular case, RxSense will generate an interrupt so that the chip restarts sending video.

Table 19. Receiver detection according to averaged terminal voltage

Average voltage (Vinp_rxs + Vinn_rxs) / 2	bit RXS_FIL: receiver powered on	bit RXS_FIL: receiver powered off
V ≥ 975 mV	1	0
895 mV < V < 975 mV	undefined	0
V ≤ 895 mV	0	0

Remark: According to the HDMI specification, only the HPD interrupt allows the application to read the EDID. The RxSense interrupt is not mandatory to initialize the EDID reading procedure.

7.11 CEC

TDA9989 with its embedded CEC block provides a complete solution to enable Consumer Electronic Control (CEC) in product (DSC, DVC, PMP, UM PC). This eliminates the need of any additional device to handle this feature thus improving BOM (Bill Of Materials). CEC capability allows AV products (CEC enable) to communicate together over the home appliance network which could be controlled using only one remote control.

The CEC block manages low level transactions (compliant to CEC timing specification) over the one bidirectional line It translates CEC protocol in I²C-bus for the host processor and vice versa. It manages CEC message reception and transmission compliant to CEC protocol and provides the message to the system micro controller (host processor).

For power consumption optimization purpose CEC could be enable or disable through I²C-bus register.

The following sections describe CEC

- Features
- · Clocking scheme

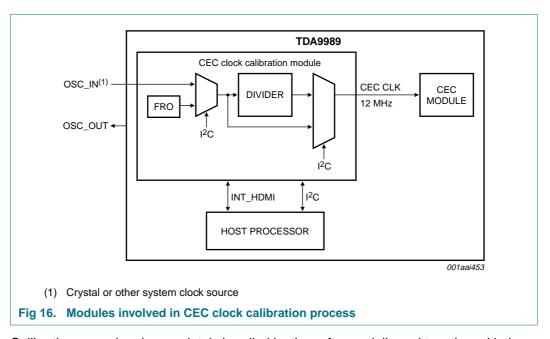
7.11.1 Features

- · Receive and transmit CEC messages to host processor
- Supports multiple CEC logical addresses
- Supports CEC messages up to 16 bytes long
- Programmable retry count
- · Comprehensive arbitration and collision handling

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

7.11.2 Clock


CEC clock must be running in Sleep mode (with CEC) to wake up the TDA9989 using CEC specific message as described in "HDMI 1.3a specification".

CEC module can be clocked using:

- External clocks:
 - 12 MHz crystal.
 - 12 MHz to 50 MHz clock available on PCB
- Internal clock:
 - FRO (Free Running Oscillator). FRO frequency varies per device basic (temperature, process, voltage) and is ranges from 12.64 MHz to 12.9 MHz.

CEC operates normally (i.e. matches the timing requested CEC specification) if and only if its clock frequency is 12 MHz.

So, for clock frequency higher than 12 MHz a calibration is needed. A calibration module located between the clock source and the CEC module is used to divide the incoming clock to cope the right frequency range see Figure 16.

Calibration procedure is completely handled by the software delivered together with the device, it has the following steps:

- Host processor set the TDA9989 in calibration mode
- Host processor generates a negative pulse of 10 ms ± 1 % on INT_HDMI pin
- Host processor deselects the calibration mode when it is completed, the chip is ready to operate.

CEC clock calibration must be performed at each power-up and each time the TDA9989 moves from Standby or Sleep (without CEC) state to normal operating mode.

TDA9989 2 © NXP B.V. 2009. All rights reserved.

NXP Semiconductors

HDMI 1.3a transmitter with CEC support

Non successful calibration will lead to CEC signal no matching timings specification as consequence CEC not functional.

7.11.3 CEC interrupt

Pin INT_HDMI is used by the TDA9989 to warm the host processor HDMI or CEC events (CEC message is available to read) have occurred.

Software reads interrupt status register determine which block between HDMI or CEC has raised the interruption before processing it.

7.11.4 Power-On Reset (POR)

After power-up, the TDA9989 is activated by hard reset by POR module. This is used to set the TDA9989 to a known state.

7.11.5 Repeater function

The TDA9989 can be used in a repeater device according to HDMI 1.3a.

7.12 HDMI core

7.12.1 Output TMDS buffers

7.12.1.1 Digitally controlled signal amplitude

The TMDS signal output peak-to-peak voltage (Vswing) is programmable by the software using I²C-bus register vswing crtl[3:0]. Vswing varies from 370 mV to 640 mV with ±5 % accuracy in 18 mV steps according to the following formula:

Vswing = 370 mV + 18 mV \times vswing ctrl[3:0]

An external resistor (10 k $\Omega \pm 1$ %) must be connected between pin EXT SWING and analog ground.

7.12.2 Pixel repetition

To transmit video formats with pixel rates below 25 megasamples per second or to increase the number of audio sample packets in each frame, the TDA9989 uses pixel repetition to increase the transmitted pixel clock (see Table 20).

Table 20. Pixel repetition

	•			
PR[3]	PR[2]	PR[1]	PR[0]	Pixel repetition factor
0	0	0	0	no repetition: pixel sent once
0	0	0	1	2 times: pixel repeated once
0	0	1	0	3 times
0	0	1	1	4 times
0	1	0	0	5 times
0	1	0	1	6 times
0	1	1	0	7 times
0	1	1	1	8 times

27 of 48

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

HDMI 1.3a transmitter with CEC support

Table 20. Pixel repetition ... continued

PR[3]	PR[2]	PR[1]	PR[0]	Pixel repetition factor
1	0	0	0	9 times
1	0	0	1	10 times
others				reserved

7.12.3 DDC-bus channel

The DDC-bus pins DSDA and DSCL are 5 V tolerant and can work at standard mode (100 kHz). The DDC-bus is used as a master interface when reading the EDID.

When the device is power-off DSDA and DSCL ports:

- become in high-impedance
- can withstand 5 V from the sink.

7.13 E-EDID

7.13.1 E-EDID reading

As a master interface for the EDID process, the DDC-bus is compliant with the I^2 C-bus specification and has the possibility of repeat/start condition to enable quick access to the EDID content, as well as the possibility of reading a large EDID (with the use of segment pointer).

