2.5 V/3.3 V ECL DUAL Differential 2:1 Multiplexer

NB100LVEP56

Description

The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or differential data signals. The device features both individual and common select inputs to address both data path and random logic applications. Common and individual selects can accept both LVECL and LVCMOS input voltage levels. Multiple V_{BB} pins are provided.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input operation, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a $0.01 \mu \mathrm{~F}$ capacitor and limit current sourcing or sinking to 0.5 mA . When not used, V_{BB} should be left open.

Features

- Maximum Input Clock Frequency $>2.5 \mathrm{GHz}$ Typical
- Maximum Input Data Rate $>2.5 \mathrm{~Gb} / \mathrm{s}$ Typical
- 525 ps Typical Propagation Delays
- Low Profile QFN Package
- PECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.8 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- NECL Mode Operating Range:
$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.8 V
- Separate, Common Select, and Individual Select
(Compatible with ECL and CMOS Input Voltage Levels)
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- Multiple V_{BB} Outputs
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant

?
 ON Semiconductor ${ }^{\circledR}$

www.onsemi.com

QFN24
MN SUFFIX CASE 485L

MARKING DIAGRAM*

A	$=$ Assembly Location
L	$=$ Wafer Lot
Y	$=$ Year
W	$=$ Work Week
-	= Pb-Free Package

(Note: Microdot may be in either location)
*For additional marking information, refer to Application Note AND8002/D.

ORDERING INFORMATION

Device	Package	Shipping †
NB100LVEP56MNG	QFN24 (Pb-Free)	92 Units / Tube
NB100LVEP56MNR2G	QFN24 (Pb-Free)	$3000 /$ Tape \& Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN FUNCTION DESCRIPTION

Pin No.	Name	1/0	Default State	Description
QFN				
$\begin{gathered} 3,9,18,19, \\ 20 \end{gathered}$	V_{CC}	-	-	Positive Supply Voltage. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
15,24	V_{EE}	-	-	Negative Supply Voltage. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
6,12	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{BBO},} \\ & \mathrm{~V}_{\mathrm{BB} 1} \end{aligned}$	-	-	ECL Reference Voltage Output
4	D0a	ECL Input	Low	Noninverted Differential Data a Input to MUX 0. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
5	D0a	ECL Input	High	Inverted Differential Data a Input to MUX 0. Internal $75 \mathrm{k} \Omega$ to V_{EE} and $37 \mathrm{k} \Omega$ to V_{Cc}.
7	DOb	ECL Input	Low	Noninverted Differential Data b Input to MUX 0 . Internal $75 \mathrm{k} \Omega$ to V_{EE}.
8	D0b	ECL Input	High	Inverted Differential Data b Input to MUX 0. Internal $75 \mathrm{k} \Omega$ to V_{EE} and $37 \mathrm{k} \Omega$ to V_{Cc}.
10	D1a	ECL Input	Low	Noninverted Differential Data a Input to MUX 1. Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
11	$\overline{\text { D1a }}$	ECL Input	High	Inverted Differential Data a Input to MUX 1. Internal $75 \mathrm{k} \Omega$ to V_{EE} and $37 \mathrm{k} \Omega$ to V_{Cc}.
13	D1b	ECL Input	Low	Noninverted Differential Data b Input to MUX 1. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
14	$\overline{\text { D1b }}$	ECL Input	High	Inverted Differential Data b Input to MUX 1. Internal $75 \mathrm{k} \Omega$ to V_{EE} and $37 \mathrm{k} \Omega$ to V_{Cc}.
2	Q0	ECL Output	-	Noninverted Differential Output MUX 0 . Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=$ $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
1	Q0	ECL Output	-	Inverted Differential Output MUX 0. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=$ $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
17	Q1	ECL Output	-	Noninverted Differential Output MUX 1. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=$ $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
16	Q1	ECL Output	-	Inverted Differential Output MUX 1. Typically Terminated with 50Ω to $\mathrm{V}_{\mathrm{TT}}=$ $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
23	SELO	ECL, CMOS Input	Low	Noninverted Differential Select Input to MUX 0 . Internal $75 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {EE }}$.
22	COM_SEL	ECL, CMOS Input	Low	Noninverted Differential Common Select Input to Both MUX. Internal $75 \mathrm{k} \Omega$ to $V_{E E}$.
21	SEL1	ECL, CMOS Input	Low	Noninverted Differential Select Input to MUX 1. Internal $75 \mathrm{k} \Omega$ to V_{EE}.
-	EP	-		Exposed Pad. The exposed pad (EP) on the package bottom must be attached to a heat-sinking conduit. The exposed pad may only be electrically connected to V_{EE}.

