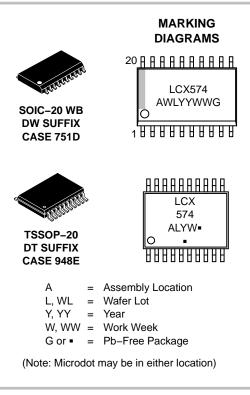
Low-Voltage CMOS Octal D-Type Flip-Flop Flow Through Pinout

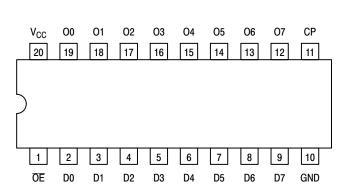
With 5 V–Tolerant Inputs and Outputs (3–State, Non–Inverting)

The MC74LCX574 is a high performance, non-inverting octal D-type flip-flop operating from a 2.3 to 3.6 V supply. High impedance TTL compatible inputs significantly reduce current loading to input drivers while TTL compatible outputs offer improved switching noise performance. A V_I specification of 5.5 V allows MC74LCX574 inputs to be safely driven from 5.0 V devices.

The MC74LCX574 consists of 8 edge-triggered flip-flops with individual D-type inputs and 3-state true outputs. The buffered clock and buffered Output Enable (\overline{OE}) are common to all flip-flops. The eight flip-flops will store the state of individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP) transition. With the \overline{OE} LOW, the contents of the eight flip-flops are available at the outputs. When the \overline{OE} is HIGH, the outputs go to the high impedance state. The \overline{OE} input level does not affect the operation of the flip-flops. The LCX574 flow through design facilitates easy PC board layout.


Features

- Designed for 2.3 to 3.6 V V_{CC} Operation
- 5 V Tolerant Interface Capability With 5 V TTL Logic
- Supports Live Insertion and Withdrawal
- I_{OFF} Specification Guarantees High Impedance When $V_{CC} = 0 V$
- LVTTL Compatible
- LVCMOS Compatible
- 24mA Balanced Output Sink and Source Capability
- Near Zero Static Supply Current in All Three Logic States (10 μA) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds 500 mA
- ESD Performance:
 - Human Body Model >2000 V
 - ◆ Machine Model >200 V
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant


ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

PIN NAMES

Pins	Function	
OE	Output Enable Input	
СР	Clock Pulse Input	
D0-D7	Data Inputs	
00–07	3–State Outputs	

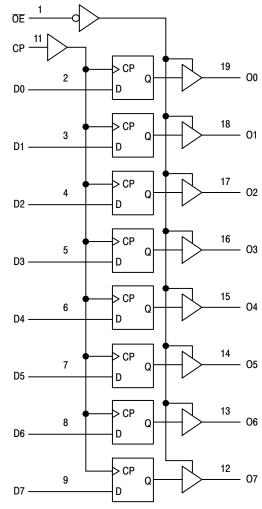


Figure 2. Logic Diagram

TRUTH TABLE

	INPUTS		INTERNAL LATCHES	OUTPUTS	
OE	СР	Dn	q	On	OPERATING MODE
L	$\uparrow \uparrow$	l h	L H	L H	Load and Read Register
L	1	Х	NC	NC	Hold and Read Register
Н	\$	Х	NC	Z	Hold and Disable Outputs
H H	$\stackrel{\uparrow}{\uparrow}$	l h	LΤ	Z Z	Load Internal Register and Disable Outputs