The TDA9989 has a whole I²C-bus page (page 09h) dedicated to the EDID where one block can be stored. The block can be read by the microprocessor to determine the supported video and audio format of the downstream site.

Remark: When the block is read by the TDA9989, it generates an interrupt to warn the main processor that the chip is ready to transmit the content. Once the content is read out by the main processor, it can allow other blocks to be read if required.

7.13.2 HDMI and DVI receiver discrimination

This information is located in the E-EDID receiver part, in the 'vendor-specific data block' within the first CEA EDID timing extension.

If the 24-bit IEEE Registration Identifier contains the value 00 0C03h, then the receiver will support HDMI, otherwise the device will be treated as a DVI device.

However, even through the TDA9989 have directly access to that information, it is the task of the micro controller to ask to switch from DVI to HDMI mode.

DA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

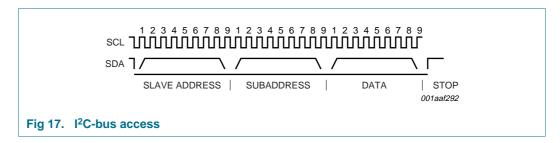
I²C-bus interface and register definitions

8.1 I²C-bus protocol

The I²C-bus pins CSDA and CSCL are 1.8 V and 3.3 V tolerant. Both Fast-mode (400 kHz) and Standard-mode (100 kHz) are supported.

The registers of the TDA9989 can be accessed via the I²C-bus. All registers are R/W except for those which are confidential.

HDMI and CEC cores I²C-bus addresses are given in Table 21 and Table 22.


Table 21. HDMI core I²C-bus address

HDMI core address									
A6 A5 A4 A3 A2 A1 A0 R/W									
1	1	1	0	0	0	0	0/1		

Table 22. CEC core I²C-bus address

CEC core address									
A6 A5 A4 A3 A2 A1 A0 R/W									
0	1	1	0	1	0	0	0/1		

For read access, the master writes the address of the TDA9989 HDMI or CEC core, and the subaddress to access the specific register and then the data.

8.2 Memory page management

The I²C-bus memory is split into several pages for HDMI core only, and the selection between pages is made with common register CURPAGE ADR. It is only necessary to write in this register once to change the current page. So multiple read or write operations in the same page need a write register CURPAGE_ADR once at the beginning.

The following memory pages are available for the TDA9989:

- Page 00h: general control
- Page 02h: PLL settings
- Page 09h: EDID control page
- · Page 10h: information frames and packets
- Page 11h: audio settings and content info packets
- Page 13h: gamut-related metadata packets

© NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

The CEC core does not need memory page mechanism due to its reduced number of registers.

8.3 ID version

The ID version readable via I²C-bus is defined by the concatenation of VERSION_MSB and VERSION registers. The ID version value is 131h.

8.4 Clock stretching

Clock stretching pauses a transaction by holding the CSCL line LOW. The transaction cannot continue until the line is released HIGH again.

For example: on the byte level, a device may be able to receive bytes of data at a fast rate, but needs more time to store a received byte or prepare another byte to be transmitted. Slaves can then hold the CSCL line LOW after reception and acknowledgment of a byte to force the master into a wait state until the slave is ready for the next byte transfer.see Table 31

Clock stretching must be supported by I²C-bus master especially when CEC feature of TDA9989 is used. If CEC feature of TDA9989 is not used, I²C-bus master does not need to support clock stretching.

9. Input format

In <u>Table 23</u> the port VPA has been mapped to Cb (YCbCr space)/B (RGB space), VPB has been mapped to Y (YCbCr space)/G (RGB space) and VPC has been mapped to Cr (YCbCr space)/R (RGB space).

Table 23. Input format L: recommend tied to LOW voltage

Input pins	Signal	RGB	YCbCr							
		4:4:4	4:4:4	4:2:2	4 : 2 : 2 (semi-planar)		4 : 2 : 2 (ITU 656-like)			
Video port	A		'							
VPA[0]	Cb[0]/B[0]	B[0]	Cb[0]	Y ₀ [0]	Y ₁ [0]	Cb[0]	Y ₀ [0]	Cr[0]	Y ₁ [0]	
VPA[1]	Cb[1]/B[1]	B[1]	Cb[1]	Y ₀ [1]	Y ₁ [1]	Cb[1]	Y ₀ [1]	Cr[1]	Y ₁ [1]	
VPA[2]	Cb[2]/B[2]	B[2]	Cb[2]	Y ₀ [2]	Y ₁ [2]	Cb[2]	Y ₀ [2]	Cr[2]	Y ₁ [2]	
VPA[3]	Cb[3]/B[3]	B[3]	Cb[3]	Y ₀ [3]	Y ₁ [3]	Cb[3]	Y ₀ [3]	Cr[3]	Y ₁ [3]	
VPA[4]	Cb[4]/B[4]	B[4]	Cb[4]	Cb[0]	Cr[0]	L	L	L	L	
VPA[5]	Cb[5]/B[5]	B[5]	Cb[5]	Cb[1]	Cr[1]	L	L	L	L	
VPA[6]	Cb[6]/B[6]	B[6]	Cb[6]	Cb[2]	Cr[2]	L	L	L	L	
VPA[7]	Cb[7]/B[7]	B[7]	Cb[7]	Cb[3]	Cr[3]	L	L	L	L	
Video port l	В									
VPB[0]	Y[0]/G[0]	G[0]	Y[0]	Y ₀ [4]	Y ₁ [4]	Cb[4]	Y ₀ [4]	Cr[4]	Y ₁ [4]	
VPB[1]	Y[1]/G[1]	G[1]	Y[1]	Y ₀ [5]	Y ₁ [5]	Cb[5]	Y ₀ [5]	Cr[5]	Y ₁ [5]	
VPB[2]	Y[2]/G[2]	G[2]	Y[2]	Y ₀ [6]	Y ₁ [6]	Cb[6]	Y ₀ [6]	Cr[6]	Y ₁ [6]	
VPB[3]	Y[3]/G[3]	G[3]	Y[3]	Y ₀ [7]	Y ₁ [7]	Cb[7]	Y ₀ [7]	Cr[7]	Y ₁ [7]	
VPB[4]	Y[4]/G[4]	G[4]	Y[4]	Y ₀ [8]	Y ₁ [8]	Cb[8]	Y ₀ [8]	Cr[8]	Y ₁ [8]	
VPB[5]	Y[5]/G[5]	G[5]	Y[5]	Y ₀ [9]	Y ₁ [9]	Cb[9]	Y ₀ [9]	Cr[9]	Y ₁ [9]	
TDA9989_2							(NXP B.V. 2009	. All rights reserve	

HDMI 1.3a transmitter with CEC support

© NXP B.V. 2009. All rights reserved.