NB100LVEP56

Figure 2. QFN-24 Lead Pinout (Top View)

Table 3. ATTRIBUTES

Characteristics	Value		
Internal Input Pulldown Resistor (R1)	$75 \mathrm{k} \Omega$		
Internal Input Pullup Resistor (R2)	$37 \mathrm{k} \Omega$		
$\begin{array}{l}\text { ESD Protection } \\ \text { Human Body Model } \\ \text { Machine Model } \\ \text { Charged Device Model }\end{array}$	$\begin{array}{c}>2 \mathrm{kV} \\ >150 \mathrm{~V} \\ >2 \mathrm{kV}\end{array}$		
$\begin{array}{l}\text { Moisture Sensitivity (Note 1) } \\ \text { QFN-24 }\end{array}$	$\begin{array}{c}\text { Pb-Free Pkg } \\ \text { Level 1 }\end{array}$		
$\begin{array}{l}\text { Flammability Rating } \\ \text { Oxygen Index: 28 to 34 }\end{array}$	$\mathrm{UL} 94 \mathrm{~V}-0$ @ 0.125 in	$]$	354 Devices
:---			
Transistor Count			
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test			

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V_{CC}	Positive Mode Power Supply	$\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$		6	V
V_{EE}	Negative Mode Power Supply	$\mathrm{V}_{\text {CC }}=0 \mathrm{~V}$		-6	V
V_{1}	Positive Mode Input Voltage Negative Mode Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{I}} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} \hline 6 \\ -6 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {out }}$	Output Current	Continuous Surge		$\begin{gathered} 50 \\ 100 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
$\mathrm{I}_{\text {BB }}$	V_{BB} Sink/Source			± 0.5	mA
T_{A}	Operating Temperature Range			-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range			-65 to +150	${ }^{\circ} \mathrm{C}$
θ_{JA}	Thermal Resistance (Junction-to-Ambient) JEDEC 51-6 (2S2P-Multi Layer Test Board) with Filled Thermal Vias	$\begin{aligned} & 0 \text { lfpm } \\ & 500 \mathrm{lfpm} \end{aligned}$	$\begin{aligned} & \text { QFN-24 } \\ & \text { QFN-24 } \end{aligned}$	$\begin{aligned} & \hline 37 \\ & 32 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} / \mathrm{W} \\ & { }^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
$\theta_{\text {Jc }}$	Thermal Resistance (Junction-to-Case)	Standard Board	QFN-24	11	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {sol }}$	Wave Solder (Pb-Free)			265	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. DC CHARACTERISTICS, PECL $V_{C C}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V_{OH}	Output HIGH Voltage (Note 3)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 3)	555	775	900	555	775	900	555	775	900	mV
V_{IH}	Input HIGH Voltage (SELO, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) (Note 4)	$\begin{aligned} & 1335 \\ & 1335 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 1620 \end{aligned}$	$\begin{aligned} & 1335 \\ & 1335 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & 1620 \end{aligned}$	$\begin{aligned} & 1275 \\ & 1275 \end{aligned}$		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & 1620 \end{aligned}$	mV
V_{IL}	Input LOW Voltage (SELO, SEL1, COM_SEL) Input LOW Voltage (D Inputs) (Note 4)	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & 555 \end{aligned}$		$\begin{aligned} & 875 \\ & 875 \end{aligned}$	$\begin{aligned} & V_{\text {EE }} \\ & 555 \end{aligned}$		$\begin{aligned} & 875 \\ & 875 \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & 555 \end{aligned}$		$\begin{aligned} & 875 \\ & 875 \end{aligned}$	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (@V1H)			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@VIL)D SEL	$\begin{array}{\|c\|} \hline 0.5 \\ -150 \\ -150 \end{array}$			$\begin{gathered} \hline 0.5 \\ -150 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
2. Input and output parameters vary $1: 1$ with V_{CC}. V_{EE} can vary -0.125 V to +1.3 V .
3. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
4. Do not use V_{BB} at $\mathrm{V}_{\mathrm{CC}}<3.0 \mathrm{~V}$.
5. $\mathrm{V}_{\mathrm{IHCMR}}$ min varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{IHCMR}}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\mathrm{IHCMR}}$ range is referenced to the most positive side of the differential input signal.