Н High Voltage Level =

High Voltage Level One Setup Time Prior to the Low-to-High Clock Transition h =

Low Voltage Level L =

Low Voltage Level One Setup Time Prior to the Low-to-High Clock Transition L =

No Change NC =

Х High or Low Voltage Level and Transitions are Acceptable =

Z ↑ ↓ High Impedance State =

= Low-to-High Transition

Not a Low-to-High Transition; For I_{CC} Reasons, DO NOT FLOAT Inputs =

MAXIMUM RATINGS

Symbol	Parameter	Value	Condition	Units
V _{CC}	DC Supply Voltage	-0.5 to +7.0		V
VI	DC Input Voltage	$-0.5 \le V_1 \le +7.0$		V
Vo	DC Output Voltage	$-0.5 \le V_{O} \le +7.0$	Output in 3-State	V
		$-0.5 \leq V_O \leq V_{CC} + 0.5$	(Note 1)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
		+50	$V_{O} > V_{CC}$	mA
Ι _Ο	DC Output Source/Sink Current	±50		mA
I _{CC}	DC Supply Current Per Supply Pin	±100		mA
I _{GND}	DC Ground Current Per Ground Pin	±100		mA
T _{STG}	Storage Temperature Range	-65 to +150		°C
MSL	Moisture Sensitivity		Level 1	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Output in HIGH or LOW State. I_O absolute maximum rating must be observed.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Units
V _{CC}	Supply Voltage Operating Data Retention Only	2.0 1.5	3.3 3.3	3.6 3.6	V
VI	Input Voltage	0		5.5	V
Vo	Output Voltage (HIGH or LOW State) (3–State)	0 0		V _{CC} 5.5	V
I _{OH}	HIGH Level Output Current, V_{CC} = 3.0 V – 3.6 V			-24	mA
I _{OL}	LOW Level Output Current, V_{CC} = 3.0 V – 3.6 V			24	mA
I _{OH}	HIGH Level Output Current, V_{CC} = 2.7 V – 3.0 V			-12	mA
I _{OL}	LOW Level Output Current, V_{CC} = 2.7 V – 3.0 V			12	mA
T _A	Operating Free–Air Temperature	-55		+125	°C
$\Delta t / \Delta V$	Input Transition Rise or Fall Rate, $V_{\rm IN}$ from 0.8 V to 2.0 V, $V_{\rm CC}$ = 3.0 V	0		10	ns/V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

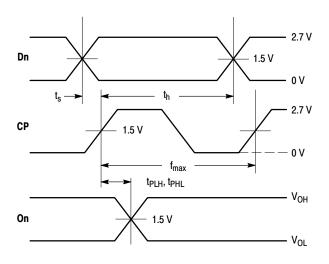
			T _A = −55°C	to +125°C	
Symbol	Characteristic	Condition	Min	Max	Units
VIH	HIGH Level Input Voltage (Note 2)	$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$	2.0		V
V _{IL}	LOW Level Input Voltage (Note 2)	$2.7 \text{ V} \leq \text{V}_{\text{CC}} \leq 3.6 \text{ V}$		0.8	V
V _{OH}	HIGH Level Output Voltage	$2.7 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}; \text{ I}_{OH} = -100 \mu\text{A}$	V _{CC} – 0.2		V
		$V_{CC} = 2.7 \text{ V}; \text{ I}_{OH} = -12 \text{ mA}$	2.2		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -18 \text{ mA}$	2.4		
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{OH} = -24 \text{ mA}$	2.2		
V _{OL}	LOW Level Output Voltage	$2.7 \text{ V} \leq \text{V}_{CC} \leq 3.6 \text{ V}; \text{ I}_{OL} = 100 \mu\text{A}$		0.2	V
		V _{CC} = 2.7 V; I _{OL} = 12 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 16 mA		0.4	
		V _{CC} = 3.0 V; I _{OL} = 24 mA		0.55	
I _{OZ}	3-State Output Current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \ \text{V}, \ V_{\text{IN}} = V_{\text{IH}} \ \text{or} \ V_{\text{IL}}, \\ V_{\text{OUT}} = 0 \ \text{to} \ 5.5 \ \text{V} \end{array}$		±5	μA
I _{OFF}	Power Off Leakage Current	V_{CC} = 0, V_{IN} = 5.5 V or V_{OUT} = 5.5 V		10	μΑ
I _{IN}	Input Leakage Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±5	μΑ
I _{CC}	Quiescent Supply Current	V_{CC} = 3.6 V, V_{IN} = 5.5 V or GND		±10	μΑ
ΔI_{CC}	Increase in I _{CC} per Input	$2.3 \leq V_{CC} \leq 3.6 \text{ V}; \text{ V}_{IH} = V_{CC} - 0.6 \text{ V}$		500	μA