Table 23. Input format ...continued L: recommend tied to LOW voltage

Input pins	Signal	RGB	YCbCr						
		4:4:4	4:4:4	4 : 2 : 2 (semi-planar)		4 : 2 : 2 (ITU 656-like)			
VPB[6]	Y[6]/G[6]	G[6]	Y[6]	Y ₀ [10]	Y ₁ [10]	Cb[10]	Y ₀ [10]	Cr[10]	Y ₁ [10]
VPB[7]	Y[7]/G[7]	G[7]	Y[7]	Y ₀ [11]	Y ₁ [11]	Cb[11]	Y ₀ [11]	Cr[11]	Y ₁ [11]
Video port	С								
VPC[0]	Cr[0]/R[0]	R[0]	Cr[0]	Cb[4]	Cr[4]	L	L	L	L
VPC[1]	Cr[1]/R[1]	R[1]	Cr[1]	Cb[5]	Cr[5]	L	L	L	L
VPC[2]	Cr[2]/R[2]	R[2]	Cr[2]	Cb[6]	Cr[6]	L	L	L	L
VPC[3]	Cr[3]/R[3]	R[3]	Cr[3]	Cb[7]	Cr[7]	L	L	L	L
VPC[4]	Cr[4]/R[4]	R[4]	Cr[4]	Cb[8]	Cr[8]	L	L	L	L
VPC[5]	Cr[5]/R[5]	R[5]	Cr[5]	Cb[9]	Cr[9]	L	L	L	L
VPC[6]	Cr[6]/R[6]	R[6]	Cr[6]	Cb[10]	Cr[10]	L	L	L	L
VPC[7]	Cr[7]/R[7]	R[7]	Cr[7]	Cb[11]	Cr[11]	L	L	L	L

9.1 Timing parameters for video supported

The TDA9989 supports all EIA/CEA-861B standards and ATSC video input formats.

Table 24. Timing parameters for EIA/CEA-861B

EIA/CEA-861B Video code	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
59.94 Hz systems	5						
1 (VGA)	$640\times480p$	59.9401	800	525	31.469	25.175	1
2, 3	$720\times480p$	59.9401	858	525	31.469	27.000	1
4	$1280\times720p$	59.9401	1650	750	44.955	74.175	1
5	$1920\times1080i$	59.9401	2200	1125	33.716	74.175	1
6, 7 (NTSC)	$1440 \times 480 i$	59.9401	1716	525	15.734	27.000	2
8, 9	$1440\times240p$	59.9401	1716	262	15.734	27.000	2
8, 9	$1440\times240p$	59.9401	1716	263	15.734	27.000	2
10, 11	$2880\times480\text{i}$	59.9401	3452	525	15.734	54.000	4 <u>[1]</u>
12, 13	$2880\times240p$	59.9401	3452	262	15.734	54.000	4 <u>[1]</u>
12, 13	$2880\times240p$	59.9401	3452	263	15.734	54.000	4 <u>[1]</u>
14, 15	$1440\times480p$	59.9401	1716	525	31.469	54.000	2
16	$1920\times1080p$	60.000	2200	1125	67.432	148.350	1
60 Hz systems							
1 (VGA)	$640\times480p$	60.000	800	525	31.500	25.200	1
2, 3	$720\times480p$	60.000	858	525	31.500	27.027	1
4	$1280\times720p$	60.000	1650	750	45.000	74.250	1
5	$1920\times1080i$	60.000	2200	1125	33.750	74.250	1
6, 7 (NTSC)	$1440\times480i$	60.000	1716	525	15.750	27.027	2
8, 9	$1440\times240p$	60.000	1716	262	15.750	27.027	2
8, 9	1440 × 240p	60.000	1716	263	15.750	27.027	2

HDMI 1.3a transmitter with CEC support

Table 24. Timing parameters for EIA/CEA-861B ...continued

EIA/CEA-861B Video code	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
10, 11	$2880\times480\text{i}$	60.000	3452	525	15.750	54.054	4 <u>[1]</u>
12, 13	$2880\times240p$	60.000	3452	262	15.750	54.054	4 <u>[1]</u>
12, 13	$2880\times240p$	60.000	3452	263	15.750	54.054	4 <u>[1]</u>
14, 15	$1440\times480p$	60.000	1716	525	31.500	54.054	2
16	$1920\times1080p$	60.000	2200	1125	67.500	148.50	1
50 Hz systems							
17, 18	$720\times576p$	50.000	864	625	31.250	27.000	1
19	$1280\times720p$	50.000	1980	750	37.500	74.250	1
20	$1920\times1080i$	50.000	2640	1125	28.125	74.250	1
21, 22 (PAL)	1440 × 576i	50.000	1728	625	15.625	27.000	2
23, 24	$1440\times288p$	50.000	1728	312	15.625	27.000	2
23, 24	$1440\times288p$	50.000	1728	313	15.625	27.000	2
23, 24	$1440\times288p$	50.000	1728	314	15.625	27.000	2
25, 26	$2880\times576i$	50.000	3456	625	15.625	54.000	4 <u>[1]</u>
27, 28	$2880\times288p$	50.000	3456	312	15.625	54.000	4 <u>[1]</u>
27, 28	$2880\times288p$	50.000	3456	313	15.625	54.000	4 <u>[1]</u>
27, 28	720 × 288p	50.000	3456	314	15.625	54.000	4
29, 30	$1440\times576p$	50.000	1728	625	31.250	54.000	2
31	$1920\times1080p$	50.000	2640	1125	56.250	148.50	1
Various systems							
32	1920 × 1080p	23.976	2750	1125	26.973	74.175824	1
32	1920 × 1080p	24	2750	1125	27	74.25	1
33	1920 × 1080p	25	2640	1125	28.125	74.25	1
34	1920 × 1080p	29.97	2200	1125	33.716	74.175824	1
34	1920 × 1080p	30	2200	1125	33.75	74.25	1

^[1] Format can also be defined with a repetition factor of up to 10.