Table 6. DC CHARACTERISTICS, PECL $V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 6)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\mathrm{I}_{\text {EE }}$	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V_{OH}	Output HIGH Voltage (Note 7)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V_{OL}	Output LOW Voltage (Note 7)	1355	1575	1700	1355	1575	1700	1355	1575	1700	mV
V_{IH}	Input HIGH Voltage (SELO, SEL1, COM_SEL) Input HIGH Voltage (D Inputs)	$\begin{array}{\|l\|} \hline 2135 \\ 2135 \end{array}$		$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}} \\ 2420 \end{array}$	$\begin{array}{\|l\|} \hline 2135 \\ 2135 \end{array}$		$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{CC}} \\ 2420 \end{array}$	$\begin{aligned} & 2135 \\ & 2135 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & 2420 \end{aligned}$	mV
V_{IL}	Input LOW Voltage (SELO, SEL1, COM_SEL) Input LOW Voltage (D Inputs)	$\begin{aligned} & \mathrm{V}_{\mathrm{EEE}} \\ & 1355 \end{aligned}$		$\begin{aligned} & 1675 \\ & 1675 \end{aligned}$	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{EE}} \\ 1355 \end{array}$		$\begin{array}{l\|} \hline 1675 \\ 1675 \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{EE}} \\ & 1355 \end{aligned}$		$\begin{aligned} & 1675 \\ & 1675 \end{aligned}$	mV
V_{BB}	Output Reference Voltage (Note 8)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
$\mathrm{V}_{\text {IHCMR }}$	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	1.2		3.3	1.2		3.3	1.2		3.3	V
IIH	Input HIGH Current (@V1H)			150			150			150	$\mu \mathrm{A}$
IIL	Input LOW Current (@VIL)$\frac{D}{D}$ 	$\begin{array}{\|c\|} \hline 0.5 \\ -150 \\ -150 \end{array}$			$\begin{array}{\|c\|} \hline 0.5 \\ -150 \\ -150 \end{array}$			$\begin{gathered} \hline 0.5 \\ -150 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
6. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}} . \mathrm{V}_{\mathrm{EE}}$ can vary +0.5 V to -0.3 V .
7. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
8. Single-Ended input operation is limited to $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V}$ in PECL mode.
9. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 7. DC CHARACTERISTICS, NECL $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-3.8 \mathrm{~V}$ to -2.375 V (Note 10)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
IEE	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V_{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (Note 11)	-1945	-1725	-1600	-1945	-1725	-1600	-1945	-1725	-1600	mV
V_{IH}	Input HIGH Voltage (SELO, SEL1, COM_SEL) Input HIGH Voltage (D Inputs)	$\begin{aligned} & -1165 \\ & -1165 \end{aligned}$		$\begin{aligned} & V_{C C} \\ & -880 \end{aligned}$	$\begin{aligned} & -1165 \\ & -1165 \end{aligned}$		$\begin{aligned} & V_{C C} \\ & -880 \end{aligned}$	$\begin{aligned} & -1165 \\ & -1165 \end{aligned}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -880 \end{aligned}$	mV
VIL	Input LOW Voltage (SELO, SEL1, COM SEL) Input LOW Voltage (D Inputs)	$\begin{aligned} & V_{\text {EEE }} \\ & -1945 \end{aligned}$		$\begin{aligned} & -1600 \\ & -1600 \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{EEE}} \\ -1945 \end{gathered}$		$\begin{aligned} & -1600 \\ & -1600 \end{aligned}$	$\begin{gathered} V_{\mathrm{EEE}} \\ -1945 \end{gathered}$		$\begin{aligned} & -1600 \\ & -1600 \end{aligned}$	mV
V_{BB}	Output Reference Voltage (Note 12)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V_{EE}	+1.2	0.0	$\mathrm{V}_{\text {EE }}$	+1.2	0.0	V_{EE}		0.0	V
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (@V1/ ${ }_{\text {I }}$)			150			150			150	$\mu \mathrm{A}$
ILL	Input LOW Current (@VIL)D SEL	$\begin{gathered} \hline 0.5 \\ -150 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \\ -150 \end{gathered}$			$\begin{gathered} \hline 0.5 \\ -150 \\ -150 \end{gathered}$			$\mu \mathrm{A}$