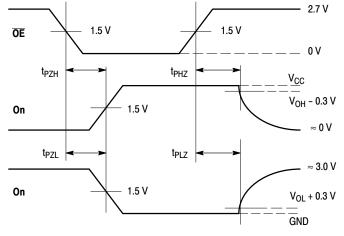
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 2. These values of V_I are used to test DC electrical characteristics only.

AC CHARACTERISTICS ($t_R = t_F = 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$; $R_L = 500 \Omega$)

				Lin	nits		
				T _A = −55°C	to +125°C		
			V _{CC} = 3.0	V to 3.6 V	V _{CC} =	: 2.7 V	
Symbol	Parameter	Waveform	Min	Max	Min	Max	Units
f _{max}	Clock Pulse Frequency	1	150				MHz
t _{PLH} t _{PHL}	Propagation Delay CP to On	1	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PZH} t _{PZL}	Output Enable Time to HIGH and LOW Levels	2	1.5 1.5	8.5 8.5	1.5 1.5	9.5 9.5	ns
t _{PHZ} t _{PLZ}	Output Disable Time from HIGH and LOW Levels	2	1.5 1.5	6.5 6.5	1.5 1.5	7.0 7.0	ns
t _s	Setup TIme, HIGH or LOW Dn to CP	1	2.5		2.5		ns
t _h	Hold TIme, HIGH or LOW Dn to CP	1	1.5		1.5		ns
t _w	CP Pulse Width, HIGH or LOW	3	3.3		3.3		ns
t _{OSHL} t _{OSLH}	Output-to-Output Skew (Note 3)			1.0 1.0			ns

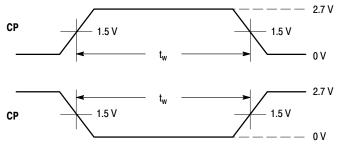
Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. 3. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (toSHL) or LOW-to-HIGH (toSLH); parameter guaranteed by design.

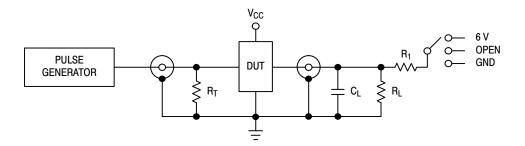

DYNAMIC SWITCHING CHARACTERISTICS


			T,	_A = +25°	С	
Symbol	Characteristic	Condition	Min	Тур	Max	Units
V _{OLP}	Dynamic LOW Peak Voltage (Note 4)	V_{CC} = 3.3 V, C_{L} = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V
V _{OLV}	Dynamic LOW Valley Voltage (Note 4)	V_{CC} = 3.3 V, C_L = 50 pF, V_{IH} = 3.3 V, V_{IL} = 0 V		0.8		V

4. Number of outputs defined as "n". Measured with "n–1" outputs switching from HIGH-to-LOW or LOW-to-HIGH. The remaining output is measured in the LOW state.

CAPACITIVE CHARACTERISTICS


Symbol	Parameter	Condition	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = 3.3 \text{ V}, \text{ V}_{I} = 0 \text{ V or } \text{V}_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3 \text{ V}, \text{ V}_{I} = 0 \text{ V or } \text{V}_{CC}$	8	pF
C _{PD}	Power Dissipation Capacitance	10 MHz, V _{CC} = 3.3 V, V _I = 0 V or V _{CC}	25	pF


WAVEFORM 1 – PROPAGATION DELAYS, SETUP AND HOLD TIMES $t_R = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns

WAVEFORM 2 – OUTPUT ENABLE AND DISABLE TIMES $t_B = t_F = 2.5$ ns, 10% to 90%; f = 1 MHz; $t_W = 500$ ns