Table 25. Timing parameters for ATSC DTV standards, which are not defined in EIA/CEA-861B

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
SMPTE-296M	$1280\times720p$	30.000	3300	750	22.500	74.250	1
SMPTE-296M	$1280\times720p$	29.970	3300	750	22.478	74.175	1
SMPTE-296M	$1280\times720p$	25.000	3960	750	18.750	74.250	1
SMPTE-296M	1280 × 720p	23.976	4125	750	17.982	74.175	1

9.2 Timing parameters for PC standards supported

TDA9989 can support all major PC Standards below 150 MHz.

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

Table 26. Timing parameters for PC standards below 150 MHz

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
	$640\times350p$	85.080	832	445	37.861	31.500	-
	$640\times400p$	85.080	832	445	37.861	31.500	-
	$720\times400p$	85.039	936	446	37.927	35.500	-
0.31M3	$640\times480p$	59.940	800	525	31.469	25.175	-
VGA	$640\times480p$	72.809	832	520	37.861	31.500	-
	640 × 480p	75.000	840	500	37.500	31.500	-
	640 × 480p	85.008	832	509	43.269	36.000	-
0.48M3	800 × 600p	56.250	1024	625	35.156	36.000	-
SVGA	$800\times600p$	60.317	1056	628	37.879	40.000	-
	$800\times600p$	72.188	1040	666	48.077	50.000	-
	$800\times600p$	75.000	1056	625	46.875	49.500	-
	$800\times600p$	85.061	1048	631	53.674	56.250	-
0.48M3-R	$800\times600p$	119.972	960	636	76.302	73.250	-
0.41M9	$848\times480p$	60.000	1088	517	31.020	33.750	-
0.79M3	$1024\times768p$	60.004	1344	806	48.363	65.000	-
XGA	$1024\times768p$	70.069	1328	806	56.476	75.000	-
	$1024\times768p$	75.029	1312	800	60.023	78.750	-
	1024 × 768p	84.997	1376	808	68.677	94.500	-
	$1024 \times 768i$	86.957	1264	817	35.522	44.900	-
0.79M3-R XGA	1024 × 768p	119.989	1184	813	97.551	115.500	-
1.00M3	1152 × 864p	75.000	1600	900	67.500	108.000	-
0.98M9-R	1280 × 768p	59.995	1440	790	47.396	68.250	-
	$1280\times768p$	119.798	1440	813	97.396	140.250	-
0.98M9	1280 × 768p	59.870	1664	798	47.776	79.500	-
	$1280\times768p$	74.893	1696	805	60.289	102.250	-
	1280 × 768p	84.837	1712	809	68.633	117.500	-
1.02MA-R	1280 × 800p	59.910	1440	823	49.306	71.000	-
	$1280\times800p$	119.909	1440	847	101.563	146.250	-
1.02MA	1280 × 800p	59.810	1680	831	49.702	83.500	-
	$1280\times800p$	74.934	1696	838	62.795	106.500	-
	$1280\times800p$	84.880	1712	843	71.554	122.500	-
1.23M3	1280 × 960p	60.000	1800	1000	60.000	108.000	-
	$1280 \times 960p$	85.002	1728	1011	85.938	148.500	-
1.31M4	1280 × 1024p	60.020	1688	1066	63.981	108.000	-
SXGA	$1280\times1024p$	75.025	1688	1066	79.976	135.000	-
1.04M9	1360 × 768p	60.015	1792	795	47.712	85.500	-
1.04M9-R	1360 × 768p	119.967	1520	813	97.533	148.250	-
1.47M3-R	1400 × 1050p	59.948	1560	1080	64.744	101.000	-
1.47M3	$1400\times1050p$	59.978	1864	1089	65.317	121.750	-

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

Table 26. Timing parameters for PC standards below 150 MHz ...continued

Standard	Format	V frequency (Hz)	H total	V total	H frequency (kHz)	Pixel frequency (MHz)	Pixel repetition
1.29MA-R	$1440\times 900p$	59.901	1600	926	55.469	88.750	-
1.29MA	$1440 \times 900p$	59.887	1904	934	55.935	106.500	-
	$1440\times 900p$	74.984	1936	942	70.635	136.750	-
1.76MA-R	1680 × 1050p	59.883	1840	1080	64.674	119.000	-
1.76MA	$1680\times 1050p$	59.954	2240	1089	65.290	146.250	-

10. Limiting values

Table 27. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{\text{DDA}(\text{TMDS})(1V8)}$	TMDS analog supply voltage (1.8 V)		-0.5	+3.8	V
V _{DDA(PLL)(1V8)}	PLL analog supply voltage (1.8 V)		-0.5	+3.8	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)		-0.5	+3.8	V
V _{DDD(IO)(1V8)}	I/O digital supply voltage (1.8V)		-0.5	+3.8	V
V _{DD(OSC)(CEC)}	CEC oscillator supply voltage		-0.5	+3.8	V
V_{DDDC}	core digital supply voltage		<u>[1]</u> –0.5	+3.8	V
ΔV_{DD}	supply voltage difference		-2	+2	V
V _{esd}	electrostatic discharge voltage	HBM	-	±2500	V

^[1] see Table 6

11. Thermal characteristics

Table 28. Thermal characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$R_{th(j-a)}$	thermal resistance from junction to ambient	in free air; Jedec 4L board	-	58.6	-	K/W
R _{th(j-c)}	thermal resistance from junction to case		-	18	-	K/W
T _{stg}	storage temperature		-	-	+150	°C
T _{amb}	ambient temperature		-20	-	+85	°C
Tj	junction temperature		-	-	+125	°C

12. Static characteristics

Table 29. Supplies

 T_{amb} = -20 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDD(1V8)}	digital supply voltage (1.8 V)			1.7	1.8	1.9	V
V_{DDDC}	core digital supply voltage	VCLK ≤ 74.25 MHz	<u>[1]</u>	1.1	1.2	1.3	V
		VCLK > 74.25 MHz	<u>[1]</u>	1.7	1.8	1.9	V
V _{DDA(TMDS)(1V8)}	TMDS analog supply voltage (1.8 V)			1.7	1.8	1.9	V

© NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

Table 29. Supplies ...continued

 T_{amb} = -20 °C to +85 °C; unless otherwise specified.