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 Ifpm.
10. Input and output parameters vary $1: 1$ with V_{CC}.
11. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.
12. Single-Ended input operation is limited to V_{EE} from -3.0 V to -5.5 V in NECL mode.
13. $\mathrm{V}_{\text {IHCMR }}$ min varies $1: 1$ with $\mathrm{V}_{\text {EE }}, \mathrm{V}_{\text {IHCMR }}$ max varies $1: 1$ with V_{CC}. The $\mathrm{V}_{\text {IHCMR }}$ range is referenced to the most positive side of the differential input signal.

Table 8. AC CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-2.375 \mathrm{~V}$ to -3.8 V or $\mathrm{V}_{\mathrm{CC}}=2.375 \mathrm{~V}$ to 3.8 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 14)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
V ${ }_{\text {OUTPP }}$	Output Voltage Amplitude $f_{\text {in }} \leq 1 \mathrm{GHz}$ (See Figure 3) $f_{\text {in }}=2 \mathrm{GHz}$ $\mathrm{fin}_{\text {in }}=2.5 \mathrm{GHz}$	$\begin{aligned} & 525 \\ & 500 \\ & 400 \end{aligned}$	$\begin{aligned} & \hline 700 \\ & 600 \\ & 500 \end{aligned}$		$\begin{aligned} & 550 \\ & 500 \\ & 350 \end{aligned}$	$\begin{aligned} & \hline 700 \\ & 600 \\ & 450 \end{aligned}$		$\begin{aligned} & 500 \\ & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 700 \\ & 500 \\ & 300 \end{aligned}$		mV
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay to Output Differential S to Q, \bar{Q} SEL to $Q, \frac{Q}{Q}$ COM_SEL to Q, Q	$\begin{aligned} & 375 \\ & 575 \\ & 550 \end{aligned}$	$\begin{aligned} & 500 \\ & 775 \\ & 750 \end{aligned}$	$\begin{aligned} & 625 \\ & 975 \\ & 950 \end{aligned}$	$\begin{aligned} & 400 \\ & 625 \\ & 600 \end{aligned}$	$\begin{aligned} & 525 \\ & 825 \\ & 800 \end{aligned}$	$\begin{aligned} & 650 \\ & 1025 \\ & 1000 \end{aligned}$	$\begin{aligned} & 450 \\ & 700 \\ & 700 \end{aligned}$	$\begin{aligned} & 575 \\ & 900 \\ & 900 \end{aligned}$	$\begin{gathered} 700 \\ 1100 \\ 1100 \end{gathered}$	ps
${ }_{\text {tskew }}$	Pulse Skew (Note 15) Within Device Input Skew (Note 16) Within Device Output Skew (Note 17) Device-to-Device Skew (Note 18)		$\begin{gathered} 10 \\ 5 \\ 15 \\ 50 \end{gathered}$	$\begin{gathered} \hline 50 \\ 30 \\ 50 \\ 200 \end{gathered}$		10 5 15 50			10 5 15 50	$\begin{gathered} \hline 50 \\ 30 \\ 50 \\ 200 \end{gathered}$	ps
$\mathrm{t}_{\text {IITTER }}$	RMS Random Clock Jitter (Note 19) $@ \leq 1.0 \mathrm{GHz}$ @ $\leq 1.5 \mathrm{GHz}$ @ $\leq 2.0 \mathrm{GHz}$ @ $\leq 2.5 \mathrm{GHz}$ Peak-to-Peak Data Dependent Jitter (Note 20) @ 0.5 GHz @ 1.25 GHz @ 2.488 GHz		$\begin{gathered} 0.269 \\ 0.306 \\ 0.250 \\ 0.339 \\ 4.1 \\ 32.2 \\ 30.8 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.4 \\ & 0.8 \\ & 16 \\ & 80 \\ & 66 \end{aligned}$		$\begin{gathered} 0.307 \\ 0.303 \\ 0.305 \\ 0.895 \\ \\ 4.6 \\ 22.6 \\ 27.2 \end{gathered}$	$\begin{aligned} & 0.4 \\ & 0.4 \\ & 0.5 \\ & 2.0 \\ & \\ & 15 \\ & 63 \\ & 56 \end{aligned}$		$\begin{gathered} 0.371 \\ 0.391 \\ 0.722 \\ 2.443 \\ \\ 4.4 \\ 22 \\ 24.4 \end{gathered}$	$\begin{aligned} & 0.5 \\ & 0.6 \\ & 1.2 \\ & 7.7 \\ & 16 \\ & 53 \\ & 54 \end{aligned}$	ps
$\mathrm{V}_{\text {INPP }}$	Input Voltage Swing (Differential Configuration) (Note 21)	150	800	1200	150	800	1200	150	800	1200	mV
$\begin{aligned} & \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Output Rise/Fall Times @ 50 MHz Q,Q $(20 \%-80 \%)$	60	110	150	60	120	170	90	140	230	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.
14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$. Input edge rates $150 \mathrm{ps}(20 \%-80 \%)$. 15. Pulse Skew |tpLH - tpHL|
16. Worst case difference between D0a and DOb (or between D1a or D1b), when both output come from same input.
17. Worst case difference between Q0 and Q1 outputs.
18. Skew is measured between outputs under identical transitions.
19. Additive RMS jitter with 50% Duty Cycle Clock Signal.
20. Additive Peak-to-Peak jitter with input NRZ data at PRBS $2^{31}-1$.
21. Input voltage swing is a single-ended measurement operating in differential mode.

