2.5 V/3.3 V ECL DUAL Differential 2:1 Multiplexer

NB100LVEP56

Description

The NB100LVEP56 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or differential data signals. The device features both individual and common select inputs to address both data path and random logic applications. Common and individual selects can accept both LVECL and LVCMOS input voltage levels. Multiple V_{BB} pins are provided.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single–ended input operation, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Features

- Maximum Input Clock Frequency > 2.5 GHz Typical
- Maximum Input Data Rate > 2.5 Gb/s Typical
- 525 ps Typical Propagation Delays
- Low Profile QFN Package
- PECL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- NECL Mode Operating Range: V_{CC} = 0 V with V_{EE} = -2.375 V to -3.8 V
- Separate, Common Select, and Individual Select (Compatible with ECL and CMOS Input Voltage Levels)
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- Multiple V_{BB} Outputs
- These Devices are Pb-Free and are RoHS Compliant

ON Semiconductor®

www.onsemi.com

QFN24 MN SUFFIX CASE 485L

= Assembly	Location
------------	----------

= Wafer Lot

Α

L

Υ

w

= Year

= Work Week

= Pb-Free Package

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note <u>AND8002/D</u>.

ORDERING INFORMATION

Device	Package	Shipping [†]
NB100LVEP56MNG	QFN24 (Pb-Free)	92 Units / Tube
NB100LVEP56MNR2G	QFN24 (Pb-Free)	3000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

Table 1. PIN FUNCTION DESCRIPTION

Pin No.			Default	
QFN	Name	I/O	State	Description
3,9,18,19, 20	V _{CC}	_	-	Positive Supply Voltage. All VCC Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
15,24	V _{EE}	_	-	Negative Supply Voltage. All VEE Pins must be Externally Connected to Power Supply to Guarantee Proper Operation.
6,12	V _{BB0} , V _{BB1}	_	-	ECL Reference Voltage Output
4	D0a	ECL Input	Low	Noninverted Differential Data a Input to MUX 0. Internal 75 $k\Omega$ to $V_{\text{EE}}.$
5	D0a	ECL Input	High	Inverted Differential Data a Input to MUX 0. Internal 75 $k\Omega$ to V_{EE} and 37 $k\Omega$ to $V_{CC}.$
7	D0b	ECL Input	Low	Noninverted Differential Data b Input to MUX 0. Internal 75 k Ω to V_{EE}.
8	D0b	ECL Input	High	Inverted Differential Data b Input to MUX 0. Internal 75 k Ω to V_{EE} and 37 k Ω to $V_{CC}.$
10	D1a	ECL Input	Low	Noninverted Differential Data a Input to MUX 1. Internal 75 k Ω to $V_{\text{EE}}.$
11	D1a	ECL Input	High	Inverted Differential Data a Input to MUX 1. Internal 75 k Ω to V_{EE} and 37 k Ω to $V_{CC}.$
13	D1b	ECL Input	Low	Noninverted Differential Data b Input to MUX 1. Internal 75 $k\Omega$ to $V_{\mbox{\scriptsize EE}}.$
14	D1b	ECL Input	High	Inverted Differential Data b Input to MUX 1. Internal 75 k Ω to V_{EE} and 37 k Ω to $V_{CC}.$
2	Q0	ECL Output	-	Noninverted Differential Output MUX 0. Typically Terminated with 50 Ω to V_TT = V_{CC} – 2.0 V.
1	QO	ECL Output	-	Inverted Differential Output MUX 0. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2.0 V.
17	Q1	ECL Output	-	Noninverted Differential Output MUX 1. Typically Terminated with 50 Ω to V_TT = V_{CC} – 2.0 V.
16	Q1	ECL Output	-	Inverted Differential Output MUX 1. Typically Terminated with 50 Ω to V_{TT} = V_{CC} – 2.0 V.
23	SEL0	ECL, CMOS Input	Low	Noninverted Differential Select Input to MUX 0. Internal 75 $k\Omega$ to $V_{\mbox{\scriptsize EE}}.$
22	COM_SEL	ECL, CMOS Input	Low	Noninverted Differential Common Select Input to Both MUX. Internal 75 $k\Omega$ to $V_{\text{EE}}.$
21	SEL1	ECL, CMOS Input	Low	Noninverted Differential Select Input to MUX 1. Internal 75 k Ω to $V_{\mbox{\scriptsize EE}}.$
-	EP	_		Exposed Pad. The exposed pad (EP) on the package bottom must be attached to a heat-sinking conduit. The exposed pad may only be electrically connected to $V_{\text{EE}}.$