G							
Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{DDA(PLL)(1V8)}	PLL analog supply voltage (1.8 V)	PLL analog and serializer		1.7	1.8	1.9	V
V _{DDA(1V8)}	analog supply voltage (1.8 V)			1.7	1.8	1.9	V
V _{DD(OSC)(CEC)}	CEC oscillator supply voltage			1.7	1.8	1.9	V
I _{DDD(1V8)}	digital supply current (1.8 V)		[2]	30	45	60	μΑ
I _{DDA(TMDS)(1V8)}	TMDS analog supply current (1.8V)		[2]	7	8	9	mΑ
I _{DDA(PLL)(1V8)}	PLL analog supply current (1.8 V)		[2]	7	8	9	mΑ
I _{DDA(1V8)}	analog supply current (1.8 V)		[2]	8	9	10	mΑ
I _{DD(OSC)(CEC)}	CEC oscillator supply current		[2]	0.1	0.2	0.3	mΑ
Supplies 1.2 V	(V _{DDDC}) and 1.8 V						
I _{DDDC(1V2)}	core digital supply current (1.2 V)		[3]	10	15	20	mΑ
P _{cons}	power consumption		[3]	-	55	65	mW
		Sleep mode with CEC		-	1.5	3	mW
		Sleep mode without CEC		-	500	600	μW
		Standby mode		-	130	200	μW
P _{tot}	total power dissipation		<u>[5]</u>	-	190	215	mW
All supplies 1.	8 V						
I _{DDDC(1V8)}	core digital supply current (1.8 V)		[2]	35	40	45	mΑ
			[3]	20	25	30	mA
P _{cons}	power consumption		[2]	-	120	140	mW
			[3]	-	75	90	mW
		Sleep mode with CEC		-	2.7	4	mW
		Sleep mode without CEC		-	700	950	μW
		Standby mode		-	135	260	μW
P _{tot}	total power dissipation		<u>[4]</u>	-	255	290	mW
			[5]	-	210	240	mW

^[1] see Table 6

- [2] Input format: 1080p, any color space; output format: 1080p any color space.
- [3] Input format: 1080i YCbCr 4 : 2 : 2; output format: YCbCr 4 : 2 : 2; CEC feature disable.
- [4] Same as Table note [2] with TMDS output current added.
- [5] Same as Table note [3] with TMDS output current added.

Table 30. Digital inputs and outputs

 T_{amb} = -20 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
	erant CMOS 1.8 V and /PC[7:0], VCLK, DE	CMOS 3.3 V tolerant digital in	put pins HSYNC, VS	YNC, AP[1	:0], ACLK, \	/PA[7:0],
V_{IL}	LOW-level input volt	age -	0	-	0.75	V
V_{IH}	HIGH-level input vol	tage -	1.4	-	-	V
I _{IL}	LOW-level input cur	rent	-1	-	+1	μΑ
I _{IH}	HIGH-level input cu	rrent	-1	-	+1	μΑ
Ci	input capacitance		-	4.5	-	pF
TDA9989_2					© NXP B.V. 200	9. All rights reserv

HDMI 1.3a transmitter with CEC support

Table 30. Digital inputs and outputs ...continued $T_{amb} = -20 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
5 V tolerai	nt input pin HPD					
V_{IL}	LOW-level input voltage	-	0	-	8.0	V
V_{IH}	HIGH-level input voltage	-	2	-	-	V
Ci	input capacitance		-	4.5	-	pF
CMOS 1.8	V and CMOS 3.3 V tolerant of	digital input/output pin INT_H	OMI			
V_{IL}	LOW-level input voltage	-	0	-	0.85	V
V_{IH}	HIGH-level input voltage	-	1.4	-	-	V
V_{OL}	LOW-level output voltage	$C_L = 10 \text{ pF}; I_{OL} = 2 \text{ mA}$	0	-	0.4	V
5 V tolerai	nt master bus: DDC-bus pins	DSDA, DSCL[1]				
V _{OL}	LOW-level output voltage		0	-	0.4	V
V_{IL}	LOW-level input voltage		0	-	0.6	V
V_{IH}	HIGH-level input voltage		1.4	-	5.5	V
1.8 V to 3.	3 V tolerant slave bus: I ² C-b	us input/output pins CSCL, CS	SDA[1]			
V _{OL}	LOW-level output voltage		0	-	0.4	V
V_{IL}	LOW-level input voltage		0	-	0.6	V
V_{IH}	HIGH-level input voltage		1.4	-	5.5	V
CEC input	:/output ^[2] pin					
V_{OL}	LOW-level output voltage		0	-	0.4	V
V _{OH}	HIGH-level output voltage		2.5	-	3.6	V
V_{IL}	LOW-level input voltage		0	-	0.60	V
V _{IH}	HIGH-level input voltage		2.5	-	3.6	V
$V_{hys(i)}$	input hysteresis voltage		[2] _	0.27	-	V
TMDS out	put pins: TX0-, TX0+, TX1-,	TX1+, TX2-, TX2+, TXC- and 1	ГХС+			
$V_{O(dif)}$	differential output voltage	R_{EXT_SWING} = 10 $k\Omega \pm 1$ %	400	514	600	mV
$V_{O(cm)}$	common-mode output voltage	R_{EXT_SWING} = 10 $k\Omega \pm 1$ %	-	3.05	-	V

^[1] See Section 7.1 and refer to the I²C-bus specification version 2.1 (document order number 9398 393 40011).