Figure 3. Output Voltage Amplitude ($\mathrm{V}_{\text {OUTPP }}$) vs.
Input Frequency (f_{in}) at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}, 25^{\circ} \mathrm{C}$

Figure 4. AC Reference Measurement

Figure 5. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D - Termination of ECL Logic Devices.)
Resource Reference of Application Notes
AN1405/D - ECL Clock Distribution Techniques
AN1406/D - Designing with PECL (ECL at +5.0 V)
AN1503/D - ECLinPS ${ }^{m m}$ I/O SPiCE Modeling Kit
AN1504/D - Metastability and the ECLinPS Family
AN1568/D - Interfacing Between LVDS and ECL
AN1672/D - The ECL Translator Guide
AND8001/D - Odd Number Counters Design
AND8002/D - Marking and Date Codes
AND8020/D - Termination of ECL Logic Devices
AND8066/D - Interfacing with ECLinPS
AND8090/D - AC Characteristics of ECL Devices

QFN24, 4x4, 0.5P
CASE 485L
ISSUE B
DATE 05 JUN 2012
SCALE 2:1

DETAIL A
alternate CONSTRUCTIONS

DETAIL B ALTERNATE TERMINAL CONSTRUCTIONS
notes:

1. Dimensioning and tolerancing per asme Y14.5M, 1994
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLES TO PLATED TERMINAL

AND IS MEASURED BETWEEN 0.25 AND 0.30 Mn FROM THE TERMINALTIP.
4. COPLANARITY APPLES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

DIM	MILLIMETERS	
	MIN	MAX
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.20	
D	0.30	
D2	2.70	
E	2.90	
E2	4.00	
		BSC
e	0.50	
L	0.30	2.90
L1	0.05	0.50

GENERIC
 MARKING DIAGRAM*

${ }^{0}$ XXXXX
XXXXX
ALYW.

-

XXXXX = Specific Device Code
A = Assembly Location
L = Wafer Lot
Y = Year
W = Work Week

- $\quad=$ Pb-Free Package
(Note: Microdot may be in either location)
*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, " G " or microdot " $\mathrm{\bullet}$ ", may or may not be present.

| DOCUMENT NUMBER: | 98AON11783D | Electronic versions are uncontrolled except when accessed directly from the Document Repository.
 Printed versions are uncontroled except when stamped "CONTROLLED COPY" in red. |
| ---: | :--- | :--- | :--- |
| DESCRIPTION: | QFN24, 4X4, 0.5P | PAGE 1 OF 1 |

ON Semiconductor and (ON) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.
onsemi, OnSeMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com
onsemi Website: www.onsemi.com