COM SEL

Н

L

L

L

L

Q0, Q0

а

b

b

а

а

Q1, Q1

а

b

а

а

b

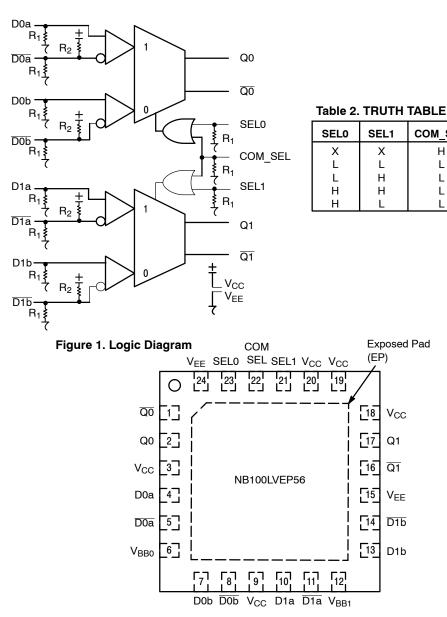


Figure 2. QFN-24 Lead Pinout (Top View)

Table 3. ATTRIBUTES

Value
75 kΩ
37 kΩ
> 2 kV > 150 V > 2 kV
Pb-Free Pkg Level 1
UL 94 V–0 @ 0.125 in
354 Devices
•

1. For additional information, see Application Note AND8003/D.

Table 4. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	Positive Mode Power Supply	V _{EE} = 0 V		6	V
V_{EE}	Negative Mode Power Supply	$V_{CC} = 0 V$		-6	V
VI	Positive Mode Input Voltage Negative Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$	6 -6	V V
I _{out}	Output Current	Continuous Surge		50 100	mA mA
I _{BB}	V _{BB} Sink/Source			±0.5	mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient) JEDEC 51-6 (2S2P-Multi Layer Test Board) with Filled Thermal Vias	0 lfpm 500 lfpm	QFN-24 QFN-24	37 32	°C/W °C/W
θ_{JC}	Thermal Resistance (Junction-to-Case)	Standard Board	QFN-24	11	°C/W
T _{sol}	Wave Solder (Pb-Free)			265	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 5. DC CHARACTERISTICS, PECL V_{CC} = 2.5 V, V_{EE} = 0 V (Note 2)

		-40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V _{OH}	Output HIGH Voltage (Note 3)	1355	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 3)	555	775	900	555	775	900	555	775	900	mV
V _{IH}	Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs) (Note 4)	1335 1335		V _{CC} 1620	1335 1335		V _{CC} 1620	1275 1275		V _{CC} 1620	mV
V _{IL}	Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs) (Note 4)	V _{EE} 555		875 875	V _{EE} 555		875 875	V _{EE} 555		875 875	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)	1.2		2.5	1.2		2.5	1.2		2.5	V
Ι _{ΙΗ}	Input HIGH Current (@V _{IH})			150			150			150	μA
Ι _{ΙL}	Input LOW Current (@V _{IL}) D D SEL	0.5 -150 -150			0.5 -150 -150			0.5 -150 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

Input and output parameters vary 1:1 with V_{CC}. V_{EE} can vary -0.125 V to +1.3 V.
All loading with 50 Ω to V_{CC} - 2.0 V.
Do not use V_{BB} at V_{CC} < 3.0 V.
V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