13. Dynamic characteristics

Table 31. Timing characteristics

 T_{amb} = -20 °C to +85 °C; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Clock inpu	t: pin VCLK					
f _{clk(max)}	maximum clock frequency	-	-	-	150	MHz
t _{su(D)}	data input set-up time	see Figure 18 and 19	1.5	-	-	ns
t _{h(D)}	data input hold time	see Figure 18 and 19	1	-	-	ns
δ_{clk}	clock duty cycle	positive edge	<u>[1]</u> 30	50	70	%
f _{clk}	clock frequency	CEC	-	12	50	MHz
TDA9989 2					© NXP B.V. 20	09. All rights reserved

^[2] For information, input hysteresis is normally supplied by the microprocessor input circuit: in this circumstance, external hysteresis circuitry is not needed.

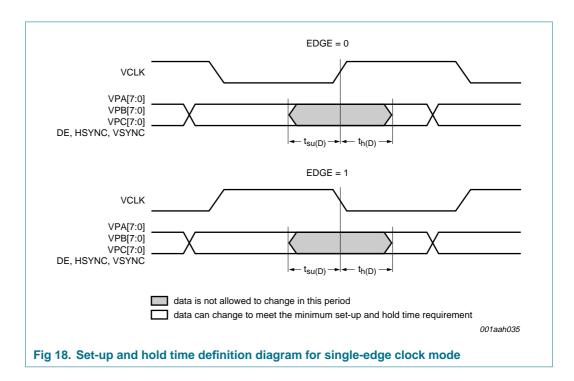
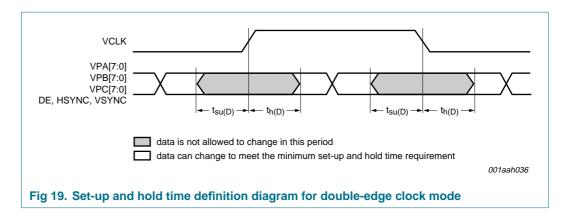

HDMI 1.3a transmitter with CEC support

Table 31. Timing characteristics ...continued $T_{amb} = -20 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
DDC-bus:	pins DSDA, DSCL (5 V toleran	t) master bus ^[2]				
f _{SCL}	SCL frequency	Standard-mode	-	-	100	kHz
C _i	capacitance for each I/O pin		-	7	-	pF
I ² C-bus: pi	ns CSCL, CSDA (5 V tolerant)	slave bus[2]				
f _{SCL}	SCL frequency	Standard-mode	-	-	100	kHz
		Fast-mode	-	-	400	kHz
t _{stretch}	stretch time	CEC	-	80	-	μs
CEC input/	output ^[3]					
t _r	rise time	10 % to 90 %	-	-	50	μs
t _f	fall time	10 % to 90 %	-	-	2	μs
TMDS outp	out pins: TXC- and TXC+					
f _{clk(max)}	maximum clock frequency	on the TMDS link	-	-	150	MHz
TMDS outp	out pins: TX0-, TX0+, TX1-, TX	(1+, TX2- and TX2+				
f _{clk(max)}	maximum clock frequency		-	-	1.50	GHz

^[1] $\delta_{clk} = t_{clk(H)} / (t_{clk(H)} + t_{clk(L)}).$

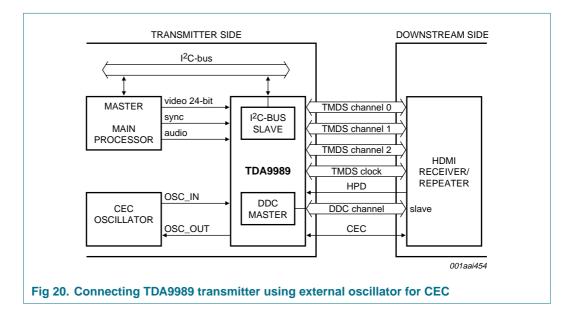
^[3] For details about CEC electrical specification, see HDMI 1.3a specification.



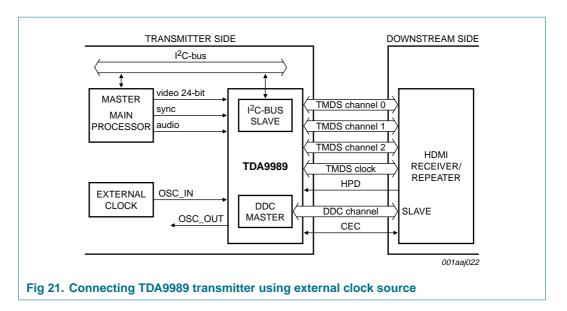
TDA9989_2 © NXP B.V. 2009. All rights reserved.

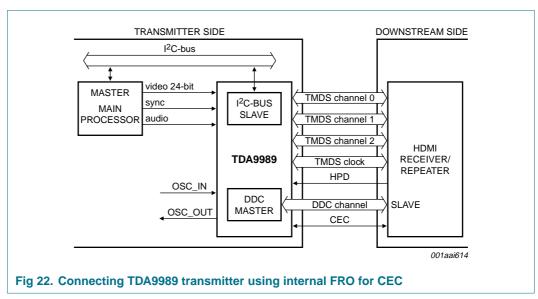
^[2] See Section 7.1 and refer to the I²C-bus specification version 2.1 (document order number 9398 393 40011).

HDMI 1.3a transmitter with CEC support


38 of 48

14. Application information


14.1 Transmitter connection with external world


Figure 20, Figure 21 and Figure 22 refer to a simple receiver application. However, the TDA9989 can be part of a repeater application as described in "HDMI 1.3a specification".

