## NB7N017M

### 3.3 V SiGe 8-Bit Dual Modulus Programmable Divider/Prescaler with CML Outputs

## Description

The NB7N017M is a high speed 8-bit dual modulus programmable divider/prescaler with 16 mA CML outputs capable of switching at input frequencies greater than 3.5 GHz . The CML output structure contains internal $50 \Omega$ source termination resistor to $\mathrm{V}_{\mathrm{CC}}$. The device generates 400 mV output amplitude with $50 \Omega$ receiver resistor to $\mathrm{V}_{\mathrm{CC}}$. This I/O structure enables easy implementation of the NB7N017M in $50 \Omega$ systems.

The differential inputs contain $50 \Omega$ termination resistors to VT pads and all differential inputs accept RSECL, ECL, LVDS, LVCMOS, LVTTL, and CML.

Internally, the NB7N017M uses a $>3.5 \mathrm{GHz}$ 8-bit programmable down counter. A select pin, SEL, is used to select between two words, $\mathrm{Pa}[0: 7]$ and $\mathrm{Pb}[0: 7]$, that are stored in REGa and REGb respectively. Two parallel load pins, PLa and PLb, are used to load the level triggered programming registers, REGa and REGb , respectively. A differential clock enable, CE, pin is available.

The NB7N017M offers a differential output, TC. Terminal count output, TC, goes high for one clock cycle when the counter has reached the all zeros state. To reduce output phase noise, TC is retimed with the rising edge triggered latches.

## Features

- Maximum Input Clock Frequency $>3.5 \mathrm{GHz}$ Typical
- Differential CLK Clock Input
- Differential CE Clock Enable Input
- Differential SEL Word Select Input
- $50 \Omega$ Internal Input and Output Termination Resistors
- Differential TC Terminal Count Output
- All Outputs 16 mA CML with $50 \Omega$ Internal Source Termination to $\mathrm{V}_{\mathrm{CC}}$
- All Single-Ended Control Pins CMOS and PECL/NECL Compatible
- Counter Programmed Using One of Two Single-Ended Words, $\mathrm{Pa}[0: 7]$ and $\mathrm{Pb}[0: 7]$, Stored in REGa and REGb
- REGa and REGb Implemented with Level Triggered Latch
- Compatible with Existing 3.3 V LVEP, EP, and SG Devices
- Ability to Program the Divider without Disturbing Current Settings
- Positive CML Output Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.465 V with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- Negative CML Output Operating Range:
- $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -3.465 V
- $\mathrm{V}_{\mathrm{BB}}$ Reference Voltage Output
- CML Output Level: 400 mV Peak-Peak Output with $50 \Omega$ Receiver Resistor to $\mathrm{V}_{\mathrm{CC}}$
- These Devices are Pb-Free, Halogen Free and are RoHS Compliant
ON Semiconductor ${ }^{\circledR}$
www.onsemi.com

QFN-52
MN SUFFIX
CASE 485M-01
MARKING DIAGRAM*


$$
\text { A } \quad=\text { Assembly Site }
$$

WL = Wafer Lot
YY = Year
WW = Work Week
G $\quad=$ Pb-Free Package
*For additional marking information, refer to Application Note AND8002/D.

## ORDERING INFORMATION

| Device | Package | Shipping $^{\dagger}$ |
| :---: | :---: | :---: |
| NB7N017MMNG | QFN-52 <br> (Pb-Free) | 260 Tray JEDEC |
| NB7N017MMNR2G | QFN-52 <br> (Pb-Free) | 2000/Tape \& Reel |

$\dagger$ For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## NB7N017M



Figure 1. Pinout (Top View)