 $\label{eq:WAVEFORM 3 - PULSE WIDTH} \begin{array}{l} \text{WAVEFORM 3 - PULSE WIDTH} \\ t_R = t_F = 2.5 \text{ ns (or fast as required) from 10% to 90%;} \\ \text{Output requirements: } V_{OL} \leq 0.8 \text{ V}, V_{OH} \geq 2.0 \text{ V} \end{array}$

Figure 3. AC Waveforms

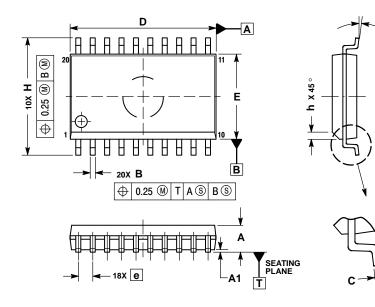
Test	Switch
t _{PLH} , t _{PHL}	Open
t _{PZL} , t _{PLZ}	6 V
Open Collector/Drain tPLH and tPHL	6 V
t _{PZH} , t _{PHZ}	GND

 $\begin{array}{l} C_L = 50 \text{ pF or equivalent (Includes jig and probe capacitance)} \\ R_L = R_1 = 500 \ \Omega \text{ or equivalent} \\ R_T = Z_{OUT} \text{ of pulse generator (typically 50 } \Omega) \end{array}$

Figure 4. Test Circuit

ORDERING INFORMATION

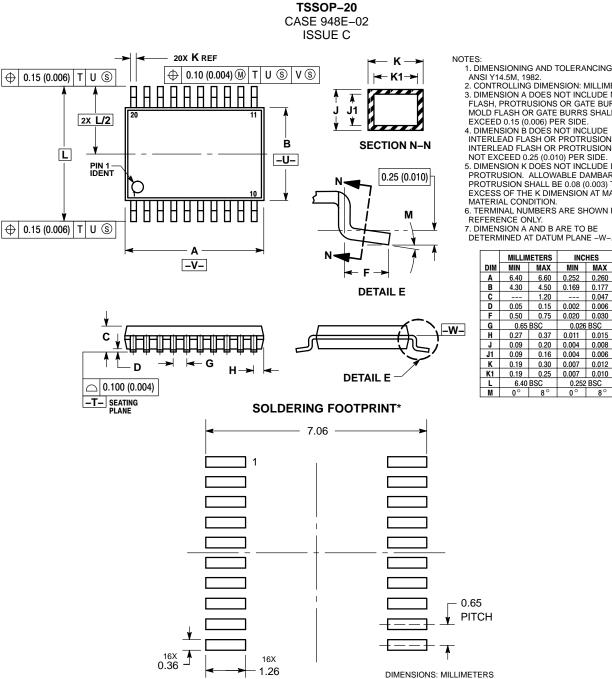
Device	Package	Shipping [†]
MC74LCX574DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74LCX574DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel
MC74LCX574DTR2G	TSSOP-20 (Pb-Free)	2500 / Tape & Reel
NLV74LCX574DTR2G*	TSSOP-20 (Pb-Free)	2500 / Tape & Reel

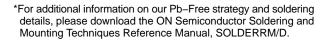

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

PACKAGE DIMENSIONS

SOIC-20 WB CASE 751D-05 ISSUE G


6



- NOTES:
 DIMENSIONS ARE IN MILLIMETERS.
 INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
 DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.35	2.65	
A1	0.10	0.25	
В	0.35	0.49	
C	0.23	0.32	
D	12.65	12.95	
Е	7.40	7.60	
е	1.27	BSC	
Н	10.05	10.55	
h	0.25	0.75	
L	0.50	0.90	
θ	0 °	7 °	

PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER

DIMENSIONING AND DOLERANCING PER ANSI Y145M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEPTED 45 (2020) DED CIDS.

KOLD FLASH OK GATE DURKS SHALL NOT EXCEED LOTS (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
 INTERLEAD FLASH OR PROTRUSION SHALL

NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION.