Product data sheet

HDMI 1.3a transmitter with CEC support

15. Package outline

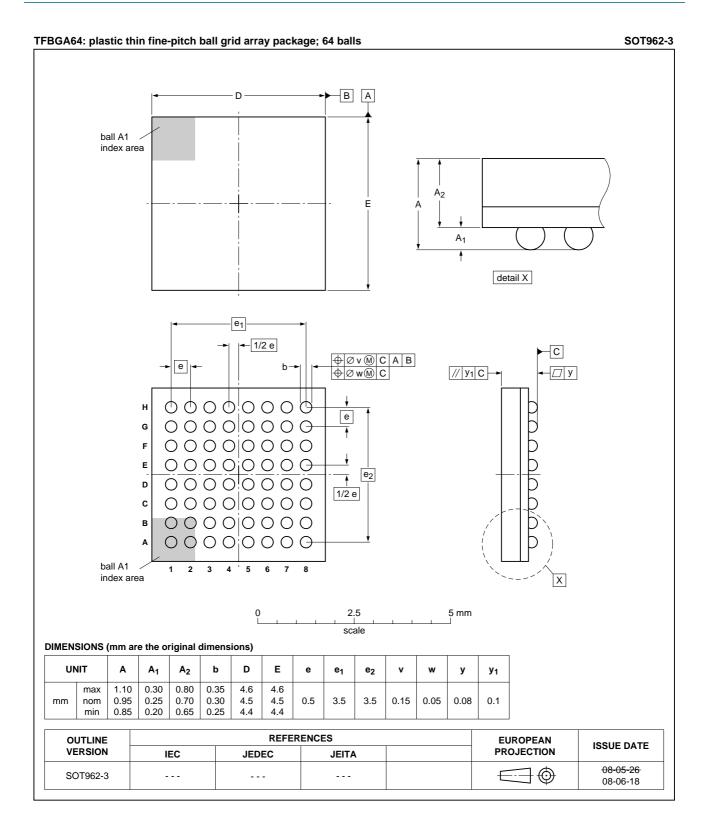


Fig 23. Package outline SOT962-3 (TFBGA64)

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

16. Abbreviations

Table 32. Abbreviations

Acronym	Description
AC3	Active Coding-3
ACP	Audio Content Protection
ACR	Audio Clock Recovery
ATSC	Advanced Television Systems Committee
AV	Audio Video
ВОМ	Bill Of Materials
CEA	Consumer Electronics Association
CEC	Consumer Electronics Control
CTS/N	Clock Time Stamp integer divider
DDC	Display Data Channel
DDR	Double Data Rate
DE	Data Enable
DSC	Digital Still Camera
DTS	Digital Transmission System
DTV	Desk Top Video
DVC	Digital Video Camera
DVD	Digital Versatile Disc
DVI	Digital Visual Interface
EAV	End Active Video
EDID	Extended Display Identification Data
E-EDID	Enhanced Extended Display Identification Data
EIA	Electronic Industries Alliance
FIFO	First In, First Out
FREF	Field REFerence
FRO	Free Running Oscillator
HBM	Human Body Model
HDCP	High-bandwidth Digital Content Protection
HDMI	High-Definition Multimedia Interface
HPD	Hot Plug Detection
HREF	Horizontal REFerence
HSYNC	Horizontal SYNChronization
LSB	Least Significant Bit
LV-CMOS	Low Voltage Complementary Metal-Oxide Semiconductor
MPEG	Moving Picture Experts Group
MSB	Most Significant Bit
PC	Personal Computer
PCB	Printed Circuit Board
PCM	Pulse Code Modulation
PLL	Phase-Locked Loop

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

Product data sheet

41 of 48

HDMI 1.3a transmitter with CEC support

 Table 32.
 Abbreviations ...continued

Acronym	Description
PMP	Portable Multimedia Player
POR	Power-On Reset
RGB	R = red, G = green, B = blue
SAV	Start Active Video
SDR	Single Data Rate
SMPTE	Society of Motion Picture and Television Engineers
S/PDIF	Sony / Philips Digital Interface
STB	Set-Top Box
TMDS	Transition Minimized Differential Signalling
UM PC	Ultra Mobile Personal Computer
UXGA60	Ultra Extended Graphics Array
VHREF	Vertical Horizontal REFerence
VREF	Vertical REFerence
VSYNC	Vertical SYNChronization
YCbCr	Y = luminance, Cb = Chroma component blue, Cr = Chroma component red
WS	Word Select

HDMI 1.3a transmitter with CEC support

17. Revision history

Table 33. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
TDA9989_2	20090611	Product data sheet	-	TDA9989_1	
Modifications:	 <u>Table 29</u>, <u>Table 30</u> and <u>Table 31</u>: updated <u>Table 28</u>, <u>Table 29</u>, <u>Table 30</u> and <u>Table 31</u>: changed the temperature min 0 °C to -20 °C <u>Table 28</u>, <u>Table 29</u>, <u>Table 30</u> and <u>Table 31</u>: changed the temperature max 70 °C to +85 °C Clock frequency maximum: changed 165 MHz to 150 MHz 				
TDA9989_1	20090225	Preliminary data sheet	-	-	

HDMI 1.3a transmitter with CEC support

18. Legal information

19. Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions".
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

19.1 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

19.2 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

19.3 Licenses

Purchase of NXP ICs with HDMI technology

Use of an NXP IC with HDMI technology in equipment that complies with the HDMI standard requires a license from HDMI Licensing LLC, 1060 E. Arques Avenue Suite 100, Sunnyvale CA 94085, USA, e-mail: admin@hdmi.org.

19.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

 ${f l^2C ext{-bus}}$ — logo is a trademark of NXP B.V.

20. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

TDA9989_2 © NXP B.V. 2009. All rights reserved.

HDMI 1.3a transmitter with CEC support

45 of 48

Notes

TDA9989_2 © NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

Product data sheet

HDMI 1.3a transmitter with CEC support

21. Tables

Table 1.	Ordering information	3
Table 2.	Pin description	
Table 3.	Internal assignment	8
Table 4.	Video input swap to VP[23:20]	9
Table 5.	TDA9989 input/output capability	.10
Table 6.	Inputs of video input formatter	.12
Table 7.	RGB (3 ¥ 8-bit) external synchronization	
	input (rising edge) mapping	.13
Table 8.	YCbCr 4 : 4 : 4 (3 ¥ 8-bit) external	
	synchronization input (rising edge) mapping.	.13
Table 9.	YCbCr 4 : 2 : 2 ITU656-like external	
	synchronization input (rising edge) mapping .	.14
Table 10.	YCbCr 4 : 2 : 2 ITU656-like external	
	synchronization input (rising and falling edge)	
	mapping	
Table 11.	YCbCr 4 : 2 : 2 ITU656-like embedded	
	synchronization input (rising edge) mappings	.16
Table 12.		
	synchronization input	
	(rising and falling edge) mapping	.17
Table 13.		
	synchronization input (rising edge) mapping.	.18
Table 14.	YCbCr 4 : 2 : 2 semi-planar embedded	
	synchronization input (rising edge) mapping .	.19
Table 15.	Use of color space converter, upsampler	
	and downsampler	.20
Table 16.	Audio port configuration	
Table 17.	TDA9989 typical power consumption in	
	different configurations	.23
Table 18.	Interruptions	
Table 19.	Receiver detection according to averaged	
	terminal voltage	.25
Table 20.	Pixel repetition	
Table 21.	HDMI core I ² C-bus address	
Table 22.	CEC core I ² C-bus address	
Table 23.	Input format	
Table 24.	Timing parameters for EIA/CEA-861B	
Table 25.	Timing parameters for ATSC DTV standards,	
	which are not defined in EIA/CEA-861B	.32
Table 26.	Timing parameters for PC standards below	
	150 MHz	.33
Table 27.	Limiting values	
Table 28.	Thermal characteristics	
Table 29.	Supplies	
Table 30.	Digital inputs and outputs	
Table 31.	Timing characteristics	
Table 32.	Abbreviations	
	Revision history	

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

Product data sheet

46 of 48

HDMI 1.3a transmitter with CEC support

22. Figures

Fig 1.	TDA9989 high-level block diagram
Fig 2.	TDA9989 Block diagram
Fig 3.	Pin configuration (TFBGA64)5
Fig 4.	Internal assignment of VP[23:0]8
Fig 5.	Pixel encoding RGB 4:4:4 external
	synchronization input (rising edge)
Fig 6.	Pixel encoding YCbCr 4: 4: 4 external
	synchronization input (rising edge)14
Fig 7.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	external synchronization input (rising edge)14
Fig 8.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	external synchronization input (rising and
	falling edge)
Fig 9.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	embedded synchronization input (rising edge)16
Fig 10.	Pixel encoding YCbCr 4 : 2 : 2 ITU656-like
	embedded synchronization input (rising and
	falling edge)
Fig 11.	Pixel encoding YCbCr 4 : 2 : 2 semi-planar
	external input synchronization (rising edge)18
Fig 12.	Pixel encoding YCbCr 4 : 2 : 2 semi-planar
	embedded synchronization input (rising edge)19
Fig 13.	I ² S-bus formats
Fig 14.	Audio input swap to I ² S-bus channel 0 or
	S/PDIF
Fig 15.	Receiver sensitivity detection
Fig 16.	Modules involved in CEC clock calibration
	process
Fig 17.	l ² C-bus access
Fig 18.	Set-up and hold time definition diagram for
- : 40	single-edge clock mode
Fig 19.	Set-up and hold time definition diagram for
- : 00	double-edge clock mode
Fig 20.	Connecting TDA9989 transmitter using
F: 04	external oscillator for CEC
Fig 21.	Connecting TDA9989 transmitter using
F: 00	external clock source
Fig 22.	Connecting TDA9989 transmitter using
F: 00	internal FRO for CEC
Fig 23.	Package outline SOT962-3 (TFBGA64)40

© NXP B.V. 2009. All rights reserved. Rev. 02 — 11 June 2009

Product data sheet

47 of 48

HDMI 1.3a transmitter with CEC support

23. Contents

1	General description		7.11.1	Features	
2	Features	. 2	7.11.2	Clock	
3	Applications	. 3	7.11.3	CEC interrupt	
4	Ordering information		7.11.4	Power-On Reset (POR)	
5	Block diagram		7.11.5	Repeater function	
6	Pinning information		7.12 7.12.1	HDMI core	
6.1	Pinning		7.12.1		
6.2	Pin description		7.12.1.1	Pixel repetition	
7			7.12.2	DDC-bus channel	
	Functional description		7.13	E-EDID	
7.1	System clock		7.13.1	E-EDID reading	
7.2 7.2.1	Video input formatter		7.13.2	HDMI and DVI receiver discrimination	
7.2.1	Description		8	I ² C-bus interface and register definitions	
7.2.2	Input format mappings		8.1	l ² C-bus protocol	
7.2.3.1	RGB 4 : 4 : 4 external synchronization	12	8.2	Memory page management	
7.2.0.1	(rising edge)	13	8.3	ID version	
7.2.3.2	YCbCr 4 : 4 : 4 external synchronization	10	8.4	Clock stretching	
	(rising edge)	13	9	Input format	
7.2.3.3	YCbCr 4 : 2 : 2 ITU656-like external		9.1	Timing parameters for video supported	
	synchronization (rising edge)	14	9.2	Timing parameters for PC standards	31
7.2.3.4	YCbCr 4:2:2 ITU656-like external		3.2	supported	32
	synchronization (rising and falling edge)	15	10	Limiting values	
7.2.3.5	YCbCr 4:2:2 ITU656-like embedded		-		
	synchronization (rising edge)	16	11	Thermal characteristics	
7.2.3.6	YCbCr 4:2:2 ITU656-like embedded		12	Static characteristics	
	synchronization (rising and falling edge)	17	13	Dynamic characteristics	
7.2.3.7	YCbCr 4 : 2 : 2 semi-planar external		14	Application information	38
7000	synchronization (rising edge)	18	14.1	Transmitter connection with external world	38
7.2.3.8	YCbCr 4 : 2 : 2 semi-planar embedded	40	15	Package outline	40
7.2.4	synchronization (rising edge)		16	Abbreviations	41
7.2.4.1	Synchronization		17	Revision history	
7.2.4.1	Data enable generator		18	Legal information	
7.3	Input and output video format		19	Data sheet status	
7.4	Upsampler		19.1	Definitions	
7.5	Color space converter		19.2	Disclaimers	
7.6	Gamut-related metadata		19.3	Licenses	
7.7	Downsampler		19.4	Trademarks	
7.8	Audio input format		20	Contact information	
7.8.1	S/PDIF		21	Tables	
7.8.2	I ² S-bus				
7.8.3	Audio port internal assignment		22	Figures	
7.9	Power management		23	Contents	48
7.10	Interrupt controller				
7.10.1	Hot plug/unplug detect				
7.10.2	Receiver sensitivity				
7.11	CEC	25			

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009. All rights reserved.

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 11 June 2009 Document identifier: TDA9989_2