Table 1. PIN DESCRIPTION

| Pin Name | 1/0 | Default State | Single/Differential (Notes 1 and 2) | Description |
| :---: | :---: | :---: | :---: | :---: |
| CLK | ECL, CML, LVCMOS, LVDS, LVTTL Input | - | Differential | Clock |
| CE | ECL, CML, LVCMOS, LVDS, LVTTL Input | - | Differential | Clock Enable |
| MR | CMOS, ECL Input | Low | Single | Asynchronous Master Reset: Counter set to 00000000 to reload at next CLK pulse, REGa and REGb $=11111111$ and TC = 1 . |
| SEL | ECL, CML, LVCMOS, LVDS, LVTTL Input | - | Differential | Divide Select |
| PLa, PLb | CMOS, ECL Input | Low | Single | Parallel Load Counter Latch from Pa[0:7], $\mathrm{Pb}[0: 7]$ (Level Triggered) |
| TC | CML Output | - | Differential | Terminal Count, 16 mA CML output with $50 \Omega$ Source Termination to $\mathrm{V}_{\mathrm{CC}}$ (Note 5) |
| $\mathrm{Pa}[0: 7], \mathrm{Pb}[0: 7]$ | CMOS, ECL Input | High | Single | Counter Program Pins. CMOS and PECL/NECL compatible $\mathrm{Pa} 7=\mathrm{MSB}, \mathrm{Pb} 7=\mathrm{MSB}$ |
| $\mathrm{V}_{\mathrm{CC}}$ | Power | - | - | Positive Supply |
| $\mathrm{V}_{\mathrm{EE}}$ | Power | - | - | Negative Supply |
| VTCLK, VTCLK, VTSEL, VTSEL VTCE, VTCE | Termination | - | Differential | $50 \Omega$ Internal Input Termination Resistor (Note 6) |
| $\mathrm{V}_{\mathrm{BB}}$ | Output | - | - | CMOS/ECL Reference Voltage Output |
| NC | N/A | - | - | No Connect (Note 4) |
| EP | - | - | - | Exposed Pad (Note 3) |

1. All high speed inputs and outputs are differential to improve performance.
2. All single-ended inputs are CMOS and NECL/ECL compatible.
3. All $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{EE}}$ pins must be externally connected to external power supply voltage to guarantee proper device operation. The thermally exposed pad (EP) on package bottom (see case drawing) must be attached to a heat-sinking conduit. Exposed pad is bonded to the lowest voltage potential, $\mathrm{V}_{\mathrm{EE}}$.
4. The NC pins are electrically connected to the die and must be left open.
5. CML outputs require $50 \Omega$ receiver termination resistor to $\mathrm{V}_{\mathrm{CC}}$ for proper operation.
6. In the differential configuration when the input termination pins are connected to the common termination voltage, and if no signal is applied then the device will be susceptible to self-oscillation.

Table 2. CE Truth Table

| CE | Clock Status |
| :---: | :---: |
| LOW | Clock Disabled |
| HIGH | Clock Enabled |

Table 3. SEL Truth Table

| SEL | Active Register |
| :---: | :---: |
| LOW | REGa |
| HIGH | REGb |

Table 4. Register Programming Values for Various Divide Ratios

| Pa7/Pb7 | Pa6/Pb6 | Pa5/Pb5 | Pa4/Pb4 | Pa3/Pb3 | Pa2/Pb2 | Pa1/Pb1 | Pa0/Pb0 | Divide By |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | undefined |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 |
| - | - | - | - | - | - | - | - | - |
| - | - | - | - | - | - | - | - | - |
| 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 254 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 255 |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 256 |

Table 5. Function Table

| MR | Pla | PLb | SEL | CE | CLK | Function |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
| H | X | X | X | X | X | Master Reset (Counter programmed to 0000 0000, REGa and REGb programmed to 1111 |
|  |  |  |  |  | TC to 1) |  |


| L | H | L | X | X | X | REGa is transparent to $\mathrm{Pa}[0: 7]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| L | L | H | X | X | X | REGb is transparent $\mathrm{Pb}[0: 7]$ |
| L | L | L | L | H | Z | Count; At TC pulse, load counter from REGa |
| L | L | L | H | H | Z | Count; At TC pulse, load counter from REGb |
| L | X | X | X | L | X | Hold |

X - Don't Care
H-HIGH
L-LOW
Z - Rising Edge


Figure 2. Input Structure


Figure 3. Output Structure

## NB7N017M



Figure 4. Block Diagram

Table 6. Interface Options

| CLK INPUT interfacing options | CLK INPUT INTERFACING OPTIONS |
| :---: | :---: |
| CML | Connect VTCLK and VTCLK to $\mathrm{V}_{\mathrm{CC}}$ |
| LVDS | Connect VTCLK and $\overline{\text { VTCLK together }}$ |
| AC-COUPLED | Bias VTCLK and $\overline{\text { VTCLK Inputs within (VIHCMR) }}$Common Mode Range |
| RSECL, PECL, NECL | Standard ECL Termination Techniques or connect VTCLK and <br> VTCLK to $V_{T T}$ |
| LVTTL, LVCMOS | An Entered Voltage Should be Applied to the unused <br> Complementary Differential Input. Nominal Voltage is 1.5 V for <br> LVTTL and $\mathrm{V}_{\mathrm{CC}} / 2$ for LVCMOS Inputs. |

Table 7. ATTRIBUTES

| Characteristic | Value |
| :--- | :---: |
| Internal Input Pulldown Resistor (MR, PLa, PLb) | 75 k to $\mathrm{V}_{\mathrm{EE}}$ |
| Internal Input Pullup Resistor (Pa[0:7], Pb[0:7]) | 75 k to $\mathrm{V}_{\mathrm{CC}}$ |
| ESD Protection <br> Human Body Model <br> Machine Model <br> Charged Device Model | $>500 \mathrm{~V}$ <br> $>10 \mathrm{~V}$ <br> $>2 \mathrm{kV}$ |
| Moisture Sensitivity (Note 1) | Pb-Free Pkg |
| QFN-52 | Level 2 |
| Flammability Rating <br> Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in |
| Transistor Count |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test | 1914 |

1. For additional information, see Application Note AND8003/D.

## NB7N017M

Table 8. MAXIMUM RATINGS

| Symbol | Parameter | Condition 1 | Condition 2 | Rating | Units |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | Positive Power Supply | $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ |  | 3.6 | V |
| $\mathrm{V}_{\mathrm{EE}}$ | Negative Power Supply | $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ |  | -3.6 | V |
| $\mathrm{V}_{1}$ | Positive Input Negative Input | $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{1} \geq \mathrm{V}_{\mathrm{EE}} \end{aligned}$ | $\begin{array}{r} \hline 3.6 \\ -3.6 \end{array}$ | V |
| $\mathrm{V}_{\text {INPP }}$ | Differential Input Voltage \|CLK - CLK| | $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \geq 2.8 \mathrm{~V}$ |  | 2.8 V | V |
| $\mathrm{l}_{\text {in }}$ | Input Current through $\mathrm{R}_{\mathrm{T}}$ (50 $\Omega$ Resistor) | Continuous Surge |  | $\begin{aligned} & 25 \\ & 50 \end{aligned}$ | mA |
| $\mathrm{I}_{\text {out }}$ | Output Current | Continuous Surge |  | $\begin{aligned} & 25 \\ & 50 \end{aligned}$ | mA |
| $\mathrm{I}_{\text {BB }}$ | $\mathrm{V}_{\mathrm{BB}}$ Sink/Source |  |  | $\pm 0.5$ | mA |
| $\mathrm{T}_{\mathrm{A}}$ | Operating Temperature Range |  |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | Storage Temperature Range |  |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\theta_{\text {JA }}$ | Thermal Resistance (Junction-to-Ambient) (Note 1) | $\begin{aligned} & \hline 0 \text { lfpm } \\ & 500 \mathrm{lfpm} \end{aligned}$ | QFN-52 | $\begin{aligned} & 25-32 \\ & 20-27 \end{aligned}$ | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\theta_{\text {Jc }}$ | Thermal Resistance (Junction-to-Case) | 2S2P (Note 1) | QFN-52 | 4-15 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| $\mathrm{T}_{\text {sol }}$ | Wave Solder (Pb-Free) |  |  | 265 | ${ }^{\circ} \mathrm{C}$ |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. JEDEC standard multilayer board -2 S2P ( 2 signal, 2 power).

Table 9. DC CHARACTERISTICS, POSITIVE CML OUTPUT (VCC $=3.0 \mathrm{~V}$ to 3.465 V ; $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 3))

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $I_{\text {cc }}$ | Positive Power Supply Current | 170 | 200 | 230 | 170 | 200 | 230 | 170 | 200 | 230 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 4) | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -40 \end{aligned}$ | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -10 \end{gathered}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -40 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{Cc}} \\ & -10 \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -40 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -10 \end{aligned}$ | $\mathrm{V}_{\text {cc }}$ | mV |
| VOL | Output LOW Voltage (Note 4) |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -400 \end{gathered}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{cc}} \\ & -330 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & -400 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -330 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & -40 \mathrm{c} \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -330 \end{aligned}$ | mV |

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 19, 21) (Note 5)

| $\mathrm{V}_{\text {th }}$ | Input Threshold Reference Voltage Range (Note 1) | 800 | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -75 \end{aligned}$ | 800 | $\mathrm{V}_{\mathrm{CC}}$ -75 | 800 | $\mathrm{V}_{\mathrm{CC}}$ -75 | mV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Single-Ended Input HIGH Voltage | 1200 | $\mathrm{V}_{\text {CC }}$ | 1200 | $\mathrm{V}_{\mathrm{CC}}$ | 1200 | $\mathrm{V}_{\mathrm{CC}}$ | mV |
| $\mathrm{V}_{\text {IL }}$ | Single-Ended Input LOW Voltage | $\mathrm{V}_{\mathrm{EE}}$ | $\begin{gathered} \hline V_{C C} \\ -150 \end{gathered}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\begin{gathered} \hline \mathrm{V}_{\mathrm{Cc}} \\ -150 \end{gathered}$ | $\mathrm{V}_{\mathrm{EE}}$ | $\begin{gathered} \hline V_{C C} \\ -150 \end{gathered}$ | mV |
| VISE | Single-Ended Input Voltage ( $\mathrm{V}_{\text {IH }}-\mathrm{V}_{\mathrm{IL}}$ ) | 150 | 2500 | 150 | 2500 | 150 | 2500 | mV |

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 20, 22) (Note 6)

| $\mathrm{V}_{\text {IHD }}$ | Differential Input HIGH Voltage | 1200 |  | $V_{\text {CC }}$ | 1200 |  | $\mathrm{V}_{\mathrm{CC}}$ | 1200 |  | $\mathrm{V}_{\text {CC }}$ | mV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ILD }}$ | Differential Input LOW Voltage | $\mathrm{V}_{\mathrm{EE}}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -100 \end{gathered}$ | $\mathrm{V}_{\mathrm{EE}}$ |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -100 \end{gathered}$ | $\mathrm{V}_{\mathrm{EE}}$ |  | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -100 \end{gathered}$ | mV |
| $\mathrm{V}_{\text {CMR }}$ | Input Common Mode Range (Differential Cross-Point Voltage) (Note 2) | 800 |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -50 \end{aligned}$ | 800 |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -50 \end{aligned}$ | 800 |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & -50 \end{aligned}$ | mV |
| $\mathrm{V}_{\text {ID }}$ | Differential Input Voltage | 100 |  | 2500 | 100 |  | 2500 | 100 |  | 2500 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage Reference @ -100 $\mathrm{\mu}$ A | 1840 | 1970 | 2100 | 1840 | 1960 | 2100 | 1820 | 1970 | 2100 | mV |
| $\mathrm{R}_{\text {TIN }}$ | Internal Input Termination Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | $\Omega$ |
| $\mathrm{R}_{\text {tout }}$ | Internal Output Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | $\Omega$ |
| $\mathrm{IIH}^{\text {H }}$ | Input HIGH Current CLK, CE, SEL MR, PLa, PLb $\mathrm{Pa}[0: 7], \mathrm{Pb}[0: 7]$ | $\begin{gathered} 0 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 7 \\ 30 \\ -10 \end{gathered}$ | $\begin{gathered} 15 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 7 \\ 30 \\ -10 \end{gathered}$ | $\begin{gathered} 15 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 7 \\ 30 \\ -10 \end{gathered}$ | $\begin{gathered} 15 \\ 60 \\ 0 \end{gathered}$ | $\mu \mathrm{A}$ |
| ILL | Input LOW Current CLK, CE, SEL MR, PLa, PLb $\mathrm{Pa}[0: 7], \mathrm{Pb}[0: 7]$ | $\begin{gathered} -0.5 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 20 \\ -20 \end{gathered}$ | $\begin{gathered} 0.5 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} -0.5 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 20 \\ -20 \end{gathered}$ | $\begin{gathered} 0.5 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} -0.5 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 20 \\ -20 \end{gathered}$ | $\begin{gathered} 0.5 \\ 60 \\ 0 \end{gathered}$ | $\mu \mathrm{A}$ |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode. $\mathrm{V}_{\text {th }}=\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right) / 2$.
2. $\mathrm{V}_{\mathrm{CMR}}$ minimum varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CMR}}$ maximum varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.
3. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. $\mathrm{V}_{\mathrm{EE}}$ can vary +0.925 V to -0.165 V .
4. All loading with $50 \Omega$ to $V_{\mathrm{CC}}$.
5. $\mathrm{V}_{\mathrm{th}}, \mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}$ and $\mathrm{V}_{\text {ISE }}$ parameters must be complied with simultaneously.
6. $\mathrm{V}_{I H D}, \mathrm{~V}_{I L D}, \mathrm{~V}_{I D}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.

Table 10. DC CHARACTERISTICS, NEGATIVE CML OUTPUT ( $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$; $\mathrm{V}_{\mathrm{EE}}=-3.465 \mathrm{~V}$ to -3.0 V (Note 3))

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $\mathrm{I}_{\mathrm{CC}}$ | Positive Power Supply Current | 170 | 200 | 230 | 170 | 200 | 230 | 170 | 200 | 230 | mA |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage (Note 4) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -40 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -10 \end{aligned}$ | $\mathrm{V}_{\mathrm{CC}}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & -40 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{Cc}} \\ & -10 \end{aligned}$ | $\mathrm{V}_{\text {CC }}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -40 \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -10 \end{gathered}$ | $\mathrm{V}_{\mathrm{CC}}$ | mV |
| VoL | Output LOW Voltage (Note 4) |  | $\begin{aligned} & V_{c C} \\ & -400 \end{aligned}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -330 \end{gathered}$ |  | $\begin{aligned} & \hline V_{C C} \\ & -400 \end{aligned}$ | $\begin{aligned} & \hline V_{c \mathrm{C}} \\ & -330 \end{aligned}$ |  | $\begin{aligned} & V_{c C} \\ & -400 \end{aligned}$ | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -330 \end{gathered}$ | mV |

DIFFERENTIAL INPUT DRIVEN SINGLE-ENDED (Figures 19, 21) (Note 5)

| $\mathrm{V}_{\text {th }}$ | Input Threshold Reference Voltage <br> Range (Note 1) | $\mathrm{V}_{\mathrm{EE}}$ <br> +800 |  | $\mathrm{V}_{\mathrm{CC}}$ <br> -75 | $\mathrm{V}_{\mathrm{EE}}$ <br> +800 |  | $\mathrm{V}_{\mathrm{CC}}$ <br> -75 | $\mathrm{V}_{\mathrm{EE}}$ <br> +800 |  | $\mathrm{V}_{\mathrm{CC}}$ <br> -75 | mV |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{IH}}$ | Single-Ended Input HIGH Voltage | $\mathrm{V}_{\mathrm{EE}}$ <br> +1200 |  | $\mathrm{~V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ <br> +1200 |  | $\mathrm{~V}_{\mathrm{CC}}$ | $\mathrm{V}_{\mathrm{EE}}$ <br> +1200 |  | $\mathrm{~V}_{\mathrm{CC}}$ | mV |
| $\mathrm{V}_{\mathrm{IL}}$ | Single-Ended Input LOW Voltage | $\mathrm{V}_{\mathrm{EE}}$ |  | $\mathrm{V}_{\mathrm{CC}}$ <br> -150 | $\mathrm{~V}_{\mathrm{EE}}$ |  | $\mathrm{V}_{\mathrm{CC}}$ <br> -150 | $\mathrm{~V}_{\mathrm{EE}}$ |  | $\mathrm{V}_{\mathrm{CC}}$ <br> -150 | mV |
| $\mathrm{V}_{\text {ISE }}$ | Single-Ended Input Voltage $\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\text {IL }}\right)$ | 150 |  | 2500 | 150 |  | 2500 | 150 |  | 2500 | mV |

DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 20, 22) (Note 6)

| $\mathrm{V}_{\text {IHD }}$ | Differential Input HIGH Voltage | $\begin{gathered} \mathrm{V}_{\mathrm{EEE}} \\ +1200 \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}$ | $\begin{gathered} \mathrm{V}_{\mathrm{EEE}} \\ +1200 \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}$ | $\begin{gathered} \begin{array}{c} \mathrm{V}_{\mathrm{EEE}} \\ +1200 \end{array} \end{gathered}$ |  | $\mathrm{V}_{\mathrm{CC}}$ | mV |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VILD | Differential Input LOW Voltage | $\mathrm{V}_{\mathrm{EE}}$ |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -100 \end{gathered}$ | $\mathrm{V}_{\mathrm{EE}}$ |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -100 \end{gathered}$ | $\mathrm{V}_{\mathrm{EE}}$ |  | $\begin{gathered} \hline V_{C C} \\ -100 \end{gathered}$ | mV |
| $V_{\text {CMR }}$ | Input Common Mode Range (Differential Cross-Point Voltage) (Note 2) | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{EE}} \\ & +800 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & -50 \end{aligned}$ | $\begin{aligned} & \mathrm{V}_{\mathrm{EEE}} \\ & +800 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -50 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{EE}} \\ & +800 \end{aligned}$ |  | $\begin{gathered} \hline \mathrm{V}_{\mathrm{C}} \\ -50 \end{gathered}$ | mV |
| $\mathrm{V}_{\text {ID }}$ | Differential Input Voltage | 100 |  | 2500 | 100 |  | 2500 | 100 |  | 2500 | mV |
| $\mathrm{V}_{\mathrm{BB}}$ | Output Voltage <br> Reference @ -100 $\mu \mathrm{A}$ | -1460 | -1330 | -1200 | -1460 | -1330 | -1200 | -1460 | -1330 | -1200 | mV |
| $\mathrm{R}_{\text {TIN }}$ | Internal Input Termination Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | $\Omega$ |
| Rtout | Internal Output Resistor | 45 | 50 | 55 | 45 | 50 | 55 | 45 | 50 | 55 | $\Omega$ |
| $\mathrm{I}_{\mathrm{H}}$ | Input HIGH Current CLK, CE, SEL MR, PLa, PLb $\mathrm{Pa}[0: 7], \mathrm{Pb}[0: 7]$ | $\begin{gathered} 0 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 7 \\ 30 \\ -10 \end{gathered}$ | $\begin{gathered} 15 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 7 \\ 30 \\ -10 \end{gathered}$ | $\begin{gathered} 15 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} 0 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 7 \\ 30 \\ -10 \end{gathered}$ | $\begin{gathered} 15 \\ 60 \\ 0 \end{gathered}$ | $\mu \mathrm{A}$ |
| IIL | Input LOW Current CLK, CE, SEL MR, PLa, PLb $\mathrm{Pa}[0: 7], \mathrm{Pb}[0: 7]$ | $\begin{gathered} -0.5 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 20 \\ -20 \end{gathered}$ | $\begin{gathered} 0.5 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} -0.5 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 20 \\ -20 \end{gathered}$ | $\begin{gathered} 0.5 \\ 60 \\ 0 \end{gathered}$ | $\begin{gathered} -0.5 \\ 0 \\ -50 \end{gathered}$ | $\begin{gathered} 20 \\ -20 \end{gathered}$ | $\begin{gathered} 0.5 \\ 60 \\ 0 \end{gathered}$ | $\mu \mathrm{A}$ |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. $\mathrm{V}_{\text {th }}$ is applied to the complementary input when operating in single-ended mode. $\mathrm{V}_{\mathrm{th}}=\left(\mathrm{V}_{\mathrm{IH}}-\mathrm{V}_{\mathrm{IL}}\right) / 2$.
2. $\mathrm{V}_{\mathrm{CMR}}$ minimum varies $1: 1$ with $\mathrm{V}_{\mathrm{EE}}, \mathrm{V}_{\mathrm{CMR}}$ maximum varies $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$. The $\mathrm{V}_{\mathrm{CMR}}$ range is referenced to the most positive side of the differential input signal.
3. Input and output parameters vary $1: 1$ with $\mathrm{V}_{\mathrm{CC}}$.
4. All loading with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}$.
5. $\mathrm{V}_{\mathrm{th}}, \mathrm{V}_{I \mathrm{H}}, \mathrm{V}_{I L}$ and $\mathrm{V}_{I S E}$ parameters must be complied with simultaneously.
6. $\mathrm{V}_{\mathrm{IHD}}, \mathrm{V}_{\text {ILD }}, \mathrm{V}_{\text {ID }}$ and $\mathrm{V}_{\mathrm{CMR}}$ parameters must be complied with simultaneously.

Table 11. AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-3.465 \mathrm{~V}\right.$ to -3.0 V or $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to $3.465 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 1))

| Symbol | Characteristic | $-40^{\circ} \mathrm{C}$ |  |  | $25^{\circ} \mathrm{C}$ |  |  | $85^{\circ} \mathrm{C}$ |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max | Min | Typ | Max | Min | Typ | Max |  |
| $V_{\text {OUTPP }}$ | Output Voltage Amplitude @ $\div 2$ Mode $\mathrm{f}_{\text {in }}=3.5 \mathrm{GHz}$ (See Figure 5) | 300 | 400 |  | 300 | 400 |  | 300 | 400 |  | mV |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}}, \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$ | Propagation Delay to Output Differential CLK to TC MR to TC | $\begin{aligned} & 435 \\ & 100 \end{aligned}$ |  | $\begin{aligned} & 555 \\ & 500 \end{aligned}$ | $\begin{aligned} & 455 \\ & 100 \end{aligned}$ |  | $\begin{aligned} & 575 \\ & 500 \end{aligned}$ | $\begin{aligned} & 475 \\ & 100 \end{aligned}$ |  | $\begin{aligned} & 595 \\ & 500 \end{aligned}$ | ps |
| $\mathrm{t}_{\text {IITTER }}$ | RMS Random Clock Jitter (See Figure 5) $\mathrm{f}_{\mathrm{in}}=3.5 \mathrm{GHz}$ |  |  | 2.5 |  |  | 3.0 |  |  | 3.0 | ps |
| $\mathrm{V}_{\text {INPP }}$ | Input Voltage Swing/Sensitivity (Differential Configuration) (Note 2) | 100 |  | 2500 | 100 |  | 2500 | 100 |  | 2500 | mV |
| $\begin{aligned} & \hline \mathrm{t}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$ | Output Rise/Fall Times $(20 \%-80 \%)$ | 25 | 45 | 65 | 25 | 45 | 65 | 25 | 45 | 65 | ps |
| $\mathrm{t}_{\text {s }}$ | Setup Time (Figure 23) $\mathrm{Pa}[7: 0]$ to PLa $\mathrm{Pb}[7: 0]$ to PLb CE to CLK SEL to CLK PLa to CLK PLb to CLK $\mathrm{Pa}[7: 0]$ to CLK $\mathrm{Pb}[7: 0]$ to CLK | $\begin{aligned} & 3750 \\ & 4500 \\ & 400 \\ & 300 \\ & 2500 \\ & 3250 \\ & 4750 \\ & 3000 \end{aligned}$ | $\begin{gathered} 2500 \\ 2000 \\ 30 \\ 120 \\ 2000 \\ 2750 \\ 3500 \\ 2500 \end{gathered}$ |  | $\begin{gathered} 3750 \\ 4500 \\ 400 \\ 300 \\ 2500 \\ 3250 \\ 4750 \\ 3000 \end{gathered}$ | $\begin{gathered} 2500 \\ 2000 \\ 30 \\ 120 \\ 2000 \\ 2750 \\ 3500 \\ 2500 \end{gathered}$ |  | $\begin{gathered} 3750 \\ 4500 \\ 400 \\ 300 \\ 2500 \\ 3250 \\ 4750 \\ 3000 \end{gathered}$ | $\begin{gathered} 2500 \\ 2000 \\ 30 \\ 120 \\ 2000 \\ 2750 \\ 3500 \\ 2500 \end{gathered}$ |  | ps |
| $\mathrm{t}_{\mathrm{H}}$ | Hold Time (Figure 23) PLa to $\mathrm{Pa}[7: 0]$ PLb to $\mathrm{Pb}[7: 0]$ CLK to CE CLK to SEL CLK to PLa CLK to PLb CLK to PLb[7:0] CLK to PLb[7:0] | $\begin{gathered} -1500 \\ -1450 \\ 450 \\ 0 \\ -1750 \\ -250 \\ -2250 \\ -2000 \end{gathered}$ | $\begin{gathered} -2700 \\ -1900 \\ 40 \\ -110 \\ -1900 \\ -2700 \\ -3200 \\ -2500 \end{gathered}$ |  | $\begin{gathered} -1500 \\ -1250 \\ 450 \\ 0 \\ -1750 \\ -2250 \\ -2250 \\ -2000 \end{gathered}$ | $\begin{gathered} -2700 \\ -1900 \\ 40 \\ -110 \\ -1900 \\ -2700 \\ -3200 \\ -2500 \end{gathered}$ |  | $\begin{gathered} -1500 \\ -1450 \\ 450 \\ 0 \\ -1750 \\ -250 \\ -2250 \\ -2000 \end{gathered}$ | $\begin{gathered} -2700 \\ -1900 \\ 40 \\ -110 \\ -1900 \\ -2700 \\ -3200 \\ -2500 \end{gathered}$ |  | ps |
| tskew | Device-to-Device (Note 3) |  | 40 | 75 |  | 40 | 75 |  | 40 | 75 | ps |
| $t_{\text {PW }}$ | $\underset{\text { MR }}{\substack{\text { Minimum Pulse Width }}}$ | 250 | 85 |  | 250 | 85 |  | 250 | 85 |  | ps |
| $\mathrm{t}_{\mathrm{RR}}$ | Reset Recovery MR to CLK/CLK | 3000 | 2500 |  | 3000 | 2500 |  | 3000 | 2500 |  | ps |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

1. Measured using a 400 mV source, $50 \%$ duty cycle clock source at $\mathrm{f}_{\text {in }}=1 \mathrm{GHz}$ unless stated otherwise. All loading with $50 \Omega$ to $\mathrm{V}_{\mathrm{CC}}$. Input edge rates $40 \mathrm{ps}(20 \%-80 \%)$.
2. $\mathrm{V}_{\text {INPP }}(\mathrm{MAX})$ cannot exceed $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$.
3. Device-to-Device skew for identical transitions at identical $\mathrm{V}_{\mathrm{CC}}$ levels.


Figure 5. Output Voltage Amplitude (VOUTPP) / RMS Jitter vs. Input Frequency ( $\mathrm{f}_{\mathrm{in}}$ ) @ Ambient Temperature (Typical)

## NB7N017M

## Application Information

The differential inputs can accepts LVPECL, CML, LVDS, LVCMOS and LVTTL signal levels. The differential input amplitude range is from 100 mV to

2500 mV , where the input high voltage, VIH, can range from 1.2 V to VCC ; see DC Characteristics Table 9. Examples of input interfaces are illustrated below in a $50 \Omega$ environment $(\mathrm{Z}=50 \Omega)$


Figure 6. CML Interface


Figure 7. PECL Capacitor-Coupled Interface
${ }^{*} \mathrm{~V}_{\text {BIAS }}$ is within $\mathrm{V}_{\text {CMR }}$ Range.


Figure 8. LVDS Interface

## NB7N017M



Table 12. OPERATION TABLE

| MR | Pa | PLa | Pb | PLb | SEL | CE | CLK | CLK_INT | TC_INT | TC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | XXXXXXXX | x | XXXXXXXX | X | X | X | X | X | X | X |
| 0 | 00000101 | H | 00000100 | H | X | H | L | H | H | H |
| 0 | 00000101 | H | 00000100 | H | X | H | L | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | x $x$ xXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |

X - Don't Care
H-HIGH
L-LOW

## NB7N017M

Table 12. OPERATION TABLE

| MR | Pa | PLa | Pb | PLb | SEL | CE | CLK | CLK_INT | TC_INT | TC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | XXXXXXXX | L | XXXXXXXX | L | H | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | H | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | L | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | L | L | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | L | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | L | L | L | X | X |
| 0 | 00000010 | H | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | 00000001 | H | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | H | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | L | H | H | H | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | L | L | X | X |
| 0 | XXXXXXXX | L | XXXXXXXX | L | X | H | H | H | X | X |

[^0]

Figure 10. Device Timing Diagram for Table 12


Figure 11. Timing Diagram for CE Input


Figure 12. Timing Diagram for PLa / PLb Inputs (SEL is Low)


Figure 13. Timing Diagram for PLa / PLb Inputs (Before Critical Rising Edge of CLK) (SEL is Low)


Figure 14. Timing Diagram for PLa / PLb Inputs (After Critical Rising Edge of CLK)
(SEL is Low)


Figure 15. Timing Diagram for SEL Input (Before Critical Rising Edge of CLK)


Figure 16. Timing Diagram for SEL Input (After Critical Rising Edge of CLK)


Figure 17. Timing Diagram Relating PLa, PLb, $\mathrm{Pa}(0: 7), \mathrm{Pb}(0: 7)$


Figure 18. AC Reference Measurement


Figure 19. Differential Input Driven
Single-Ended


Figure 20. Differential Inputs Driven Differentially


## NB7N017M



Figure 23. Setup and Hold Time


Figure 24. Typical Termination for 16 mA Output Drive and Device Evaluation

## NB7N017M

## PACKAGE DIMENSIONS

QFN-52 8x8, 0.5P CASE 485M-01

ISSUE C


ECLinPS is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

## PUBLICATION ORDERING INFORMATION

## LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your loca Sales Representative


[^0]:    X - Don't Care
    H - HIGH
    L - LOW