			-40°C		25°C						
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I_{EE}	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V _{OH}	Output HIGH Voltage (Note 7)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 7)	1355	1575	1700	1355	1575	1700	1355	1575	1700	mV
V _{IH}	Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs)	2135 2135		V _{CC} 2420	2135 2135		V _{CC} 2420	2135 2135		V _{CC} 2420	mV
V _{IL}	Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs)	V _{EE} 1355		1675 1675	V _{EE} 1355		1675 1675	V _{EE} 1355		1675 1675	mV
V_{BB}	Output Reference Voltage (Note 8)	1775	1875	1975	1775	1875	1975	1775	1875	1975	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current (@V _{IH})			150			150			150	μA
Ι _{ΙL}	Input LOW Current (@V _{IL}) D D SEL	0.5 -150 -150			0.5 -150 -150			0.5 -150 -150			μΑ

Table 6. DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 6)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.5 V to -0.3 V.

7. All loading with 50 Ω to V_{CC} – 2.0 V.

8. Single–Ended input operation is limited to V_{CC} \geq 3.0 V in PECL mode.

9. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

		-40°C				25°C					
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Negative Power Supply Current	35	45	55	35	45	55	35	48	58	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 11)	-1945	-1725	-1600	-1945	-1725	-1600	-1945	-1725	-1600	mV
V _{IH}	Input HIGH Voltage (SEL0, SEL1, COM_SEL) Input HIGH Voltage (D Inputs)			V _{CC} -880	-1165 -1165		V _{CC} -880	-1165 -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage (SEL0, SEL1, COM_SEL) Input LOW Voltage (D Inputs)	V _{EE} -1945		-1600 -1600	V _{EE} -1945		-1600 -1600	V _{EE} -1945		-1600 -1600	mV
V _{BB}	Output Reference Voltage (Note 12)	-1525	-1425	-1325	-1525	-1425	-1325	-1525	-1425	-1325	mV
VIHCMR	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE} +1.2		0.0	V
I _{IH}	Input HIGH Current (@VIH)			150			150			150	μA
IIL	Input LOW Current (@V _{IL}) D D SEL	0.5 -150 -150			0.5 -150 -150			0.5 -150 -150			μΑ

Table 7. DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = –3.8 V to –2.375 V (Note 10)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

10. Input and output parameters vary 1:1 with V_{CC} .

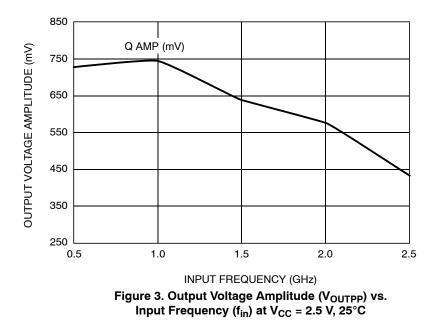
11. All loading with 50 Ω to V_{CC} – 2.0 V. 12. Single–Ended input operation is limited to V_{EE} from –3.0 V to –5.5 V in NECL mode.

13. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

		–40°C 25°C									
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
V _{OUTPP}		525 500 400	700 600 500		550 500 350	700 600 450		500 400 200	700 500 300		mV
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential D to Q, Q SEL to Q, Q COM_SEL to Q, Q	375 575 550	500 775 750	625 975 950	400 625 600	525 825 800	650 1025 1000	450 700 700	575 900 900	700 1100 1100	ps
t _{Skew}	Pulse Skew (Note 15) Within Device Input Skew (Note 16) Within Device Output Skew (Note 17) Device-to-Device Skew (Note 18)		10 5 15 50	50 30 50 200		10 5 15 50			10 5 15 50	50 30 50 200	ps
^t JITTER	RMS Random Clock Jitter (Note 19) @ ≤ 1.0 GHz @ ≤ 1.5 GHz @ ≤ 2.0 GHz @ ≤ 2.5 GHz Peak-to-Peak Data Dependent Jitter (Note 20) @ 0.5 GHz @ 1.25 GHz @ 2.488 GHz		0.269 0.306 0.250 0.339 4.1 32.2 30.8	0.4 0.4 0.4 0.8 16 80 66		0.307 0.303 0.305 0.895 4.6 22.6 27.2	0.4 0.4 0.5 2.0 15 63 56		0.371 0.391 0.722 2.443 4.4 22 24.4	0.5 0.6 1.2 7.7 16 53 54	ps
V _{INPP}	Input Voltage Swing (Differential Configuration) (Note 21)	150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times @ 50 MHz Q, Q (20% - 80%)	60	110	150	60	120	170	90	140	230	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm.

14. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC} – 2.0 V. Input edge rates 150 ps (20% – 80%). 15. Pulse Skew |t_{PLH} – t_{PHL}| 16. Worst case difference between D0a and D0b (or between D1a or D1b), when both output come from same input.


17. Worst case difference between Q0 and Q1 outputs.

18. Skew is measured between outputs under identical transitions.

19. Additive RMS jitter with 50% Duty Cycle Clock Signal.

20. Additive Peak-to-Peak jitter with input NRZ data at PRBS 231-1.

21. Input voltage swing is a single-ended measurement operating in differential mode.

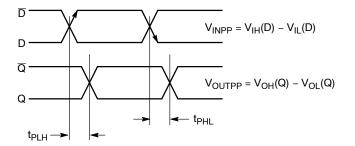
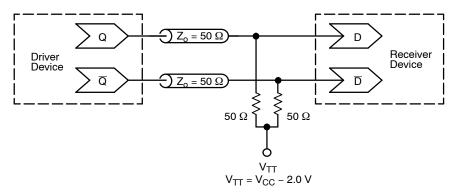
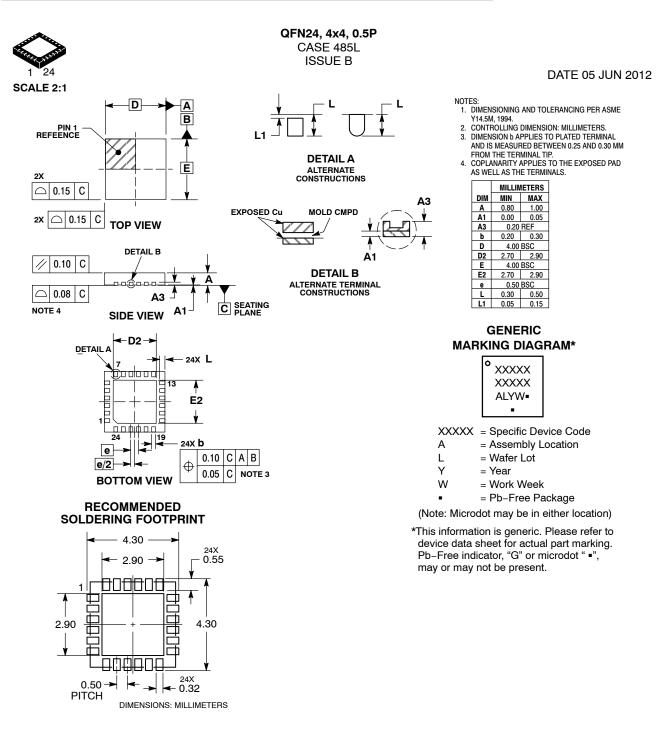



Figure 4. AC Reference Measurement



Resource Reference of Application Notes

AN1405/D	-	ECL Clock Distribution Techniques
AN1406/D	-	Designing with PECL (ECL at +5.0 V)
AN1503/D	-	ECLinPS [™] I/O SPiCE Modeling Kit
AN1504/D	-	Metastability and the ECLinPS Family
AN1568/D	-	Interfacing Between LVDS and ECL
AN1672/D	-	The ECL Translator Guide
AND8001/D	-	Odd Number Counters Design
AND8002/D	-	Marking and Date Codes
AND8020/D	-	Termination of ECL Logic Devices
AND8066/D	-	Interfacing with ECLinPS
AND8090/D	-	AC Characteristics of ECL Devices

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.

DOCUMENT NUMBER:	98AON11783D	Electronic versions are uncontrolled except when accessed directly from the Document Reposite Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.						
DESCRIPTION:	QFN24, 4X4, 0.5P	PAGE 1 OF 1						
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an inticular purpose, nor does ON Semiconductor	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically					

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and calcular performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

onsemi Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

 \Diamond