ON Semiconductor

Is Now

To learn more about onsemi™, please visit our website at www.onsemi.com

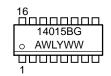
onsemi and Onsemi. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/ or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application,

Dual 4-Bit Static Shift Register

The MC14015B dual 4-bit static shift register is constructed with MOS P-Channel and N-Channel enhancement mode devices in a single monolithic structure. It consists of two identical, independent 4-state serial-input/parallel-output registers. Each register has independent Clock and Reset inputs with a single serial Data input. The register states are type D master-slave flip-flops. Data is shifted from one stage to the next during the positive-going clock transition. Each register can be cleared when a high level is applied on the Reset line. These complementary MOS shift registers find primary use in buffer storage and serial-to-parallel conversion where low power dissipation and/or noise immunity is desired.

Features

- Diode Protection on All Inputs
- Supply Voltage Range = 3.0 Vdc to 18 Vdc
- Logic Edge-Clocked Flip-Flop Design
- Logic State is Retained Indefinitely with Clock Level either High or Low; Information is Transferred to the Output only on the Positive-going Edge of the Clock Pulse
- Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load Over the Rated Temperature Range
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- This Device is Pb-Free and is RoHS Compliant


ON Semiconductor®

http://onsemi.com

SOIC-16 D SUFFIX CASE 751B

MARKING DIAGRAM

A = Assembly Location

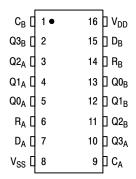
 $\begin{array}{ll} \text{WL, L} &= \text{Wafer Lot} \\ \text{YY, Y} &= \text{Year} \\ \text{WW, W} &= \text{Work Week} \\ \text{G} &= \text{Pb-Free Indicator} \end{array}$

ORDERING INFORMATION

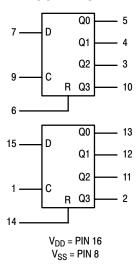
See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet.

MAXIMUM RATINGS (Voltages Referenced to VSS)

Symbol	Parameter	Value	Unit
V _{DD}	DC Supply Voltage Range	-0.5 to +18.0	V
V _{in} , V _{out}	Input or Output Voltage Range (DC or Transient)	-0.5 to V _{DD} + 0.5	V
I _{in} , I _{out}	Input or Output Current (DC or Transient) per Pin	±10	mA
P _D	Power Dissipation, per Package (Note 1)	500	mW
T _A	Ambient Temperature Range	-55 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
T _L	Lead Temperature (8–Second Soldering)	260	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range $V_{SS} \le (V_{in} \text{ or } V_{out}) \le V_{DD}$.


Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open.

^{1.} Temperature Derating: "D/DW" Package: -7.0 mW/°C From 65°C To 125°C

PIN ASSIGNMENT

BLOCK DIAGRAM

TRUTH TABLE

С	D	R	Q0	Q _n
	0	0	0	Q_{n-1}
	1	0	1	Q_{n-1}
~	Х	0	No Change	No Change
Х	Х	1	0	0

X = Don't Care

 $Q_n = Q0$, Q1, Q2, or Q3, as applicable.

 Q_{n-1} = Output of prior stage.

ORDERING INFORMATION

Device	Package	Shipping [†]
MC14015BDG	SOIC-16 (Pb-Free)	48 Units / Rail
MC14015BDR2G	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel
NLV14015BDR2G*	SOIC-16 (Pb-Free)	2500 Units / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

^{*}NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to V_{SS})

				-55	5°C		25°C		125	5°C	
Characteristic		Symbol	V _{DD} Vdc	Min	Max	Min	Typ (Note 2)	Max	Min	Max	Unit
Output Voltage V _{in} = V _{DD} or 0	"0" Level	V _{OL}	5.0 10 15	- - -	0.05 0.05 0.05	- - -	0 0 0	0.05 0.05 0.05	- - -	0.05 0.05 0.05	Vdc
$V_{in} = 0$ or V_{DD}	"1" Level	V _{OH}	5.0 10 15	4.95 9.95 14.95	- - -	4.95 9.95 14.95	5.0 10 15	- - -	4.95 9.95 14.95	- - -	Vdc
Input Voltage $(V_O = 4.5 \text{ or } .05 \text{ Vdc})$ $(V_O = 9.0 \text{ or } 1.0 \text{ Vdc})$ $(V_O = 13.5 \text{ or } 1.5 \text{ Vdc})$	"0" Level	V _{IL}	5.0 10 15	- - -	1.5 3.0 4.0	- - -	2.25 4.50 6.75	1.5 3.0 4.0	- - -	1.5 3.0 4.0	Vdc
$(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$	"1" Level	V _{IH}	5.0 10 15	3.5 7.0 11	- - -	3.5 7.0 11	2.75 5.50 8.25	- - -	3.5 7.0 11	- - -	Vdc
Output Drive Current $ \begin{aligned} (V_{OH} = 2.5 \text{ Vdc}) \\ (V_{OH} = 4.6 \text{ Vdc}) \\ (V_{OH} = 9.5 \text{ Vdc}) \\ (V_{OH} = 13.5 \text{ Vdc}) \end{aligned} $	Source	I _{OH}	5.0 5.0 10 15	-3.0 -0.64 -1.6 -4.2		-2.4 -0.51 -1.3 -3.4	-4.2 -0.88 -2.25 -8.8		-1.7 -0.36 -0.9 -2.4		mAdc
$(V_{OL} = 0.4 \text{ Vdc})$ $(V_{OL} = 0.5 \text{ Vdc})$ $(V_{OL} = 1.5 \text{ Vdc})$	Sink	I _{OL}	5.0 10 15	0.64 1.6 4.2	- - -	0.51 1.3 3.4	0.88 2.25 8.8	- - -	0.36 0.9 2.4	- - -	mAdc
Input Current		I _{in}	15	_	±0.1	_	±0.00001	±0.1	-	±1.0	μAdc
Input Capacitance (V _{in} = 0)		C _{in}	-	-	-	-	5.0	7.5	_	-	pF
Quiescent Current (Per Package)		I _{DD}	5.0 10 15	- - -	5.0 10 20	- - -	0.005 0.010 0.015	5.0 10 20	- - -	150 300 600	μAdc
Total Supply Current (Notes 3 & 4) (Dynamic plus Quiescent, Per Package) (C _L = 50 pF on all outputs, all buffers switching)		Ι _Τ	5.0 10 15			$I_T = (2$	1.2 μΑ/kHz)f 2.4 μΑ/kHz)f 3.6 μΑ/kHz)f	+ I _{DD}			μAdc

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

$$I_T(C_L) = I_T(50 \text{ pF}) + (C_L - 50) \text{ Vfk}$$

where: I_T is in μA (per package), C_L in pF, $V = (V_{DD} - V_{SS})$ in volts, f in kHz is input frequency, and k = 0.002.

Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.
 The formulas given are for the typical characteristics only at 25°C.

^{4.} To calculate total supply current at loads other than 50 pF:

SWITCHING CHARACTERISTICS (Note 5) (C $_L$ = 50 pF, T_A = $25^{\circ}C)$

Characteristic	Symbol	V _{DD}	Min	Typ (Note 6)	Max	Unit
Output Rise and Fall Time $t_{TLH}, t_{THL} = (1.5 \text{ ns/pF}) \text{ C}_{L} + 25 \text{ ns}$ $t_{TLH}, t_{THL} = (0.75 \text{ ns/pF}) \text{ C}_{L} + 12.5 \text{ ns}$ $t_{TLH}, t_{THL} = (0.55 \text{ ns/pF}) \text{ C}_{L} + 9.5 \text{ ns}$	t _{TLH} , t _{THL}	5.0 10 15	- - -	100 50 40	200 100 80	ns
Propagation Delay Time Clock, Data to Q $t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_L + 225 \text{ ns} \\ t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_L + 92 \text{ ns} \\ t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_L + 65 \text{ ns} \\ \text{Reset to Q} \\ t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) \text{ C}_L + 375 \text{ ns} \\ t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) \text{ C}_L + 147 \text{ ns} \\ t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) \text{ C}_L + 95 \text{ ns} \\ \end{cases}$	t _{PLH} , t _{PHL}	5.0 10 15 5.0 10	- - - -	310 125 90 460 180 120	750 250 170 750 250 170	ns
Clock Pulse Width	t _{WH}	5.0 10 15	400 175 135	185 85 55	- - -	ns
Clock Pulse Frequency	f _{cl}	5.0 10 15	- - -	2.0 6.0 7.5	1.5 3.0 3.75	MHz
Clock Pulse Rise and Fall Times	t _{TLH} , t _{THL}	5.0 10 15	- - -	- - -	15 5 4	μS
Reset Pulse Width	t _{WH}	5.0 10 15	400 160 120	200 80 60	- - -	ns
Setup Time	t _{su}	5.0 10 15	350 100 75	100 50 40	- - -	ns

^{5.} The formulas given are for typical characteristics only at 25°C.
6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

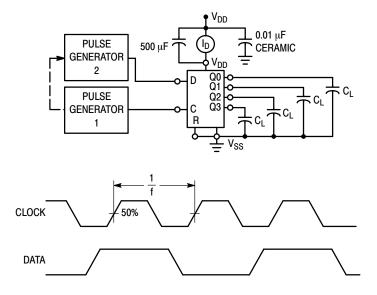


Figure 1. Power Dissipation Test Circuit and Waveform

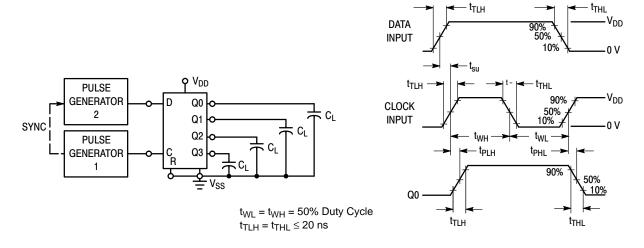
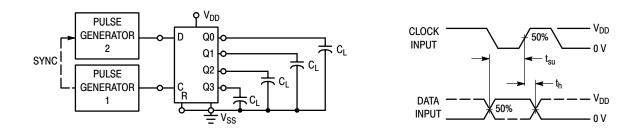
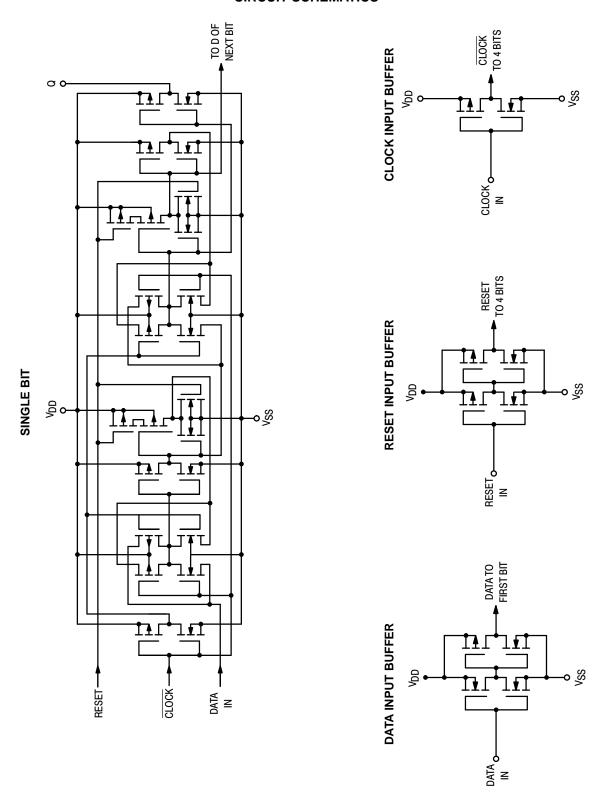
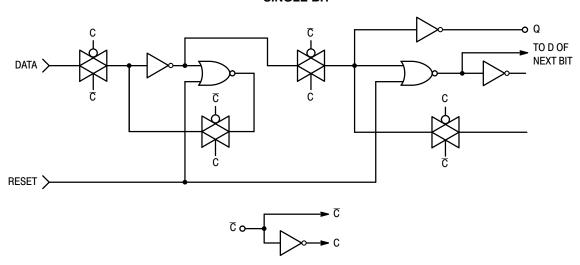
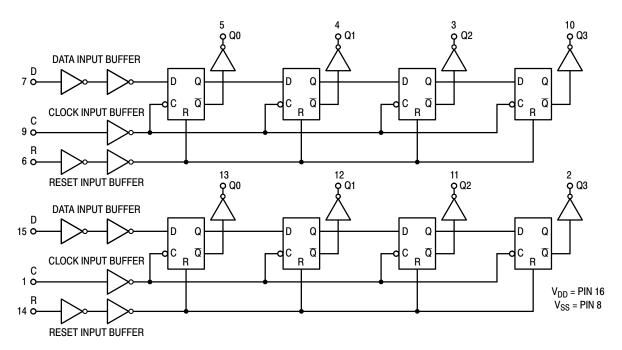


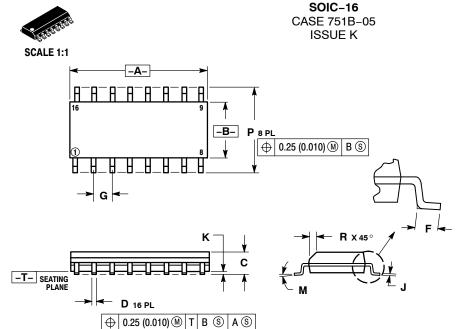
Figure 2. Switching Test Circuit and Waveforms


Figure 3. Setup and Hold Time Test Circuit and Waveforms

CIRCUIT SCHEMATICS




LOGIC DIAGRAMS

SINGLE BIT

COMPLETE DEVICE

DATE 29 DEC 2006

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI
- THE NOTION AND TOLETANOING FER ANSI'Y 14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
- PHOI HUSION.

 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.

 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR PROTRUSION

 SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D

 DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	9.80	10.00	0.386	0.393	
В	3.80	4.00	0.150	0.157	
С	1.35	1.75	0.054	0.068	
D	0.35	0.49	0.014	0.019	
F	0.40	1.25	0.016	0.049	
G	1.27	BSC	0.050 BSC		
J	0.19	0.25	0.008	0.009	
K	0.10	0.25	0.004	0.009	
M	0°	7°	0°	7°	
P	5.80	6.20	0.229	0.244	
R	0.25	0.50	0.010	0.019	

STYLE 1:		STYLE 2:		STYLE 3:		STYLE 4:			
PIN 1.		PIN 1.		PIN 1.	COLLECTOR, DYE #1	PIN 1.	COLLECTOR, DYE	#1	
2.			ANODE	2.	BASE, #1	2.	COLLECTOR, #1		
3.	EMITTER	3.	NO CONNECTION	3.	EMITTER, #1	3.	COLLECTOR, #2		
4.	NO CONNECTION	4.	CATHODE	4.	COLLECTOR, #1	4.	COLLECTOR, #2		
5.	EMITTER	5.	CATHODE	5.	COLLECTOR, #2	5.	COLLECTOR, #3		
6.	BASE	6.	NO CONNECTION	6.	BASE, #2	6.	COLLECTOR, #3		
7.	COLLECTOR	7.	ANODE	7.	EMITTER, #2	7.	COLLECTOR, #4		
8.	COLLECTOR			8.	COLLECTOR, #2	8.	COLLECTOR, #4		
9.	BASE		CATHODE	9.	COLLECTOR, #3	9.	BASE, #4		
10.	EMITTER	10.	ANODE	10.	BASE, #3	10.	EMITTER, #4		
11.	NO CONNECTION	11.		11.	EMITTER, #3	11.	BASE, #3		
12.	EMITTER		CATHODE	12.		12.			
13.	BASE		CATHODE	13.	COLLECTOR, #4	13.	BASE, #2	SOI DEDING	FOOTPRINT
14.			NO CONNECTION	14.	BASE, #4	14.	EMITTER, #2	SOLDERING	FOOTFRINT
15.	EMITTER		ANODE	15.	EMITTER, #4	15.	BASE, #1	8	ЗX
16.	COLLECTOR	16.	CATHODE	16.	COLLECTOR, #4	16.	EMITTER, #1	- 6	.40 ────
								-	-
STYLE 5:		STYLE 6:		STYLE 7:					16X 1.12 <
PIN 1.	DRAIN, DYE #1		CATHODE	PIN 1.	SOURCE N-CH				,
2.	DRAIN. #1		CATHODE	2.	COMMON DRAIN (OUTPUT)		. 🗀 1	16
3.	DRAIN, #2		CATHODE	3.	COMMON DRAIN (OUTPUT			,	'' 🖳
4.	DRAIN, #2	4.	CATHODE	4.	GATE P-CH	,			
5.	DRAIN, #3	5.	CATHODE	5.	COMMON DRAIN (OUTPUT)	16	5X T	
6.	DRAIN, #3	6.	CATHODE	6.	COMMON DRAIN (OUTPUT		0.5		' <u> </u>
7.	DRAIN, #4	7.	CATHODE	7.	COMMON DRAIN (OUTPUT		0.0		
8.	DRAIN, #4	8.	CATHODE	8.	SOURCE P-CH	,			
9.	GATE, #4	9.	ANODE	9.	SOURCE P-CH				
10.	SOURCE, #4	10.	ANODE	10.	COMMON DRAIN (OUTPUT)			
11.	GATE, #3	11.	ANODE	11.	COMMON DRAIN (OUTPUT				
12.	SOURCE, #3	12.	ANODE	12.	COMMON DRAIN (OUTPUT				
13.	GATE, #2	13.	ANODE	13.	GATE N-CH	,			¦
14.	SOURCE, #2	14.	ANODE	14.	COMMON DRAIN (OUTPUT)			↓ PITCH
15.	GATE, #1	15.	ANODE	15.	COMMON DRAIN (OUTPUT				<u>+-+</u>
16.	SOURCE, #1	16.	ANODE	16.	SOURCE N-CH	,			
	•							□ ₈	9 + - + -
								•	,
									BINENIOLONIO MILLINETTE
									DIMENSIONS: MILLIMETERS

DOCUMENT NUMBER:	98ASB42566B	Electronic versions are uncontrolled except when accessed directly from the Document Reposito Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SOIC-16		PAGE 1 OF 1				

ON Semiconductor and at a trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and (III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthnoized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com **TECHNICAL SUPPORT**

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

For additional information, please contact your local Sales Representative