INCHES

 MAX
 MIN
 MAX

 6.60
 0.252
 0.260

6. TERMINAL NUMBERS ARE SHOWN FOR

REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-

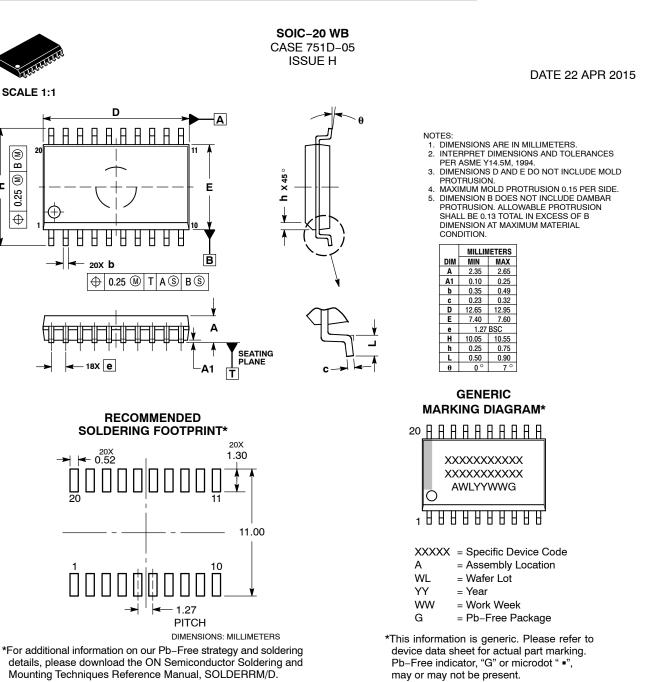
MILLIMETERS

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products herein. SCILLC may product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC as negaring the design or manufacture of the part. SCILLC user and injury or death associated wi

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

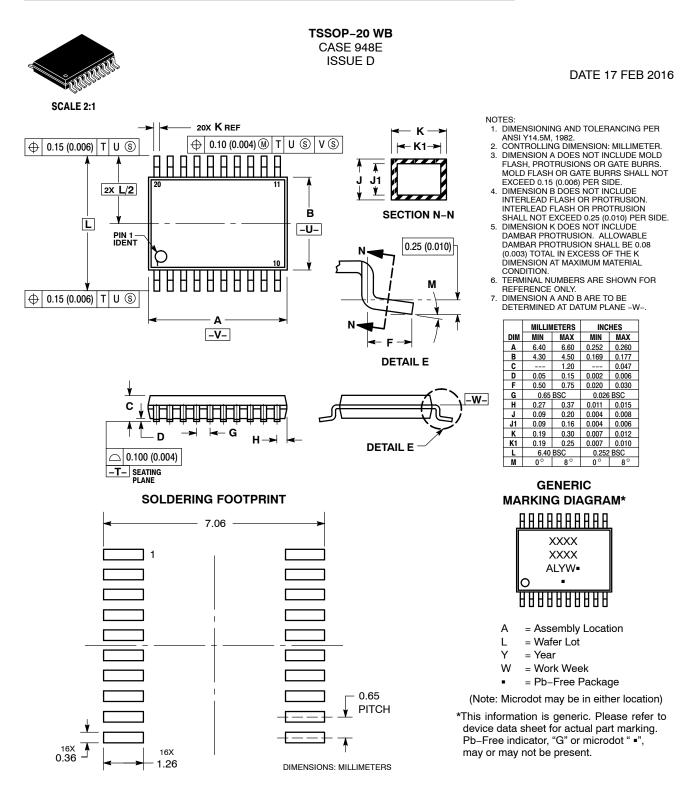
Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:


Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

т



 DOCUMENT NUMBER:
 98ASB42343B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 SOIC-20 WB
 PAGE 1 OF 1

 ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

DOCUMENT NUMBER:	98ASH70169A	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.	
DESCRIPTION:	TSSOP-20 WB		PAGE 1 OF 1
ON Semiconductor and I are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.			

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the right of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond